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DYER-LASHOF OPERATIONS IN K-THEORY

JAMES E. MCCLURE'

Dyer-Lashof operations were first introduced by Araki and Kudo in [1] in
order to calculate H,(Q1"S™tk; Z,). These operations were later used by Dyer
and Lashof to determine H.(QY';Z,) as a functor of H.(Y;Zp) [5], where
QY =J,,Q"E"Y. This has had many important applications. Hodgkin and
Snaith independently defined a single secondary operation in K-homology (for
p odd and p = 2 respectively) which was analogous to the sequence of Dyer-
Lashof operations in ordinary homology (7, 13], and this operation has been
used to calculate K.(QY'; Z,) whenY is a sphere or when p=2 and Y is a real
projective space [11, 12]. In this note we describe new primary Dyer-Lashof
operations in K-theory which completely determine K,(QY'; Z,) in general.

We shall remove the indeterminacy of the operation by lifting it to higher
torsion groups. First we establish notation. X will always denote an E-
space [9] and Y will denote an arbitrary space, considered as a subspace of
QY via the natural inclusion. We write K, (Y;7) for Ko(Y; Zpr) ® K1(Y'; Zpr);
in particular K-theory is Z,-graded and we write |z| for the mod2 degree of
z. There are evident natural maps

Pl Ko(Y;r) = Ko (Yyr+3s) ifs>1,
m: Ko(Y;7r) = Ko(Y;t) if1<t<r,
and
Br: Ko(Y;1) = Ko1(Y57).
THEOREM 1. For eachr > 2 and o € Z; there 1s an operation
Q: Ko(X;7) = Ko(X;57—1)

with the following properties, where z, y € K..(X;r).
(1) @ s natural with respect to E«-maps.

Qz+Quon| 5 (P )eivrs| if ol =y =0
)  QEty)= =T i =

=1
Qz+Qy if lz| =y =1.
(iil) Q¢ =0, where ¢ € Ko(X;r) is the identity element.
Qz - m(yP) + m(P) - Qy +p(Qz)(Qy) f lz| =y =0,
(iv)  Qzy)={Qz 7m(y") +p(Qz)(Qy) iflz|=1,ly|=0,

(Qz)(Qy) if |z|=y|=1.
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_ Qoz if |z| =0,
v) oQz = {w(ax)” +pQoz if 2] =1,

where 0 : Ko(QX;7) = Kop1(X;7) is the homology suspension.
(vi) Ifk is prime to p, then Qi* = *Q, where 1* is the kth Adams operation.

QB,z —pr(zP~1B,z) if |z| =0,
m(Brz)P + pQ B,z if |z| =1.

Qrz =wQzif r > 3and

zP if |z| =0,r=1,

p.Qz — (PP 1 —1)zP if |z|=0,7>2,
0 if|z|=1r=1,

p.Qz if |z|=1,7r > 2.

(ix) Let p = 2. If z € K1(X;1) then QB22.xz = z2. If z € K1(X;2) then
(mz)? = (7B22)?; in particular (rz)? € Ko(X;1) is zero if z € K1(X;7)
with r > 3.

REMARKS. (i) There are no Adem relations.

(ii) f z € K.(X;1) has Bz = 0 then z lifts to y € K,(X;2). Thus one
can define a secondary operation @ on ker 3 by @z = Qy. The element y is
well defined modulo the image of p., and thus Theorem 1 (viii) shows that
Qz is well defined modulo pth powers if |z| = 0 and has no indeterminacy
if |z| = 1. This is essentially the operation defined by Hodgkin and Snaith
(although their construction is incorrect when p is odd, as shown in [10]).

The next result shows that, in contrast to ordinary homology, K.(QY;1)
will in general have nilpotent elements.

THEOREM 2. 7(B,z)" =0 in Ko(X;1) if z € K1 (X;7).

If z € K.(Y;7), we write Q°z € K.(QY;r — s) for the sth iterate of Q
when s < r. These elements give a family of indecomposable generators in
K.(QY;1), but in general there can be other generators as well. For example,
if z € K1(Y;1) with Bz # 0 then z(8z)P~! has zero Bockstein by Theorem
2, hence it lifts to an element z € K1(QY;2), and it turns out that Qz
is indecomposable (note that we cannot apply the Cartan formula to Qz).
The next theorem allows us to deal systematically with elements like z; in
particular it gives the higher Bocksteins of such elements.

(Vii) Br-1Qz = {

(vii) Op.z =

THEOREM 3. For each r > 1 there is an operation
R:K;(X;r)— K1(X;7r+1)

with the following properties, where =, y € K1(X;r).

(i) R is natural for E«-maps.

(ii) p« Rz = Rp.z, TRT = Qpyx — 2(B,z)P~L, and if r > 2, R7z = Qp.T —
pP (B, z)P L.

(i) B,+1 R = QB, 42935,

(iv) If r > 2, then QRz = RQx.
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(v) If k is prime to p, then Ry* = y*R.

. pu[(oz)?] ifr=1,
™) ofe = {p* [(oz)P] +p2Qoz if r>2.

R(z+y)=Rz+Ry— Z [p(p> o) (Br 410+ 2) " (Br4104y)P~
(vii)
" (p; )ﬂrﬂp"(zy)w +1P42) (B4 puy)P L.

Theorems 1 and 3 imply that 7Q°R*z is decomposable if z € K;(Y’;7) and
s<r+t—1.If s=r+t—1 and 76,z # 0 then this element turns out to be
indecomposable.

In order to give a Cartan formula for R and to provide generators for the
higher terms of the Bockstein spectral sequence, we next give a K-theory
analogue for the Pontryagin pth power introduced in ordinary homology by
Madsen (8] and May [4]. Note, however, that by part (viii) of the following
theorem this operation does not give rise to new families of indecomposables
in K.(QY;1).

THEOREM 4. For each r > 1 there is an operation
Q: Ko(X;7) = Ko(X;57+1)

with the following properties.
(i) Q is natural for Ew-maps.

(i) 7Qz = zP and Qp.z =pP 1p,Qx. Ifr > 2 then Qnz =

(iil) 78,419z = 2P716,x.

(iv) Let p be odd. Then
Rizy) = | (BENQy) & |zl =1,y =0andr =1,

(Rz)(Qy) +P2[(Q2)(Qy)] if 2| =1,|y|=0andr > 2.

Q(zy) = (Qz)(Qy) if |z|=1y|=

(v) If k is prime to p, ¥*Q = Qup*.

(vi) Qz+y)=Qz+Qy+ Z ( )zu zyP).
(vi) 00z = 0 f pisodd,
2712, [(02)(Brox)] if p=2.

(vii) QQz =
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REMARK. The formulas in part (iv) have analogues when p = 2, but some
of the coefficients in this case have not yet been determined.

Using the operations @ and R we can completely describe K,(QY;1). We
shall assume that Y is a finite complex, although this condition can be avoided.
First recall the construction CY from [9]. By [4, Theorem 1.5.10] we have
K.(QY;1)=(mY) 1K.(CY;1), and so it suffices to give K.(CY;1).

Next recall the reduced K-theory Bockstein spectral sequence E7Y from
[2]. f Y is a finite complex we have ETY = E?Y for some n, and we can
choose a subset Aw, C K.(Y;Z) projecting to a basis for EXY. Proceeding
inductively, we can choose subsets A, C K,(Y;r) such that

AU Ap_1UBn1(Ap—1)U---UA UB(A)

projects to a basis of E7Y for 1 <r <n—1. We write A,¢ and A,; for the
zero- and one-dimensional subsets of A,. Let BY be the quotient of the free
strictly commutative algebra generated by the four sets

{rQ°z|lz € A,,0<s< 1}, {mBr—sQ°z|z € Arg,0 < 5 <7< 00},
{Q PR z|z € Apy,r < 00,0< s}, and {7B,4,R°z|T € Ay,7 < 0,0 < s}
by the ideal generated by the set
{(7Br4+sR°z)P " |z € Ap1,7 < 00,0 < 8}.

The Dyer-Lashof operations @ and R give an additive homomorphism \: BY —
K,.(CY;1), which is a ring homomorphism if p is odd but not if p = 2. Our
main theorem is

r+s

THEOREM 5. \ s an tsomorphism.

REMARKS. (i) Theorems 1, 3, and 5 also give the ring structure of
K.(CY;1) when p = 2. First recall that mod2 K -theory is noncommutative
[2], in fact the commutator of z and y is (8z)(8y). Now

ﬁ(Qr+sRs+1x) - (ﬂr+s+1Rs+lz)2r+’

if z € A,y with r < 00 and s > —1, and all other generators (except Q" z
for € Ay, r < 00, whose Bockstein is the generator 3Q"~1z) have zero
Bockstein and hence lie in the center. Further, all odd-dimensional generators
have square zero except in the following cases:

(rQ "%x)? = ([3,:1;)2'_l ifz€An,2<r <0

(Q+°R*T12)? = (nB,4s42R°T22)? ™" ifz € Ayy,r <00, > —1.

These facts, together with Theorem 5, determine the ring structure.

(ii) The effect of (Qf)«: K.(QY;1) = K.(QZ;1) for any f: Y — Z can be
ascertained from Theorems 1, 3, and 5 if f.: K.(Y;r) —» K.(Z;r) is known
for all r > 1 (although the formulas can become complicated unless f. takes
the chosen sets A, for Y into the corresponding sets for Z). In particular if
f: 8% — 82 is the degree p map then Theorem 1 (ii) implies that (Qf). is
nonzero on K,(QS?;1). Thus K.(QY;1) is not a functor of K.(Y;1), a fact
first noticed by Hodgkin [7].
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(iii) Theorem 5 specializes to give an independent proof of the computations
of Hodgkin [6] and Miller and Snaith [11, 12]. The operation R did not arise
in those computations since in the cases considered A,; was empty for all
r < 00.

Finally, we describe the Bockstein spectral sequence for CY.

THEOREM 6. For 1 <m < oo, E™(CY)" s additively isomorphic to the
quotient of the free strictly commutative algebra generated by the siz sets
{rQ°z|z € A,,m <r—3s,52>0},
{nBr—sQ°z|z € Apg,m < r— 5 < 00,8 >0},
{m QM "t Q%z|z € Apg,1 <7 —5 <m,s >0},
{mBm Q™ "T*Q%z|z € Aro,1 <r—s<m,s >0},
{mr@Q"™R' x|z € Apy,t > max(m,r +1),7 < 0o},
and
{nB:R*""z|z € Ap1,t > max(m,r),r < 00}
by the ideal generated by the set

{(B:R* )"

If p 1s odd or m > 3 the isomorphism 1is multiplicative. The differential in
E™(CY)?" is determined by the formula

ﬂ'ﬂmQt_mRt_T(B = (ﬂ.ﬂth-—'rx)pe—
for x € Ayq, t > max(m,r), r < 0.

|z € Arq,t > max(m,r),r < co}.

The construction of the operations is as follows. Let M, be the Moore
spectrum S~! U,r €% and let K be the integral K-theory spectrum. By
definition, any z € K,(X;r) is represented by a stable map

z: 8* > KANIM ANX.
Since the dual of ¥ M, is M,, such a map induces
z': LM, > K ANX.

Applying the stable extended power functor D, and using the fact that K AX
is an Ho ring spectrum [3] one obtains a composite

2": DyS*M, — Dp(K AX) » K A X.
Finally, if e € Ko(DpX*M,; s) for some s one has the composite

DM, 5K ADSM, 'S KAKAX S K AX,
where u is the K-theory product. This composite represents an element of
K,(X;s) depending only on e and z. The operations Qz, Qz and Rz are
obtained in this way for various choices of e, and the proofs of Theorems 1,
3, and 4 reduce in each case to the analysis of e. The construction has the
further advantage that the proof of Theorem 5 is reduced, after some diagram
chasing, to the universal case Y = X*M,. Details will appear in [3].
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