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INTRODUCTION

The basic idea of this inverse function theorem was discovered by John Nash
[14], who used it to prove his famous theorem on isometric embeddings of
Riemannian manifolds. Jirgen Moser [13] fashioned it into an abstract theo-
rem in functional analysis of wide applicability. Sergeraert [20] stated the
theorem in terms of a category of maps between Fréchet spaces. Generaliza-
tions to implicit function theorems have been given by Kuranishi [9], Zehnder
[25], and the author [4]. Applications have been made by Nash [14] and
Jacobowitz [8] to isometric embeddings, by Kuranishi [9] to deformation of CR
structures, by Moser and Zehnder [24] to small divisor problems, by Hormander
[6] to problems in gravitation, by Beale [2] to water waves, by Schaeffer [18, 19]
to free boundary problems in electromagnetics, by Sergeraert [22] to catastrophe
theory, and by the author [5] to foliations. These and many other examples
show the power and versatility of the theorem.

We define a category of “tame” Fréchet spaces and “tame” nonlinear maps,
which is essentially that of Sergeraert. The spaces carry an extra structure of a
“grading”, a sequence of norms || ||, defining the topology. The tame condi-
tion on the Fréchet spaces guarantees that the norms satisfy some interpolation
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properties. The maps are required to satisfy linear growth estimates || Pf ||, <
Clifll,4, for a fixed r and all n. It is a surprising fact that this condition is
satisfied by all nonlinear partial differential operators and by most of their
inverses, including inverses of elliptic, parabolic, hyperbolic, and subelliptic
operators. The Nash-Moser inverse function theorem says that if the deriva-
tives DP( f )h = k of an operator P in the category have solutions VP( f)k = h
in the category, then the operator P has a local inverse in the category.

We have spent a long time saying just what this means, hoping to guide the
reader by many examples. We have tried to include enough material on the
simple cases so that one may appeal directly to the theorem without the need
to crank out extra estimates. But if these are needed, the examples included
here may serve as a guide. There are by now many ways to prove the theorem,
and we have chosen an algorithm that pleases us for the simplicity of its
estimates and its similarity to Nash’s original. Our applications in this paper
are not chosen to be the most novel or the most famous, but to be instructive.
Many can be proven without the Nash-Moser theorem; we hope they are easier
with it.

Finally we draw the reader’s attention to the counterexamples we have
included, particularly a brilliant one of Lojaciewicz and Zehnder [12], of which
we give our own version. They show that all the extra hypotheses which are not
needed in the simple Banach space case are really necessary in Fréchet spaces.
Indeed if we weaken our hypothesis so little as to include maps satisfying
IPfll,<Clifll,, we obtain a counterexample. Thus the Nash-Moser Theo-
rem deftly picks out from among the wide variety of maps on Fréchet space a
very useful class which we can invert.

PART 1. CALCULUS ON FRECHET SPACES

I.1. Fréchet spaces.

1.1. Definition of a Fréchet space. A seminorm on a vector space F is a
real-valued function || ||: F — R such that

@) Il £l = 0 for all vectors f;

@) Il f+ gl < Il fIl + llgll for all vectors f and g;

(i) llef Il =|c| - Il £l for all scalars ¢ and vectors f.

A collection of seminorms {|| ||,,: » € N} defines a unique topology such that
a sequence or net f; > fif and only if || f; — f1l, > 0 foralln € N.

A locally convex topological vector space is a vector space with a topology
which arises from some collection of seminorms. The topology is Hausdorff if
and only if f = 0 when all || f ||, = 0. The topology is metrizable if and only if
it may be defined by a countable collection of seminorms {|| ||,,}. In this case
we may always use sequences instead of nets. A sequence f; is Cauchy if
Il £, = fill, — 0 asj and k — oo for all n. The space F is (sequentially) complete
if every Cauchy sequence converges.

1.1.1. DEFINITION. A Fréchet space is a complete Hausdorff metrizable
locally convex topological vector space.

1.1.2. ExampLE. Every Banach space is a Fréchet space. The collection of
norms contains only one.
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1.1.3. EXAMPLE. Let R be the vector space of all sequences {a;} of real
numbers. Put

{a;}l,= X |a;| forn=0,1,2,....
j=0

Then R is a Fréchet space.
1.1.4. ExaMPLE. Let C®[a, b] be the vector space of smooth functions on
a<x<b). Put
n
Ifll,= 3 sup|D/f(x)].
j=0 x
Then C*|[aq, b] is a Fréchet space.

1.1.5. ExaMPLE. More generally, let X be a compact manifold and ¥V a vector
bundle over X. Let C®(X, V) be the vector space of smooth sections of the
bundle over X. Choose Riemannian metrics and connections on the bundles
TX and V and let D/f denote the jth covariant derivative of a section f of V.
Put

n
I, = 2 sup|D/f(x)].
j=0 x
Then C*( X, V) is a Fréchet space.
1.1.6. ExaMpPLE. Let G(R) denote the vector space of all continuous func-
tions on the real line. Put

£, =sup{|f(x)|: -n<x<n}.

Then C(R) is a Fréchet space.
1.1.7. ExaMPLE. Let JC denote the vector space of entire holomorphic
functions. Put

I, = sup{|f(z)]:|z|<n}.
Then J(is a Fréchet space.

1.1.8. COUNTEREXAMPLE. Let Cy(R) denote the vector space of continuous
functions on the real line with compact support. For any positive function p let

I f1l, = supp(x)|f(x)].

Then Cy(R) is a complete locally convex Hausdorff topological vector space,
but it is not a Fréchet space because it is not metrizable. For given any
countable sequence of p; we can find p so that

p/p; — oo as x — +oo for all .

1.2. Properties of Fréchet spaces. A seminorm is a norm if f = 0 whenever
I fIl =0. Some Fréchet spaces admit continuous norms and others admit
none. If a Fréchet space admits one norm then all the seminorms in a
collection defining the topology may be taken to be norms (by adding the one
norm to them all).

1.2.1. EXAMPLES. A Banach space, C*[a, b], C*°( X, V) for X compact and IC
all admit norms, while R® and G(R) do not.
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A closed subspace of a Fréchet space is also a Fréchet space, as is a quotient
of a Fréchet space by a closed subspace. The direct sum of two Fréchet spaces
is a Fréchet space. A space G is a (topological) direct summand of F if there
exists a third space H such that F is isomorphic to the direct sum G ® H. If a
Fréchet space admits a norm then so does any closed subspace, but a quotient
by a closed subspace may not.

1.2.2. EXxAMPLE. Let C*[0, 2] be the space of smooth functions on 0 < x <
27, and let C5°, be the space of smooth functions on —co < x < oo which are
periodic with period 2#. We can regard C, as a closed subspace of C*[0,27],
where the inclusion map i is given by restricting the function to the interval. A
function on the interval comes from a periodic function if and only if all the
derivatives match up at 0 and 2. Define the projection map p from C*[0, 2]
to R™ by letting

a;= D’f(2m) — D’f(0).
Then there is a short exact sequence
0- 02 5e®[0,27] 2R® - 0

since a smooth function may have an arbitrary Taylor series. Thus R® is a
quotient of C*[0,27] by a closed subspace. Since R® does not admit a norm,
it cannot be a direct summand. Hence the sequence does not split, and C5;, is a
closed subspace of @*[0,2x] which is not a direct summand either.

The dual of a Banach space is again a Banach space. However, the dual of a
Fréchet space which is not itself a Banach space is never a Fréchet space.
Hence in general the space of linear maps of one Fréchet space to another will
not form a third Fréchet space. For this reason we shall always avoid taking
the space of linear maps. This causes some differences from the Banach space
theory as it is usually presented.

1.2.3. ExampLEs. The dual of the space R* of all sequences is the space Ry
of sequences with only a finite number of nonzero terms. The dual of the space
of continuous functions on R, C(R), is the space DM (R) of measures with
compact support. The dual of the space C*(X) of smooth functions on a
compact manifold is the space 9_( X) of distributions. These are all complete
locally convex topological vector spaces but none of these duals are Fréchet
spaces.

The Hahn-Banach theorem holds for Fréchet spaces. Thus if F is a Fréchet
space and f is a nonzero vector in F we can find a continuous linear functional
I: F-> R (or C) such that I(f) = 1. Hence if /( f) = I(g) for all continuous
linear functionals then f = g. This is a very useful tool for reducing theorems
to the real-valued case. Also the open mapping theorem holds. Thus if F and G
are Freéchet spaces and if L: F — G is continuous, linear and invertible then
L™': G - Fis also continuous.

1.3. Families of linear maps. Let F, G, and H denote Fréchet spaces. A linear
map L: F - G is naturally defined on all of F, while a nonlinear map P:
U C F - G is naturally defined only on an open subset of F. Frequently it
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happens that we have a map L(f, g) which is nonlinear in f but linear
separately in g. Thus

L(f g +8&)=L(f, &)+ L(f g)

We call this a family of linear maps. It will naturally be defined for some f € F
and all g € G with values in a third space H, so we write

L:(UCF)X G- H.

Since it is natural to think of L(f) as a linear operator taking G into H, we
shall usually write L( f)g for L( f, g), but it is important to emphasize that we
want to consider L as a function from an open set of the product F X G into
H, and not as a map

L:UCF-L(G, H)

into the space of linear maps L(G, H), which in general is not a Fréchet space.

Even in the Banach space case there is a large difference in what it means for
L: (UC F) X G - H to be continuous, as opposed to L: U C F - L(G, H).

1.3.1. ExaMPLE. Let C,, be the space of continuous functions on —oo < x <
oo which are periodic with period 2. Define a family of linear maps L(¢)f by
translation, so that

{L()f}(x) = f(x +1).

Thus L(¢) is the linear operator “translation by ¢”. Then L: R X C,, —» C,, is
continuous (jointly in the product topology) but L: R » L(C,,, C,,) is not
continuous (in the topology of the Banach space of linear maps). It is easy to
see why this should be so. For a given continuous periodic function we know
by its uniform continuity that a small translation will produce a small variation
in the function. But since the collection of all continuous functions is not
equicontinuous, an arbitrarily small translation will produce an arbitrarily
large variation in a function with a steep enough gradient.

Let C}, denote the Banach space of continuously differentiable periodic
functions with period 27, and let L be defined as before. Then the map L:
R - L(C},,C,,) is continuous, but L: R - L(C},, C}.) is not. This simple
example is the source of many difficulties in applying the Banach space theory
to diffeomorphism groups and free boundary value problems.

We shall also have to consider families of bilinear maps B( f, g, h) which are
nonlinear in f and linear separately in g and 4. We shall write this usually as
B(f){g, h} to indicate the bilinearity, and regard B as being continuous if it is
continuous as a function on the product

B:(UCF)XGXH-K
and not as a map into the space of bilinear maps
B:UCF- L*GXH,K).

L.2. The Riemann integral.

2.1. The definite integral. Let f(¢) be a continuous function on a < ¢ < b with
values in the Fréchet space F. We wish to define the definite integral [° f(¢) dt
as an element of F.
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2.1.1. THEOREM. There exists a unique element [? f(t) dt € F such that
(i) for every continuous linear functional I: F — R

1([0”,‘(:)(1:) =fabl(f(t)) ar.

In addition
(ii) for every continuous seminorm || ||: F — R,

[y ad < [ 520 ar

(iii) 2 f(2) dt + [5 f(¢) dt = [; f(2) dt.

() [PLf(e) + g(D)] de = [ f(r) dt + [ g(2) dt.

™) [ ef()dt = cf} f(r) at.

PRrOOF. Let C([a, b], F) be the Fréchet space of all continuous functions on
a <t < b with values in F with the seminorms

I f1l; = supll f()Il,.

We say a function f(#) is linear if f(z) = tf, + f, for some f, and f, € F, and we
say f(t) is piecewise linear if it is continuous and there exists a partition
a=1ty<t <--- <t = b such that f(¢) is linear on each piece t,_; <t <y,
for 1 <i < k. The vector space PL([a, b], F) of piecewise linear functions on
[a, b] with values in F is a dense linear subspace of C([a, b], F). For a
piecewise linear function we may define the integral by the trapezoidal rule

b k
[10 = T 3000 + )0 = o).

We may easily verify properties (i)—(v) for piecewise linear functions directly
from the formula. Since the integral defines a continuous linear functional on
the dense subspace PL([q, b], R), it extends by continuity to a continuous
linear functional on all of C({a, b], R), where it will still satisfy (i)—(v). The
uniqueness assertion follows from the Hahn-Banach theorem.

2.1.2. EXAMPLE. Let F = R? and write a vector

_ [
r=(%)
Then a path
_ [ A(D)
/0= (fz(t))’
and

fb(n(z)) O

t = b .

a \ £i(1) 12 £(2) ar

Hence the integral of a vector function may be obtained by ordinary integra-
tion component by component.
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2.1.3. ExaMPLE. Let F = C,, be the Banach space of continuous functions
periodic with period 2#. Then a continuous path f(t) € C,, ona<t<bisa
continuous function f(z, x) on [a, b] X (-0, 00) periodic in x, setting f(z)(x)
= f(¢, x). The integral of the path is given by

b b
([ a}x) = ["160, %) .
We have the usual formula for a change of variables.

2.1.4 THEOREM. Let u = y(t) be a C' monotone increasing function on
a<t<b and let f(u) be a C' parametrized curve on y(a) < u < y(b) with
values in a Fréchet space. Then

fy :Z)f(u) du= [ *#(v(2)) - y'(2) .

PROOF. Apply an arbitrary linear functional to each side. Equality holds by
the usual result for real-valued functions. Then appeal to the Hahn-Banach
theorem.

2.1.5. THEOREM. Let X be a topological space and F a Fréchet space. Let f:
X X [a, b] = R be a continuous map. Define a map g: X - R by

gn=£%&gm.

Then g is also continuous.

Proor. Pick x, € X. Since x, X [a, b] is compact, given any continuous
seminorm || || on F and any & > 0 we can find a neighborhood U of x, in X
such that, for all x € U and all ¢ in [a, b), || f(x, t) — f(x,, t)ll <e. Then

|MQ)—A%W<Lmﬂnd—ﬂ%ﬁwm<db—ﬂ,

This shows g is continuous.

2.2. Parametrized curves. Let f(t) be a continuous path in a Fréchet space.
We can define its derivative in the usual way.

2.2.1. DErFINITION. For a parametrized curve

7(6) = lim [ f(t + h) = ()] /h.

If f(¢) is the position at time ¢ then f'(¢) is the velocity. If the limit exists and is
continuous we say f is continuously differentiable or C'. We can now state the
two fundamental theorems of calculus.

2.2.2. THEOREM. If f(2) is a C' curve on a <t < b with values in a Fréchet
space then

1(6) = fla) = [ ") dt.

2.2.3. THEOREM. If f(t) is a C° curve on a <t <b and if g(t) = [! f(8) d6
then g(t) is C' and g'(t) = f(2).
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PROOF. If / is a continuous linear functional and fis C! then /o fis C' and
(lo fY = 1o (f). By the standard result for F = R

1(A6) = (@) =1 10y ar).

Then Theorem 2.2.2 follows from the Hahn-Banach theorem. To prove the
other result we need a lemma.

2.2.4 LEMMA.
f’“’f(a) do = hfo'f(z + hu) du.

PrOOF. If f(6) is real-valued this follows from the substitution 8 = ¢ + hu.
The general case comes by applying a linear functional and using the Hahn-
Banach theorem.

Using the lemma, we see that

gt h) - gle) = [+ hu) d.

Then if f is continuous we may appeal to Theorem 2.1.5 to take the limit as
h — 0 on the right by setting # = 0, so that g is differentiable and g'(¢) = f(¢).
Since fis C° we see g is C'.

2.2.5. COROLLARY. If f(a) = g(a) and if f and g are C' with f'(t) = g'(¢) for
a <t <bthen f(b) = g(b).

2.2.6. COROLLARY. If fis C' ona<t<b and if || (1)l <K then || f(b) —
flall < K(b — a).

We say that the path f(¢) is C® if all of its derivatives f(")(¢) exist and are
continuous.

2.2.7. EXAMPLE. A smooth path f(z) in C57 for a<t<b is a smooth
function f(¢, x) periodic in x, setting f(¢)(x) = f(¢, x). We have f'(¢)(x) =
D, f(1, x).

1.3. The directional derivative.

3.1. Definition of the directional derivative. Let F and G be Fréchet spaces, U
an open subset of F, and P: U C F — G a continuous nonlinear map.

3.1.1. DEerFINITION. The derivative of P at the point f € U in the direction
h € F is defined by

pp( = i PUT I =P,

We say P is differentiable at f in the direction 4 if the limit exists. We say P is
continuously differentiable (or C') on U if the limit exists for all f € U and all
h € F and if DP: (U C F) X F - G is continuous (jointly as a function on a
subset of the product).

Note well that this definition of a C! map does not agree with the usual
definition for a Banach space. The derivative will of course be the same map,
but our continuity requirement is weaker.
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3.1.2. EXAMPLE. Let f: (a, b) C R — F be a parametrized curve. The simple
vector space R contains the distinguished vector 1 which spans the space, and
f'(t) = Df(¢)1. Thus our two motions of differentiability coincide.

3.1.3. ExaMPLE. Let L be a continuous linear map. Then L is C' and
DL(f)h = Lh.

PROOF. By linearity L( f + th) = L(f) + tL(h). Then by the definition

DL(f)h=1lm[L(f+ th) = L(f)]/t=L(k).

3.1.4. ExaMPLE. Let P: U C R? - R? and write

(2)=2(3)-

x\(u\y _ [0z/0x 09z/9y \ u
or(3)(3) = (aw/ax dw,/dy (%)
and the directional derivative is given by the matrix of partial derivatives.
3.1.5. ExampLES. Consider the following maps P: C*([a, b]) —» C*([a, b))
and their derivatives:

Then

(@ P(f)=1> DP(f)h=2fn,
(b) P(f)=1° DP(f)h=3fh,
() P(f)=¢, DP(f)h=e’h,
(d P(f)=1 DP(f)h=fn' + f'h,

() P(f)=f1"+f2 DP(f)h=f"+2fH +fh,
O P(H)=V1+72, DP()h=1w/1+17.

3.1.6. EXaMPLE. Let U be a relatively open subset of [a, b] X R and let
p(x, y) be a smooth function on U. Let U be the open subset of the Fréchet
space C*([a, b]) consisting of all functions of whose graph y = f(x) lies in U.
Define a nonlinear map P: U C C*[a, b] - C*|[a, b] by setting

P(f)(x) = p(x, f(x)).
Then the map P is C' (and indeed C*) and

[DP(f)h](x) = D,p(x, f(x))h(x).

3.1.7. EXAMPLE. Let X be a compact manifold and let ¥ and W be vector
bundles over X. We form the Fréchet spaces C*(X, V) and C*(X, W) of
smooth sections of ¥ and W over X. Let U be an open subset of ¥ and let U be
the open subset of all sections in C*(X, V') whose image lies in U. Let p:
U C V - W be a smooth map which takes points in the fibre of ¥ over a point
x into points in the fibre of W over the same point x (so that if «, and ,, are
the bundle projection maps then 7, = p o x,). Define a nonlinear operator P:
UC C®X,V)— C>(X,W)by

P(f)=p-°f.
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We call such a map P a vector bundle operator. Choose local coordinates x on
X and Y in the fibre of V and z in the fibre of W. Then p is given locally by
z = p(x, y). A section f of the bundle V is given locally by y = f(x). The
operator P is given locally by

[P(£)](x) = p(x, f(x)).

Except for a fancier setting the situation is the same as before. The derivative is
given locally by

[DP(f)h](x) = D,p(x, f(x))h(x)

where D, p is interpreted as the matrix of partial derivatives with respect to the
y vanable and is applied to the vector A. It is easy to see that P is C°. For a
proof that P is C!, see Example 3.3.3, and for a proof that P is C*,
Example 3.6.6.

3.1.8. ExaMpLE. If V is a vector bundle over a compact manifold X, the r-jet
bundle jV may be defined intrinsically; but if we introduce connections and
covariant derivatives then

j’f=(f, Df, D*f,....D’f).

Let p be a smooth map of an open set U in j 'V into another bundle W taking
fibres into fibres over the same point, and let U be the open set of all
f € C*®(X,V) with the image of j’f in U. A nonlinear differential operator P
from V into W of degree r is a map P: U C C®(X,V) - C*®(X, W) given by
Pf = p o j'f. The operator P is the composition of the continuous linear map j"
with a vector bundle operator of the type before, and hence is also smooth.

3.1.9. ExaMpLE. Two circular rings of radius r are held parallel in space and
a soap bubble is blown connecting one to the other. It will form in a surface of
revolution having the least possible area. If the rings are positioned at x = =/
perpendicular to the x-axis and if the surface is obtained by revolving the
graph of y = f(x) around the x-axis, the surface will have area

A(f) =f’ 20f1 + 7 dx.
~1
We can regard 4 as a nonlinear map

A: c>([-1,1]) - R

on the Fréchet space of smooth functions with real values. It is differentiable,
and its derivative is given by

DA(f)h =f_11277{ \/sz w41 +f’2h} dx

using the familiar rules for the variation of a product and a square root and a
square. If 4 vanishes at the endpoints x = =/, we may integrate by parts to get

12 __ £
DA(f)h = f {%IT’Z){%}ML
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If the surface area A is to be a minimum over all f with f(=/) = r, then the
derivative DA( f) = 0 for all variations 4 with A(=J) = 0. Clearly this happens
if and only if f satisfies the differential equation
ffu — f12 +1
whose symmetrical solutions are given by
f(x) = (cosh sx) /s

for various values of the constant s. To satisfy the boundary conditions s must
be chosen so that cosh s/ = sr. Since the problem is invariant under a change

of scale, the solution depends only on the ratio r/I. Fixing attention on the
case [ = 1, we must solve

r = (coshs)/s.

The minimum value m of this function occurs where the secant line from the
origin to the graph of cosh s becomes tangent, which happens when s tanh s = 1.
This equation has a solution s ~ 1.2 which gives m ~ 1.5 for the critical value.
If r/1 > m there are two solutions, while if 7// < m there are none. We shall
see later that only one of the two solutions is stable in Example 3.5.12.

3.2. Properties of the derivative. We begin with an integral version of the
fundamental theorem of calculus.

3.2.1. LEMMA. If P is C' and f and h are given then P(f + th)is a C' path in t
and

P(f+th) = DP(f+ th)h.
PROOF. We have
P(f+th) = lin(x)[P(f+ th+ uh) — P(f+ th)] /u = DP(f+ th)h.

3.2.2. THEOREM. If P: U C F — G is a C' map between Fréchet spaces and if
the path from t to t + h lies in U then

P(f+h) — P(f) =f0'DP(f+ th)h dt.

PROOF. By the previous lemma, P(f + th) = DP(f + th)h. We need only
apply Theorem 2.2.2.

Next we wish to show that if P is C' then DP( f)h is always linear in z. We
begin with scalar multiplication.

3.2.3. LEMMA. If c is a scalar and P is C" then
DP(f)ch = cDP(f)h.

PrOOF. We apply the definition and then substitute u = ch.
DP(f)ch = lim [P+ cth) = P(f)] /1
1=

= clim [P(f + cth) = P(1)] /e
= clim [P(f + uh) = P(/)]u= cDP(/)h.
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324.LEMMA. IfP: UC F > GisC\,f € Uand h € F, and t is small, then
[P(f+ th) — P(f)] /1 =f0'DP(f+ uth)h du.
PRrOOF. We apply Theorem 3.2.2 replacing 4 by th and ¢ by u, so that
P(f+ th) — P(f) =/O'Dp(f+ uth)th du.
Then we use Lemma 3.2.3 to factor ¢ out of the derivative and Theorem
2.1.1(v) to factor it out of the integral.
3.2.5. THEOREM. IfP: UC F > Gis C',f € Uand h,, h, € F then
DP(f)(h, + hy) = DP(f)h, + DP(f)h,.
PRrOOF. First write
P(f+t(hy + hy)) — P(f)
=[P(f+ thy + thy) — P(f+ th\)] +[P(f + th)) — P(f)].

Using the previous lemma

[P(f+ th) = B(1)] /1= ['DE(f + uthy )b d,
[P(f+ thy + thy) — P(f + th))] /1 =f0'DP(f+ thy + uth,)h, du;

therefore
[P(f+t(h) + hy)) — P(£)]/1
=/0'Dp(f+ uth, )h, du + fO'DP(f+ thy + uth,)h, du.
We let ¢ —» 0 on the left. We can just put ¢ = 0 on the right by Theorem 2.1.5.
Then
DP(f)(h, + hy) = DP(f)h, + DP(f)h,

as desired.
3.3. The chain rule. We begin with a useful characterization of C! functions.

3.3.1. LeMMA. Let P: UC F - G be a continuous map and suppose for
simplicity that U is convex. Then P is continuously differentiable if and only if
there exists a continuous map L: (U C F) X (U C F) X F - G with L(fy, fi)h
linear in the last variable h such that for all f, and f, in U

P(f,) — P(fy) = L(fy, L) fi — o)

In this case we always have

DP(f)h= L(f, f)h.

PrOOF. Let £, = (1 — t)fy + tf, = f, + t(fi — f,)- Then by Theorem 3.2.5 if
Pis C! we can put

L(fon fh= [ 'DP(f, ) dt
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and this gives us the desired map L. Clearly L is continuous and linear in 4,
and P(f,) — P(fo) = L(fo, [y — fo)-
Conversely, if such a map L exists, then
[P(f+th) — P(f)]/t=L(f, f+ th)h
using the linearity in 4 to pull out the scalar ¢. It follows letting # — 0 that P is

differentiable and DP(f)h = L(f, f)h. Since Lis C° Pis C..
3.3.2. EXAMPLE. Let P: R - R be defined by P(f) = f2. Then

P(f) - P(ﬁ)) =f12 _fo2 =(A+)A 1)

so we must take

L(ﬁ)’ fl)h = (f] +f0)h-
If P(f) = f3 then

P(£) = P(R) =K =R+ i+ ) fi—h)

so we must take

L(fy, f)h = (f2+ fifo + £2)h.

In one dimension L is unique, but in higher dimensions it is not.

3.3.3. EXAMPLE. Let P: U C C®(X,V)— C®°(X,W) be a vector bundle
operator as described in Example 3.1.7. We can use Lemma 3.3.1 to prove that
P is C'. Suppose P is induced locally by the function p(x, y). Since p is
smooth, we can find a function /(x, y,, y;)z linear in the vector z so that

p(x, »1) = p(x, yo) = 1%, yo, y1)(31 = ¥)-

We can patch these together using a partition of unity in x since X is compact.
We do not need a partition of unity in y if we restrict our attention to a small
enough neighborhood U of the graph of a given section. This gives us an
operator

L:UXUXC®(X,V) - C(X,W)
given locally by

L( fo» f)h = 1(x, fo(x), fi(x))h(x)

such that

P(fl) - P(fo) = L(an fl)(fl _fo)-
Since L is clearly continuous and linear in 4, it follows that P is C'.
Now we can prove the chain rule.
3.3.4. THEOREM. If P and Q are C! so is their composition Q o P and

D[Q > P](f)h=DQ(P(f))DP(f)h.

PRrOOF. Since the theorem is a local result we can always take P and Q to be
defined on convex neighborhoods of given points and apply the previous
lemma. Then we can find continuous functions L( f,, f,)h and M(g,, g,)k
linear in 4 and k such that

P(f)) — P(f) = L(fo» H)(/L — fo)> 0(g1) — Q(g0) = M(go, 8)(&1 — &)-
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Define a function N( f,, f;)h by

N(fo, f)h = M(P(f), P(f))L(fo, fi)h.

Then N is continuous and linear in 4, and letting g, = P( f,) and g, = P(f,)
we have

0(P(1) = Q(P(%)) = N(fo, )(fy = fo)-

Then by the converse side of the previous lemma, Q o P is C'. Since L(f, f)h
= DP(f)h and M(g, g)k = DQ(g)k, we have

D[Q o P](f)h=N(f, f)h=M(P(f), P(f))L(f, f)h
= DQ(P(f))DP(f)n
as claimed.

3.3.5. COROLLARY. If f(¢) is a parametrized C' curve and P is a C' map then
P(f(?)) is also a parametrized C' curve and

P(f(1)y = DP(f(2))f(¢).

From this we see that a curve passing through the point f with velocity 4 is
mapped by P into a curve passing through the point P(f) with velocity
DP(f)h. This provides a good intuitive interpretation of the directional
derivative.

3.4. Partial derivatives. Given a function P( f, g) of two or more variables
we can take a partial derivative with respect to just one or the other.

3.4.1. DEFINITION.

DfP(f9 g)h = }E%[P(f_*_ th, g) - P(f’ g)]/t’

D,P(f, g)k =1lim[P(f, g+ tk) = P(f, 8)]/1-
By repeating the proof of Lemma 3.3.1 we can easily establish the following
result.

3.4.2. LEMMA. The partial derivative D;P( f, g)h exists and is continuous if
and only if there exists a continuous function L( f,, f,, 8)h linear in h with

P(f1,8) — P(fy, 8) = L(fy, f1» 8)( /L — fo)-
In this case D,P(f, g)h = L(f, f, g)h.

3.4.3. THEOREM. The partial derivatives D;P and D, P exist and are continuous
if and only if the total derivative DP exists and is continuous. In that case

DP(f’ g)(hs k) = DfP(f’ g)h + DgP(fa g)k
PRrOOF. By definition
DP(f’ g)(h’k) = }1_1)13[P(f+ th, g + tk) - P(f’ g)]/t‘

If DP exists and is continuous, then putting kK =0 so does D,P(f, g)h =
DP({, g)(h,0), and putting h = 0 so does D, P(f, g)k = DP(f, g)(h, k), and
by linearity the formula is valid.
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Conversely if DfP and DgP both exist and are continuous, we can find
continuous functions L( f;, f}, g)h and M( f, g,, g,)k linear in 4 and k with

P(f,8) — P(fo, 8) = L(f, f1, 8)(fi = fo)s
P(f,8)— P(f. 8)=M(f, g, 8) (8 — &)
Then
P(f1,8) — P(fo, 8) = L(fo, f1, 8)(fr — fo) + M( o, 8> 8)(&1 — 80)-
Put

N(fo, 80> f1s g)(h, k) = L(f, £, g8)h + M(fy, 8. 81)k.
Then N is continuous and linear in (4, k) and

P( £, &) — P(f» 8) = N(fo» o> f1> 8)(fr — fo» &1 — &0)

so by Lemma 3.3.1 we have P(f, g)is C'.
If a function L( f, g) is linear in g then it is only necessary to differentiate it
in f, as the following theorem shows.

3.4.4. COROLLARY. If L(f, g) is jointly continuous, C' separately in f and
linear separately in g, then it is C' jointly in f and g, and

PRrROOF. pr exists anq is contim.lous ‘by hypothesis, while D,L( f, g)k =
L(f, k) exists and is continuous by linearity.

For this reason we adopt the following convention. If L( f)A is linear in A,

we regard its derivative as the partial derivative with respect to f. If we
differentiate with respect to f in the direction k, we obtain

DL(f){h, k} = lim [L(f+ tk)h — L(f)H] /1.

3.4.5. THEOREM. If L( f)h is C' and linear in h then DL( f ){h, k} is bilinear,
i.e. linear separately in h and k.

PROOF. Since the total derivative is linear, so is the partial derivative with
respect to f. Thus

DL(f){h, k, + k,} = DL(f){h, k\} + DL(f){h, k,}.
To see the linearity in &, we appeal to the definition of the derivative.
DL(f){h + hy, k} = }i_{%[L(f+ tk)(hy + hy) = L(f)(hy + hy)] /1

= lm [L(f+ tk)h, = L(f)m]/t + lim [L(f + )k, = L(f)ho] /1

= DL(f){hy, k} + DL(f){h;, k}.

3.5. Second derivatives. The second derivative is the derivative of the first
derivative. Following the previous convention, we differentiate DP( f)h with
respect to f only, in the direction k. This gives the following definition.

3.5.1. DEFINITION.

D*P(f){h,k} = }E%[Dp(f+ tk)h — DP(f)h] /t.
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We say P is C? if DP is C', which happens if and only if D?P exists and is
continuous. If P: U C F — G we require D?P to be continuous jointly on the
product as a map

D*P: (UCF)XFXF-G.
From Theorem 3.4.5. we immediately get the following result.

3.5.2. THEOREM. If P is C?* then D*P(f){h, k} is bilinear, i.e. linear
separately in h and k.

We have the following interesting characterization of the second derivative
as a limit of a second difference.

3.5.3. THEOREM. If P is C? then
D?P(f){h, k}
= tliTO[P(f+ th+ uk) — P(f+ th) — P(f+ uk) + P(f)]/tu.
PRrROOF. By Lemma 3.2.4 we have
[P(f+ th) — P(f)]/t =j;‘ DP(f+ 8th)h de,

=0

[P(f+ th + uk) — P(f+ uk)] /1 =f0' DP(f+ 6th + uk)h do,
=0

[DP(f+ 6th + uk)h — DP(f+ 6th)h] /u
= [' D*P(f+ 0tk + nuk) {h, k) d.
=0

It follows that
[P(f+th+uk) — P(f+th) — P(f+ uk) + P(f)]/tu

=]‘ /‘ DP(f+ Oth + nuk){h, k} dn dé.
6=0Y7=0

Taking the limit as ¢ and u — 0 gives the desired result.
3.5.4. COROLLARY. If P is C? then the second derivative is symmetric, so that
D?P(f){h, k} = D*P(f){k, h}.
PrOOF. The second difference is symmetric and the second derivative is its
limit.
3.5.5. THEOREM. If P and Q are C? so is their composition Q o P and
D*[Q e P](f){h, k} = D*Q(P(f)){DP(f)h, DP(f)k}
+DQ(P(f))D*P(f){h, k}.
ProOF. This follows from applying the chain rule
D[Q = P)(f)h = DQ(P(f))DP(f)h

to itself.
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We shall need to use Taylor’s formula with integral remainder for the second
derivative in estimating a certain quadratic error term.

3.5.6. THEOREM. If P: U C F — G is C* and if the path connecting f and f + h
lies in U then

P(f+h)=P(f)+ DP(f)h +f0‘(1 — 0)D*P(f+ th){h, h} dt.

ProOF. The trick is to integrate by parts.
DP(f+ th)h = (1 — t)D*P(f+ th){h, h} — {(1 — t)DP(f + th)h}'.

Integrating this over 0 < ¢ < 1 and using Theorem 3.2.2 and Theorem 2.2.2
P(f+h)—P(f) =f’DP(f+ th)h dt
0
= fl(l — 1)D*P(f + th){h, h} dt + DP(f)h
0

which proves the theorem.
3.5.7. EXAMPLE. If f: (a, b) C R — Fis a parametrized curve then

f7(e) = D’f(1){1,1}.
3.5.8. ExampLE. If L is a continuous linear map then
D?L(f){h,k} =0.

3.5.9. ExaMpLE. If P: U C R? > R is smooth function z = P(%) then

2p( XV (7). ()} = 22 4 B2 3%z

D P(y){(s)’(v)} = ru+ 3xdy (ro + su) + ayzsv.

Hence D?P is the quadratic form associated with the matrix of second partial
derivatives

9%2/0x*  9%z/0xdy
3%z/3xdy  3%z/dy? |

If the function P has a local minimum at f then D*P(f){h, h} = 0 for all A,
which happens if and only if the matrix of second partials is positive.

3.5.10. ExampLEs. Here are the second derivatives of the operators in
Examples 3.1.5.

(@) D*P(f){h, k} = 2hk,

(b) D*P(f){h, k} = 6hk,

(c) D?*P(f){h, k} = e’hk,

(d) D*P(f){h, k} = h'k + hk’,

(e) D*P(f){h, k} = h"k + 2h’k’ + hk",

(6) D*P(f)(h, k} = Wk’ /(1 + [/

3.5.11. ExaMmpLE. If we consider the operator

Pf(x) = p(x, f(x))
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of Example 3.1.6 or 3.1.7, its derivative is
[DP(f)h](x) = D,p(x, f(x)) - h(x)
and its second derivative is
[D?P(f){h, k}](x) = D}p(x, f(x)) - h(x) - k(x).

For Example 3.1.6 this is ordinary multiplication, while for Example 3.1.7 we
regard Dyzp as a bilinear form applied to the pair of vectors 4 and k.
3.5.12. EXAMPLE. We return to the soap bubble problem of Example 3.1.9.

We can compute the second derivative of 4, and after simplifying we get

/ f f
D?A( f){h, k} = 271{——h’k’ + —(hk)'} dx.
/—: (1+f2)7 (1+1)
If we consider only variations # and k which vanish at the endpoints x = =/,
we can integrate by parts to obtain

1 /k/ _ //hk
DA(f){h, k) =f 27rfh—f3/2dx.

—1 (1 + f/Z)

Since all the solutions are similar under a change of scale, we focus our
attention on the solution f(x) = cosh x. Then

D?*(cosh x){h, h} :f[ 2@ sech’x[h'? — h?] dx.
—1

This quadratic form will be positive definite for all 4 vanishing at the
endpoints only when / is small enough. The critical value of / occurs when there
is a null eigenvector of the quadratic form, which happens for a given f when
there exists an h such that for all k we have D?A( f){h, k} = 0. Integrating by
parts for h and k vanishing at the endpoints we have

D*(cosh x) {h, k) = - [' 2msectPx{h” — 2 - tanh x - ' + h}k dx
—1

which vanishes for all kK when # satisfies the differential equation

h” —2tanhx - A’ + h = 0.
If the equation has a solution vanishing at both endpoints it will have a
symmetric solution, which is found to be

h(x) = xsinh x — cosh x.

Significantly, h(x) is the derivative of the general solution f(x) = (cosh sx) /s
with respect to s, evaluated at s = 1. For A(x) to vanish at the endpoints we
must have /tanh / = 1. This occurs at the value / =~ 1.2 where (cosh /) /I = m =
1.5 attains its minimum. Since r = cosh/ when f(x) = cosh x, the second
derivative first fails to be positive definite at the critical value r// = m. It now
follows that when r// > m only one of the two solutions s of the equation
cosh s/ = sr produces a stable solution f(x) = (cosh sx)/s, namely the one
with the smaller value of s which stays further from the axis, while the other
solution which comes nearer the axis is unstable. If we start with a stable soap
bubble for r/I>m and slowly increase / by moving the two rings apart, the
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bubble will suddenly collapse when r /I reaches the critical value m =~ 1.5. Note
that the neck of the bubble does not shrink to zero as we approach the critical
position. Let n denote the radius of the neck. The critical position for the
standard solution y = cosh x occurs at /~ 1.2 where (cosh/)//=m~ 1.5.
Here r = cosh !~ 1.8. The neck occurs at x = 0 and the radius of the neck
n = 1. Since the ratios are invariant in all solutions, we find that the critical
position is reached when //r ~ 0.6 and at that point n/r =~ 0.5. If / is increased
beyond this point the neck of the bubble will suddenly collapse. The reader is
invited to try the experiment.

3.6. Higher derivatives. The third derivative is the derivative of the second
derivative. Since D2P( f ){h, k} is linear separately in & and k, we take only its
partial derivative with respect to fin the direction /.

3.6.1. DEFINITION. If P: U C F — G then

D3P(f){h,k,1} = }i_l:l'(l)[DZP(f‘F t1){h, k} — D*P(f){h, k}]/t.

Similar definitions apply to the higher derivatives. The nth derivative
D"P(f){h,, hy,...,h,}
will be regarded as a map
D'"P.(UCF)XFX---XF-G.

We say P is of class C” if D"P exists and is continuous (jointly as a function on
the product space).

3.6.2. THEOREM. If P is C" then D"P(f){h,, h,,...,h,} is completely sym-
metric and linear separately in hy, h,,...,h,.

PROOF. It is linear in A,...,h,_, as the derivative of D"~ 'P, which is
already linear in these variables. It is linear in 4, as a derivative in that
direction. It is symmetric in 4,,_, and A, as the second derivative of D"~ 2P. It
is symmetric in A, and h; for i, j < n as the derivative of D"~ 'P, which already
has this symmetry. These transpositions generate the full symmetric group.

Sometimes it is more convenient to use the tangent functor.

3.6.3. DEFINITION. If P: U C F - V C G is a map between open subsets of
Fréchet spaces, we define its tangent 7P: (U C F) X F - (V C G) X G by

TP(f, h) = (P(f), DP(f)h).

Notice that TP is defined and continuous if and only if DP is defined and
continuous. We let T2P = T(TP) and T"P = T(T" 'P). Then T"P is defined
and continuous if and only if D"P is defined and continuous (i.e. P is C").

3.6.4. THEOREM. If P and Q are C", so is their composition Q o P, and
T(Qe° P)=(T"Q) > (T"P).

PrOOF. When n = 1, we have T(Q o P) = TQ o TP from the chain rule. The
higher cases follow from induction on n.

We say a map is C* if it is C” for all n.
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3.6.5. EXaMPLE. Let P: U C C®(X,V) - C®(X,V) be a vector bundle
operator as described in Example 3.1.7. Then P is C*. This follows im-
mediately from the fact that P is C' and TP is again a vector bundle operator.
If V® V denotes the Whitney sum of ¥V with itself, there is a natural
isomorphism

Co(X, V)X C(X, V)= C®(X, VO V).

Suppose P is induced by a map p: U C V - W of the vector bundles taking
fibres into fibres over the same point. Locally p has the form

p:(x,») = (x, p(x, »)).
There is an intrinsically defined vertical tangent map
T.p:UBVCVOV-WOW
given locally by
T,p: (x, y,2) > (x, p(x, ), D,p(x, y)z)

which induces a vector bundle operator which may be identified with the
tangent map

TP: UX C®(X,V) CC®(X,V) X C(X,V) - C®(X,W) X C=(X,W).

3.6.6. EXAMPLE. Let P: U C C®(X, V) » C®(X, W) be a differential opera-
tor of degree r as described in Example 3.1.8. Then P is C*. This follows
immediately from the observation that a differential operator is a composition
of a vector bundle operator (which is C®) with the r-jet extension map j’,
which is a continuous linear map (and hence also C*®).

1.4. Fréchet manifolds.

4.1. Manifolds. The usual definition of a manifold generalizes directly to
Freéchet space calculus.

4.1.1. DEFINITION. A Fréchet manifold is a Hausdorff topological space with
an atlas of coordinate charts taking their value in Fréchet spaces, such that the
coordinate transition functions are all smooth maps between Fréchet spaces.

4.1.2. EXAMPLE. Let X be a compact finite dimensional manifold. A bundle
over X is another finite dimensional manifold B with a smooth projection map
a: B - X whose derivative is everywhere surjective. A section of the bundle is
a smooth map f: X — B such that #f = 1 is the identity. The space of all
sections of the bundle C®(X, B) is a Fréchet manifold (at least if it isn’t
empty). Associated to each section f is a vector bundle over X called the
vertical tangent bundle to B at f, which we denote by 7, B(f). Its fibre at a
point x € X consists of all the tangent vectors of B at f(x) which lie in the null
space of the derivative of =.

It is easy to construct a diffeomorphism from a neighborhood of the zero
section of the vector bundle T, B( f) to a neighborhood of the image of f in B
which takes fibres into fibres over the same point. This provides a one-to-one
correspondence between sections near zero in the Fréchet space C*( X, T, B( f))
and sections near f in the manifoldd C*(X, B), and these maps serve as our
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coordinate charts. The coordinate transition functions are clearly vector bundle
maps in the sense of Example 3.1.7. Hence C*( X, B) is a Fréchet manifold.

4.1.3. EXAMPLE. Let X and Y be manifolds with X compact. The space of all
smooth maps of X into Y forms a Fréchet manifold 9L( X, Y). This is a special
case of the preceding example, as a map of X into Y is a section of the product
bundle X X Y over X.

4.1.4. EXAMPLE. As a special case, consider the manifold IN(S', S') of maps
of the circle to itself. It has an infinite number of components indexed by the
degree k which may be any positive or negative integer. We let Z denote the set
of all integers. Passing to the universal cover, a map of S' to S' lifts to a map
of R! to R!, which is just a real-valued function on the real line. If the map has
degree zero its lift will be periodic, giving rise to an element of the Fréchet
space C3°. The lift is not unique, but may vary by 2#n where n € Z is an
integer. Hence the component M (S', S') of maps of degree zero is diffeo-
morphic to the quotient C5° /27 Z. This provides a global chart. More generally
a map of degree k lifts to a function f: R' - R' satisfying

f(x+27)=f(x) + 27k

which we call k-periodic. If we let f(x) = f(x) — kx then f is periodic so
fe C%2.. Hence the set of functions which are k-periodic is not a vector space
but corresponds to the vector space C5°, by this affine shift. Again the lift is
only unique up to a constant function 27n. The component M (S, S') of
maps of degree k is also diffeomorphic to C5° /27Z, and the above construc-
tion provides a global coordinate chart. Then the whole space

M(S', $') ~ Z X (CZ /27Z).

4.1.5. EXAMPLE. Let X be a compact manifold and V" a vector bundle over X.
The space of all connections on ¥V forms a Fréchet manifold (V). The
difference of two connections is a tensor in the bundle L*(TX X V,V) of
bilinear maps of TX and V into V. For any fixed connection we obtain a
one-to-one correspondence between §(7') and the Fréchet space

Co(X, L(TX X V,V))

by subtracting the reference connection from the variable one. The coordinate
transition functions are just translations.

4.1.6. ExaMPLE. If V is a vector space, the Grassmann space G,(V') of all
p-planes in V is a manifold. If V'is a vector bundle over X then G,(V') becomes
a fibre bundle over X. When V' = TX is the tangent bundle, a section of
G,(TX) is a field of tangent p-planes. The space C*(X, G,(TX)) of all tangent
p-plane fields is a Fréchet manifold by Example 4.1.2.

4.1.7. EXAMPLE. Let X be a finite dimensional manifold and let $( X) denote
the space of all compact smooth submanifolds of X. Then S(X) is a Fréchet
manifold. Let S € $(X) be a given submanifold, and let NS be its normal
vector bundle, defined invariantly, as the quotient of the restriction of TX to S
by TS. We can find a diffeomorphism between a neighborhood of the zero
section in NS and a tubular neighborhood of S in X. This establishes a
one-to-one correspondence between a neighborhood of 0 in the Fréchet space
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C=(S, NS) and a neighborhood of S in S(X), and these maps serve as our
coordinate charts. We shall show later in Example 4.4.7 that the coordinate
transition functions are C*. Note that all the submanifolds S in a connected
component of S(X) are necessarily diffeomorphic, but there may be many
components. Diffeomorphic submanifolds may lie in separate components
also, as in the case of knotted circles in three space.

4.1.8. EXAMPLE. Let X be a finite dimensional manifold and let R.(X)
denote the set of all compact regions in X with smooth boundaries. Then
R (X) is a Fréchet manifold. When X is not compact, a region is uniquely
identified by its boundary, so ®.( X) is identified with the components of S( X)
corresponding to compact submanifolds of codimension 1 which bound a
compact region. When X is compact, each boundary determines two regions, so
A.(X) is a double cover of the boundary components of S(X). This double
cover may be not just two copies. For if we consider regions diffeomorphic to a
ball B” in the sphere S”, the complement is another ball B”, and the first may
be continuously rotated into the second.

4.2. Submanifolds. Let 9N be a Fréchet manifold and 9 a closed subset.

4.2.1. DEFINITION. 9U is a submanifold of 9N if every point of 9 lies in the
domain of a coordinate chart on 91 with range in a product of Fréchet spaces
F X G such that a point in the domain of the chart lies in the subset 9 if and
only if its image under the chart lies in the subset F X 0.

4.2.2. EXAMPLE. Let B be a bundle over a compact manifold X. A subbundle
of B is a submanifold A of B such that the derivative of the projection map =
for B is still surjective on A. Then A4 is itself a bundle over X, and the Fréchet
manifold C*( X, A) of sections of the subbundle A4 is a Fréchet submanifold of
the Fréchet manifold C*( X, B) of sections of the bundle B. Indeed, given any
section f of A, we can find a tubular neighborhood of its image in the bundle B
which is diffeomorphic to a tubular neighborhood of the zero section in a
bundle V' ® W by a map taking fibres into fibres over the same point, such
that the points in the neighborhood in B which lie in the subbundle 4
correspond to points in the Whitney sum V' & W which lie in the vector
subbundle ¥ & 0. Then we have a chart on C*( X, B) with values in

C®(X, VO W) ~C2(X,V) X C=(X, W)

such that the sections in C®( X, A) correspond under the chart to C°(X, V) X
0.

4.2.3. EXAMPLE. Let X be a compact manifold and Y a submanifold of Z.
Then the Fréchet manifold 91U( X, Y) of smooth maps of X into Y is a smooth
Fréchet submanifold of the Fréchet manifold of smooth maps of X into Z.
Indeed, the maps of X into Y are the sections of the product bundle X X Y
over X, and X X Y is a subbundle of X X Z.

4.2.4. ExaMPLE. Let B be a bundle over a compact manifold X. Then the
Fréchet manifold C®( X, B) of sections of B is a submanifold of the Fréchet
manifold 9N (X, B) of all smooth maps of X into B. Since it is sufficient to
verify this locally, we may as well assume that B is an open subset of a vector
bundle V over X, and consider a neighborhood of the zero section of V. The
tangent bundle to V" along the zero section is naturally isomorphic to V @ TX,
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so we can choose a diffeomorphism between a neighborhood of the zero
section in ¥ @ TX and a neighborhood of the zero section in the product
bundle X X V such that the subbundle V' ® 0 in V' & TX corresponds to the
subset of X X V¥ which lies over the diagonal in X X X. Then we get a chart on
the manifold 91L( X, V') with values in the Fréchet space

Co(X,VOTX)=C®(X,V) X C?(X,TX)

such that the submanifold of true sections C*( X, V) corresponds to the subset
where the component in C*( X, TX) is zero.

4.2.5. EXAMPLE. The manifold &(X, Y) of embeddings of a compact mani-
fold X into a manifold Y is an open submanifold of the manifold 9N ( X, Y) of
all maps of X into Y. Likewise the manifold %)( X) of all diffeomorphisms of a
compact manifold to itself is an open submanifold of the manifold IM (X, X)
of all maps of X to itself.

4.2.6. EXAMPLE. We study in particular the manifold (S') of diffeomor-
phisms of the circle. It has two components, those which preserve and reverse
orientation, which we write as D (S') and D~ (S'). Elements of D* (S') have
degree +1 and lift to functions f(x) satisfying f(x + 27) = f(x) + 2«. Then
f'(x + 27) = f'(x) so the derivative f'(x) is periodic. For a diffeomorphism
we must have f’(x) > 0. To satisfy the condition on f we also need

[7(x) ax = f2m) = £(0) = 2.
0

Let H denote the subset of the Fréchet space C5;, of functions which are
strictly positive and have integral 2. It is an open convex subset of a closed
affine subspace of codimension 1, and hence a manifold. Then f’(x) can be
any element in H. It determines f(x) up to the constant f(0) € R', which is
itself indeterminate up to a constant 27n € 27Z, so f'(x) determines the
diffeomorphism up to an element of S' = R!/27Z, namely the image of 0.
This shows that D' (S')~ S' X H. Moreover H is clearly contractible, so
* (S') has the homotopy type of S'. The other component )~ (S"!) looks the
same.

4.2.7. EXAMPLE. Let X be a submanifold of Y. Then the Fréchet manifold
S(X) of compact submanifolds of X is a submanifold of the Fréchet manifold
&(Y) of compact submanifolds of Y.

4.3. Vector bundles. 1t is natural to define Fréchet vector bundles over
Fréchet manifolds in the usual way. Let 9 be a Fréchet manifold, Y another
Fréchet manifold, and 7: V' - 9 a projection map such that each fibre 7~ 'f
for f € 9N has the structure of a vector space.

4.3.1. DEFINITION. We say that “Vis a Fréchet vector bundle over 91 with
projection 7 if each point in 9 lies in the domain of a coordinate chart with
values in an open subset U of a Fréchet space F and we can find a coordinate
chart on ‘Vwhose domain is the inverse image of the domain of the chart on 9N
with values in the open set (U C F) X G in a product F X G for another
Fréchet space G, so that the projection 7 of V on 9N corresponds to the
projection of U X G on U and the vector space structure on each fibre is that
induced by the vector space structure on G.
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Note that for two such coordinate charts on V the coordinate transition
function

(UCF)XG-(UCF)XG

will always be linear from G to G. Conversely if we have an atlas on V of
charts on products whose coordinate transitions have the form (£, g) - ( f, §)
where f= P(f) and § = L(f)g is linear in g, then ¥ will become a vector
bundle.

4.3.2. EXAMPLE. Let O be a Fréchet manifold. Then its tangent bundle T
is a Fréchet vector bundle over 9. The coordinate transition functions for
TN are just the tangents TP of the coordinate transition functions P for 9.
If f(¢) is a parametrized curve in 91 then f'(¢) is a tangent vector to 9N at f(¢).
This sometimes provides an easy way to identify TOR.

4.3.3. EXAMPLE. A path f: (a, b) » ON(X, Y) is given by a map f: (a, b) X
X — Y. Thus for each x € X the path f(¢) in MM (X, Y) gives a path f(¢)(x) in
Y. Its t-derivative f'(¢)(x) is a tangent vector to Y at f(¢)(x). Hence f'(¢) is a
section of the pull-back to X of the vector bundle 7Y under the map f. This
gives the identification of the tangent space to 9M(X, Y) at a map f as

T,9N(X,Y) = C>(X, f*TY).

4.3.4. EXaMPLE. Let S(X) be the Fréchet manifold of compact smooth
submanifolds of a finite dimensional manifold X. Its tangent bundle T5(X)
has for its fibre at a submanifold S € §(X) the Fréchet space of sections
C*=(S, NS) of the normal bundle. Likewise the tangent bundle TR ( X) to the
Fréchet manifold of compact domains in X with smooth boundary has for its
fibre at a domain 4 € R.(X) the Fréchet space C*(dA4, N9A) of sections over
the boundary of the normal bundle. Since the normal bundle is always trivial
(although not in a canonical way) we have

TR(X), ~ C>(34).

4.3.5. EXAMPLE. Let X be a finite dimensional manifold and §(X) the
Fréchet manifold of all compact smooth submanifolds of X. Let C®5(X)
denote the space of all smooth functions on all submanifolds S € $(X). Then
C*§(X) is a Fréchet vector bundle over 5( X). The fibre over § € S(X) is the
Fréchet space C*(S). A typical chart on S(X) at S has values in the Fréchet
space C°(S, NS) of sections of the normal bundle. Its choice provides a choice
of a diffeomorphism between S and any nearby surface S. We can use this
diffeomorphism to identify functions on S with functions on S. Hence we get a
chart on C*§(X) with values in the product C*(S, NS) X C%(S) of the type
required to make C*S( X) a Fréchet vector bundle.

4.3.6. ExaMPLE. Let X be a finite dimensional manifold and R.(X) the
Fréchet manifold of all compact regions in X with smooth boundary. Then
there is a Fréchet vector bundle C*%®R (X) of all smooth functions on all
regions. It is the bundle over ®.( X) whose fibre over any region 4 € R.(X) is
the Fréchet space C*(A4) of smooth functions on the region A. The description
of the coordinate transition functions involves the choice of a diffeomorphism
from A to any nearby region A which is not very canonical. The manifold
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%, (X) has a chart at 4 with values in the Fréchet space C*(0A4) obtained as
follows. Choose a tubular neighborhood N of 94 diffeomorphic to 94 X [-1, 1].
Let y € 04 and r € [-1, 1] be local coordinates so that the part of N in 4 is
given by r = 0. Then a nearby domain A has its boundary given by r = b(y)
where b € C*(04) is a small function. This provides our coordinate chart on
R.(X) near A. We define a diffeomorphism of N N 4 to N N A by the map
(¥, r) = (y, s) with
s=r+¢(r)b(y)

where ¢ is a smooth function on [-1, 1] with ¢(r) = 1 for r < 0 and ¢(r) =0
for r = 1. We extend the diffeomorphism to be the identity outside of N and
inside A. A function g € C®(4) corresponds to a function f € C°(4) by
pulling back by this diffeomorphism, so that f(y, r) = g(y, s) on 4 N N and
f(x) = g(x) on the rest of A. This provides a coordinate chart on the vector
bundle C®R,( X) with values in the product space C*(34) X C*(A).

4.4. Maps of manifolds. Let 9 and 9T be Fréchet manifolds.

4.4.1. DEFINITION. A map P: 91U - 9 is a smooth map of Fréchet manifolds
if we can find charts around any point in 9 and its image in 9 such that the
local representative of P in these charts is a smooth map of Fréchet spaces.

4.4.2. ExaMPLE. The inclusion of a submanifold is a smooth map.

4.4.3. ExaMPLE. The projection of a Fréchet vector bundle is a smooth map.

A smooth map P: 9 — 9 of Fréchet manifolds induces a tangent map TP:
TON - T of their tangent bundles which takes the fibre over f € 9l into the
fibre over P(f) € 9T and is linear on each fibre. The local representatives for
the tangent map TP are just the tangents of the local representatives for P. The
derivative of P at f is the linear map

DP(f): T, » T,

induced by TP on the tangent space. When the manifolds are Fréchet spaces
this agrees with the previous definition.

4.4.4. EXaAMPLE. Let 91U be the Fréchet manifold of all compact connected
one dimensional submanifolds of R2, a component of the manifold S(R?).
Each manifold S € 9N is diffeomorphic to the circle. Using the Euclidean
metric on R? we can define two smooth real valued functions on 9N

L:9M >R and A:9M->R
where L(S) is the length of S and A(S) is the area enclosed by S.

The tangent space to 9N at S can be identified as the sections over S of its
normal bundle, which may be trivialized canonically using the metric, so that
TMg =~ C=(S). Letting f € C*(S) we can compute the derivatives of L and
A. If the curvature of S is given by k € €(S) and if ds is the arc length then
we have the formulas

DL(S)f=fSkfds, DA(s)f=[sfds.

If the length is to be a minimum for all curves enclosing a given area, then
we must have DL(S)f = 0 for all f with DA(S)f = 0. This clearly happens if
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and only if the curvature k is constant, which happens when the curve is a
circle.

4.4.5. EXAMPLE. Let X, Y, and Z be finite dimensional manifolds with X and
Y compact. Fix a map g: X - Y and define a map

C:OM(Y,Z)->M(X, Z)

by composition with g, so that C(f) = f(g). Then C is smooth and its
derivative is given by the formula

DC(f)h = h(g).
Note that if
h e TM(Y, Z),=C>(Y, f*TZ)
then
h(g) € TONU(X, Z) sy = C*(X, g*f*TZ).
Alternatively we can fix a map f: Y —» Z and define a map
C:9M(X,Y)->M(X, Z)

by composition with f, so that C(g) = f(g). Then C is again smooth and its
derivative is given by the formula

DC(g)k = Df(g)k.
Note that if
ke TON(X,Y), =C?(X, g*TY)
then since Df: TY — TZ we have
Df(g)k € TI(X, Z)pg) = C*(X, g*f*TZ).
Finally we can do both at the same time. Define a map on the product
manifold
C:IM(Y,Z) XM(X,Y) »M(X, Z)

by composition, so that C(f, g) = f(g). Then its derivative is the sum of the
two partial derivatives, which gives the formula

DC(f, g)(h, k) = h(g) + Df(g)k.

It is important to notice that serious problems arise if we attempt to repeat
this construction in Banach spaces. The space 9N'( X, Y) of maps of class C” is
a Banach manifold. However, the composition map

C: M (Y, Z) X M'(X,Y) - IM'(X, Z)
is C° but not C', since the formula for DC involves Df. The composition
C:M*NY,Z) XM (X,Y) - M'(X, Z)

is C' but not C2. In Fréchet spaces everything can be made C* and no
problems of differentiability arise. Indeed the formula for DC and hence the
tangent 7'C involves nothing more complicated than compositions and deriva-
tives, so the existence of the higher tangents 72C,...,T™C follows from the
chain rule by induction.
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4.4.6. ExAMPLE. Let D( X) be the Fréchet manifold of diffeomorphisms of a
compact manifold X of finite dimension, introduced in Example 4.2.5. There is
a natural map

V:D(X) - D(X)

which takes each diffeomorphism to its inverse, so that ¥( f) = f~'. The map
V is smooth. Its derivative is given by the formula

pv(f)n=-[Df(F )] "h(s).
Note that if
h € TD(X), = C®(X, f*TX)
and Df: TX — TX then
DV(f)h € TD(X) 1 = C*(X,(f1)*TX).

Again there are serious differentiability problems in Banach spaces, since Df
occurs in the formula. If 5)’(X) denotes the Banach manifold of diffeomor-
phisms of class C’, then V: 9'(X) —» D'(X) is C° but not C', while V:
DY (X) > D'(X) is C' but not C2 In Fréchet spaces the map V is C*.
Indeed we see that DV and hence TV involves nothing more complicated than
derivatives, compositions and inverses, so by the chain rule the higher tangents
T?V,...,T"V all exist. Hence V is C*.

More generally, if X and Y are two distinct manifolds which are diffeomor-
phic, we can form the Fréchet manifold %D( X, Y') of diffeomorphisms of X to
Y, and form the inverse map

V:D(X,Y) - DY, X)

as above.

4.4.7. EXAMPLE. We are now prepared to argue that the coordinate transition
functions for the Fréchet manifold $( X)) of smooth compact submanifolds of a
finite dimensional manifold X are smooth, as we claimed in Example 4.1.7.
Suppose we take coordinate charts of the type described there centered at two
submanifolds S, and S,, and that they overlap at a submanifold S. Then we
can find a neighborhood U of S which is represented simultaneously as
bundles over S, and S, using projections 7;: U~ S, and =,: U~ S,. The
coordinate charts for S(X) at S; and S, are the same we used for the Fréchet
manifolds of sections C*(S,,U) and C*(S,, U) of these bundles. Now these
are submanifolds of the Fréchet manifolds of all maps IN(S;, U) and I(S,, U)
by Example 4.2.4. By composition with 7, we get a map

C2(S,,U) CM(S),U) - M(S}, S,)

which is smooth by Example 4.4.5. The projections 7; and 7, induce diffeomor-
phisms § — S, and S - S,, and the map in JN(S,, S,) is just their composi-
tion (m,|S) e (m | S)~" which is also a diffeomorphism. Hence the image of
the above map lies in the open subset of diffeomorphisms (S, S,). On this
subset the inverse map V: (S, S,) - 9D(S,, S;) is smooth by Example 4.4.6.
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Composing the inverse map with the original section gives rise to a map
C®(8,,U) = D(S,, §;) X M(S,,U) » M(S,,U) 2 C(S,,U)

which is smooth by Example 4.4.5. The image we get always lies in the
submanifold C*(S,, U) of sections of U. This gives us our coordinate transi-
tion function, which is a composition of smooth maps and hence smooth.

4.4.8. DEFINITION. Let P: 9L - 9N be a smooth map between Fréchet
manifolds. We say P is an immersion if for any f € 9 we can choose
coordinate charts around f € 9 and P( f) € 9Usuch that the local representa-
tive of P is the inclusion of a factor in a direct sum. We say P is a submersion if
we can choose the local charts so that the representatives of P is the projection
onto a factor in a direct sum.

4.49. ExampLES. The inclusion of a submanifold is an immersion. The
projection map of a vector bundle is a submersion.

Let 9, 9, and 9 be Fréchet manifolds and let

PO, -9, PrO,->N
be smooth maps. We define the fibre product

M) X M, = {(fis ) €My X M,: Pi(fy) = P(1)}.

4.4.10. THEOREM. If P, and P, are submersions then O, X I, is a closed
submanifold of O, X O,.

PROOF. Let A be the diagonal in 9 X 9. Then M| X o M, = (P, X P,)"'A
is closed. If (£}, f,) € M, Xg M, then P( f;) = P,( f,). We can find coordi-
nate charts U, X V; - 9, and ¥; - 9 such that P, is the projection on ¥,
and we can find coordinate charts U, X ¥, - 9, and ¥, —» 9 such that P, is
the projection on V,. Without loss of generality we can take V, =V, = V.
Then U, X V X U, X V gives a chart on 9, X 9N, in which the fibre product
corresponds to points over the diagonal A in ¥ X V. Thus the fibre product is
a submanifold.

4.5. Connections. Let “V'be a Fréchet vector bundle over a Fréchet manifold
9 with projection «. The null space of D is the subspace of vertical tanget
vectors to V, and it is naturally isomorphic at each point of ‘V'to the fibre of <V’
passing through that point. It is natural to wish to pick a complementary
subspace of horizontal tangent vectors.

4.5.1. DEFINITION. A connection on Vis a rule which assigns to each point in
“V"a complementary subspace of horizontal vectors, such that in terms of any
coordinate chart on the bundle with values in (U C F) X G the subspace of
horizontal vectors consists of all (h, k) € F X G with

k=T(f){g, h}
where the local representative I' of the connection is a smooth map
I'(UCF)XGXF-G

which is bilinear in g and #.
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One easy way to visualize a connection is with parametrized curves. Given a
path v(¢) €Y we can form its covariant derivative v'(¢) € V' using the
connection. In local coordinates if

o(t) = (f(1), g(1))

then

v'(¢) = (h(2), k(1))

where
h() =f(2),  k(r) =g'(z) — T(f(2)){g(2), n(2)}.

The path v(¢) is horizontal if v’(¢) = 0. The path v(¢) € V covers the path
f(2) € 9. In Banach spaces, given the path f(z) € 9 for a <t < b and the
initial value v(a) there is a uniquely determined horizontal lifting v(#) covering
f(¢) with v’(¢) = 0. In Fréchet spaces the horizontal lift may not exist, and if it
does it may not be unique. This is because the usual existence and uniqueness
theorems for ordinary differential equations fail in Fréchet spaces.

A connection on a manifold 9N is defined to be a connection on its tangent
bundle TON. If f(¢) is a path in 9N giving the position as a function of time,
then its velocity f’(¢) is a path in T79%. The connection allows us to define the
acceleration f”(¢) also as a path in T9L. We say f(¢) is a geodesic if its
acceleration is zero. We say a connection on T9U is symmetric if its local
representative I'( £ ){ h, k} is symmetric in 4 and k.

4.5.2. DEFINITION. The curvature of a connection on a vector bundle Vis the
trilinear map

VX TOM X T -
given locally by
R(f){8, h,k} = DI(f){g, h,k} — DI(f){g, k, h}
—T({T(f){g h}, k} + T(S){T(f){8. k}, b}

where I'(f){g, h} is the local representative of the connection. The curvature
is independent of the choice of a chart.

45.3. ExaMPLE. Let X and Y be finite dimensional manifolds with X
compact and let 9N (X, Y) be the Fréchet manifold of smooth maps of X into
Y. A path f(¢) € 9L(X, Y) can be evaluated at any point x € X to give a path
f(t, x) € Y. Suppose Y has a connection given in a local chart by I'( y){z, w}.
Then 9N ( X, Y') has a connection given in local coordinates by

[T(f){h, k}](x) = T(f(x)){h(x), k(x)},
where for each x € X we have f(x) € Y and h(x), k(x) € TY,,. A path f(¢)
is a geodesic in N if and only if the path f(¢, x) for any x € X is a geodesic in
Y. In this case each path will have a unique lift obtained by lifting point by
point in X. The curvature of the connection on (X, Y) is given in terms of
the curvature of the connection on Y by

[R(f) {8, k. k}](x) = R(f(x)){8(x), h(x), k(x)}

that is, evaluating point by point.
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4.5.4. EXAMPLE. Let R.(X) be the Fréchet manifold of all compact domains
with smooth boundary in a finite dimensional manifold X, and let C*R (X) be
the Fréchet vector bundle whose fibre over a domain 4 € R.( X) is the Fréchet
space C®(A) of all smooth functions on 4. There is a natural connection on
C®%R,(X) of great importance in free boundary value problems. Fix a function
f € €*(X) and choose a path of domains A(¢) in R (X). Then f(¢) = f| A(¢)
defines a path in C®R,(X) by restricting the fixed function to the variable
domain. The natural connection on C®®R,(X) is the one which makes all of
these paths horizontal.

To see that this does indeed give a connection, we shall evaluate its local
representative in the coordinate charet of Example 4.3.6. There a function
b € @®(dA4) corresponds to a domain 4 with r=>b(y), and a function
f € C®(A) corresponds to a function g € C®(A) by the rule f(y, r) = g(», )
where

s=r+¢(r)b(»).

Then a path A(¢) in ®(x) will correspond to a path b(x, t) in C*(d4) and a
path f(x, t) in C*(4) will correspond to a path g(x, ) in C*(A(¢)) by the rule

f(y,r,0)=g(y,s,1),  s=r+e(r)b(y1).
Differentiating in ¢ we see that

E)f of ar _ dg as _ 9 or ab
at or ot o’ at az+ar azb ¢8t

For the path g to be horizontal in our connection we want dg/9¢ = 0 when
ds/dt = 0. Solving, we get

of _ 9of db [ 6¢]

Bt = %% or ot w/|Pte 9
Now at the domain A(¢) given by b(¢) the vector h = db/dt represents the
tangent vector to the path. Therefore the local representative of the connection
is given by

I: (UC ™)) X C*(4) X C*(34) » C*(4)
where
L(b){f, h} = &(3f/3r) - h/ [1 + bd¢/or]

on N N A, and outside of N we have ¢ = 0 so I = 0. Since I' is smooth and
bilinear in f and A it defines a connection locally. The invariance under a
change of coordinates follows immediately from its invariant description.

Any smooth function on a compact region 4 with smooth boundary extends
to a smooth function on X, but not uniquely. It follows that any path in R (x)
can be lifted to E* %, (x) with given initial value, and the lift will be unique for
a path of shrinking domains but not for a path of expanding domains. By way
of contrast, we note that there is another interesting bundle C3%R (x) whose
fibre over a domain 4 € R(x) is the Fréchet space CF(A4) of smooth func-
tions on X which vanish identically outside of 4. The previous formula defines
a connection I' on this subbundle also, for when f vanishes outside A4 so does



96 R. S. HAMILTON

9f/9r. For this bundle the horizontal lift over a path of expanding domains
exists and is unique, but the lift over a path of shrinking domains may not
exist.

Finally we note that the connection I' (for either bundle) has curvature zero.
This can be shown by an explicit calculation. Differentiating I'(b){ f, h} with
respect to b in the direction k gives

DT(b){f, h, k) = -¢g¢ gfhk/[l + ba"’]

which is symmetric in 4 and k. Moreover since b, h, and k are functions of y
alone they are independent of , so 0h/9r = 0 and

T(b){T(b){f, h}, k} = ¢ai[F(b){f, h}] 'k/[l + b%]
‘¢ar[¢ ] hk/[l e

is also symmetric in 4 and k. Therefore the curvature is zero. Of course it is
obvious that C®% ( X) must have curvature zero since there exists a horizontal
section passing through every point f € C®®R (X), even though the horizontal
section is not unique.

455, EXaMPLE. Let X be a Riemannian manifold, S(X) the Fréchet
manifold of all compact smooth submanifolds of X, and C*&(X) the Fréchet
vector bundle over S( X) of all smooth functions on compact smooth submani-
folds, so that the fibre over S € S(X) is the Fréchet vector space C*(S). For
each S € §(X) we can form the tangent bundle 7S and the normal bundle
NS =TM/TS over S. Likewise for each f € C®(S) we can define vector
bundles Tf and Nf over S by letting Tf be the graph of Df,

Tf= {(v,y) ETM X R:v € TS andy = Df(v)}
and
Nf=TM X R/Tf.

THEOREM. There are natural isomorphisms
T,S5(X) = C>(S, NS), Tf@°°S(X) = C%(S, Nf).

ProoF. We can identify the tangent space to a manifold by identifying the
tangent vectors to paths. Let S, = {S,} be a smooth path in §(X) for
& <t <eg with S, = S. Then S, is itself a compact smooth submanifold of
M X (¢, €) transversal to each slice ¢ = constant. If f, = {f,} is a smooth
path in C*§(X) for —e < ¢ < ¢ with f, = f and covering the path S, = {S,} in
S(X), then each f, € C*(S,) and f, is a smooth function on S,.

The path S, defines an affine subbundle of TM over S by

TS = {v € TM: (v,1) € TS, att =0}
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since TS, C TM X R when S, C M X (-, ¢). Similarly the path f, defines an
affine subbundle of TM X R over S by

7= {(v, ) ETM X R: (v,1) €TS, att=0andy = Df,(v,1)}.

It is easy to check that TS is a translate of TS in TM , and hence determines
a section over S of the quotient bundle NS = TM /TS. This identifies the
tangent to the path S, as an element of C*(S, NS). Similarly we can check
that Tf is a translate of 7f in TM X R, and hence determines a section over S
of the quotient bundle Nf = TM X R/Tf. This identifies the tangent to the
path f, as an element of C®(S, Nf) and proves the theorem

There is an obvious short exact sequence of vector bundles over S,0 - R -
Nf - NS - 0, which arises from the commutative diagram

0 0
\ \:

0 - Tf - TS - 0
! i\’ l

0 - R -» TMXR - TM - 0
| 2 l

0 - R - Nf - NS - O
\: ! \)
0 0 0

where the vector bundle isomorphism Tf — TS is obtained by forgetting the
second factor in TM X R. This induces a short exact sequence of Fréchet
vector spaces 0 » C®(S) - C®(S, Nf) - C*(S, NS) - 0 which by the previ-
ous theorem becomes

0 - C=(S) - T,e=S(X) - T,S(X) - 0.

The second map is clearly T# where 7 is the projection of the vector bundle.
Hence the first factor C*(S) is the subbundle of vertical tangent vectors to the
bundle C*S(X) at f € C®(S). These are of course just the variations where we
fix the submanifold S and vary only the function f on S. They are intrinsically
defined. Unlike the case of R.(X) there is now no intrinsic way to fix the
function f and vary the domain S. To do this requires the choice of a
connection I on C*&(X), for which we need some additional data.

Suppose that X is endowed with a Riemannian metric g. Then there is a
natural way to define a connection T’ on C*&( X) in terms of g. The geometric
idea is that to vary the domain S while keeping the function f fixed we should
keep f constant along the normal direction. It is the choice of the normal
direction that requires a metric. The connection I' may be described in the
following way. We can identify the normal bundle NS with the subbundle of
the bundle TM over S of vectors perpendicular to 7'S in the metric g. Then
NS X R is a subspace of TM X R complementary to 7f, so we can identify
Nf=TM X R/Tf with NS X R. If Nf = NS X R we take Hf = NS X {0} as
the horizontal subspace complementary to the vertical subspace {0} X R.
Then C®(S, Hf) will be the horizontal subspace for the connection I' of
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C*(S, Nf) = T,C®5(X) complementary to the vertical subspace C*(S) and
projecting isomorphically onto C*(S, NS) = T;5(X) since
Hf = NS X {0} = NS.

It is interesting to compute the curvature of this connection. The metric g on
X induces metrics on the tangent bundle 7'S and the normal bundle NS and
covariant derivatives on sections of these bundles. If f € C*(S) and h, k €
C*(S, NS) we can form the covariant derivatives Vf and vh. Then using the
etric on T*S we can form the dot product Vf- vk in NS, and using the metric
in NS we can form another dot product Vf- vh- k. The curvature at
S € §(X) is the trilinear map

R(S):C®S(X), X TS(X), X TS(X), » C®S(X),
which in terms of our previous identifications is a map

R(S): C*(S) X C*(S, NS) X C*(S, NS) - C>(S)
given by

R(S){f. h,k}y=vVf-Vh-k— vf- Vk-h,
We leave it as an exercise for the reader to check the formula. It is interesting
to note that the curvature of this natural connection on C*$(X) is not zero,
even when X is flat, and even when S is a flat submanifold of X (such as a
circle in a flat torus).
4.6. Lie groups.

4.6.1. DEFINITION. A Fréchet Lie group is a Fréchet manifold § with a group
structure such that the multiplication map C and the inverse map V,

C:6xX86-6, C(g, h)=gh,
Vi8-8, V(g)=g",

are smooth.

4.6.2. EXaMPLE. Let X be a compact manifold. Then the diffeomorphism
group D(X) is a Fréchet Lie group.

The Lie algebra of § is the tangent space G = T,§ at the identity 1. Each
element in G determines a left-invariant vector field on §. The Lie bracket of
two left-invariant vector fields is again left-invariant. This defines the Lie
algebra structure of §. There is a unique connection on § such that the
left-invariant vector fields are horizontal. For this connection the curvature is
zero and the torsion is given by the Lie bracket.

4.6.3. ExampLE. For the diffeomorphism group “D(X) the Lie algebra
T,%D(X) is the space C*( X, TX) of vector fields on X. The Lie algebra of the
group is given by the Lie bracket of the vector fields.

4.6.4. DEFINITION. We say the Lie group § acts on a Fréchet manifold 91 if
there is a smooth map

A:GXM->9M, A(g, h)=gh
such that 14 = h and (g,8,)h = g,(g,h).

4.6.5. DEFINITION. Let § be a Fréchet Lie group. A principal Fréchet G-bundle
consists of a Fréchet manifold 91 (called the total space), an action a of § on
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9N, and a submersion P of M onto another Fréchet manifold % (called the
base), such that for each b € % we can find a neighborhood ¥V of b and a
diffeomorphism P of § X V onto P~ (V') C 9N such that:

(1) The action 4 of § on 9N corresponds to the action on § X V¥ on the first
factor, and

(2) the projection P onto %% corresponds to the projection of § X ¥V onto the
second factor.

4.6.6. ExaMPLE. Let X and Y be finite dimensional manifolds with X
compact. Let D(X) be the diffeomorphism group of X, let &(X, Y) be the
Fréchet manifold of all embeddings of X into Y, and let S (Y) be the
component of the Fréchet manifold of all submanifolds of Y consisting of
those which are diffeomorphic to X. Then &( X, Y) is a principal %( X) bundle
over §(Y). The action of ®(X) on &(X,Y) is given by composition of the
embedding and the diffeomorphism. The projection of &(X, Y) onto S(Y)
assigns to each embedding its image. The argument in Example 4.4.7 shows
how to construct the coordinate charts required.

LS. The inverse function theorem.

5.1. Estimates. Let L: H - K be a continuous linear map between Fréchet
spaces. Then for every seminorm || || , on K there exists a seminorm || || ; on H
such that || Lh|l x < Cllhll ;. More generally we have the following result.

5.1.1. THEOREM. Let L: (U C F) X H — K be a family of linear maps on
Fréchet spaces. If L is continuous, then for every f, € U and every seminorm
Il l x on K we can find a neighborhood U of f, and a seminorm || || ;; on H and a
constant C such that for allf € Uand h € H

IL(f)rll < Cllhll .

PrOOF. The seminorms define the topology. Since L is continuous and
L(£,)0 = 0, we can find a neighborhood U of f, and a neighborhood of 0 of
the form |lhlly <e on_which ||L(f)hllx<]1. Given any h € H we put

=¢h/|lhll,. Then l|All,;<e and if f€ U we have |L(f)hllx<1. It
follows by linearity in & that || L(f)hll x < Cllhll ; with C = 1/e.

5.1.2. THEOREM. Let B: (U C F) X H X K — L be a family of bilinear maps
on Fréchet spaces, so that B(f){h, k} is linear separately in h and k. If B is
continuous, then for every f, € U and every seminorm || ||, on L we can find
seminorms || || ; and || | x on H and K and a constant C such that for all f € U
andallh € Handk € K

NB(f){h, k}l, < Cllhll gllkll g.
PRrROOF. The demonstration is the same as for the preceding result.

5.1.3. THEOREM. Let P: U C F — G be a smooth map of Fréchet spaces. Then
for every f, € U and every seminorm || || ; on G we can find a seminorm || || . on
F, an € >0, and a constant C such that if || fy — foll p<eand I f, — fill p<e
then

NP(f,) — P(L)g<Cllfy — £l g
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PrOOF. The derivative DP( f )h is continuous and linear in 4. Given f, and
Il 1l ; we can find a neighborhood U of fy and a || ||  with [| DP(f)hll; < CllAll &
if f€ U. The neighborhood U will contain a neighborhood of the form
Il f — foll p < & for some || || z and some & < 0. If this norm is different from the
preceding, we can pick a third norm || || ; stronger than both (for example,
their sum). By the fundamental theorem of calculus

P(f,) = P(f,) =f0‘DP(tf. + (L= 0)A)(f — ) de.

If f, and f, belong to the set || f — f,|l - < & so does the line segment joining
them, so

IDP(tf, + (1 = )A)(fi = L)l < Cllfi = £l .

Then | P(f;) — P(L)lg < Cll f, — Ll .
Next we prove a more specialized result.

5.1.4. THEOREM. Let Q: U C F — G be a smooth map between Fréchet spaces.
Suppose that Q(0) = 0 and DQ(0)h = O for all h € F. Then for every seminorm
Il l g on G we can find a seminorm || ||  on F, and € > 0, and a constant C such
thatif | fill p<eand |l f,|| < & then

12(£) = (L)< CUAIE+NLIUINf = Al 5.

PrOOF. The second derivative D?Q( f){h, k} is a smooth family of bilinear
maps. By Theorem 5.1.2. for any || |l on G we can find a neighborhood of
zeroUC Fandalll |l pon Fsuch thatif f€ U

ID2Q(f){h, k}lg<Clhll clkll £

and as before we may as well take U of the form {f: |l f|l <&} for some
& > 0. By the fundamental theorem of calculus

o(f)r=[ 'D20(ef ){ £, h} dt

since DQ(0)h = 0. Thenif | fll p <e,
IDO(f)hrllg=<CIlfllglAll .

We can also write
P(f) = P(f,) =fO‘DP(tf. + (1= D)), = f,) de

as before. If f| and f, belong to the ball U so does the line segment joining
them. Then

IDP(ef, + (1 = ) f)(fi = L)lg < CUAil p + LIRS = £l

and the norm of the integral is bounded by the integral of the norm. This
proves the estimate.

5.2. The inverse function theorem for Banach spaces. Let X be a metric space
and P: X — X a map of X into itself. We say P is a contraction if there exists a
p < 1 such that

d(Px, Py) < pd(x, y).
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5.2.1. THEOREM. If X is a complete metric space and P: X — X is a contraction
then P has a unique fixed point x with P(x) = x.

PRrROOF. Recall that this well-known result is proved by the following trick.
Start with any x, € X and define a sequence x,, € X by x, = P(x,_,). Then
d(x,.1, x,) < p"d(x,, x,). Since the geometric series =p" converges for p < 1,
it follows that the sequence x, is Cauchy, and if X is complete then x,
converges to an element x with P(x) = x. This shows the fixed point exists. If
x, and x, are two fixed points then

d(x,, x;) = d(P(x,), P(xz)) < pd(xy, x,)
and if p < 1 this forces d(x,, x,) = 0. Hence the fixed point is unique.

5.2.2. COROLLARY. Let X and Y be metric spaces with X complete and let P:
X X Y - X be a continuous map with

d(P(xls »), P(x,, J’)) pd(x,, x,)

for some p <1. Then for every y € Y there exists a unique x € X with
P(x, y) = x. If we let x = S(y) then the map S: Y — X is continuous.

PROOF. We already know all but the continuity of S. Pick x, € X and let
Xn,+1 = P(x,,y). Then x, = S,(y) is a continuous map S,: Y — X, and
S,(¥) = S(y)asn - oo. Since

d(8,+1(»), S,(»)) < C(y)e"

where C(y) = d(S,(»), So(»)) is a continuous function of y, it follows that the
sequence S,( y) converges to S(y) uniformly on a neighborhood of any y, € Y.
Therefore S(y) is continuous.

We can now prove the inverse function theorem for Banach spaces.

5.2.3. THEOREM. Let P: U C F - V C G be a smooth map between Banach
spaces. Suppose that for some f, € U the derivative DP(f,): F - G is an
inuertible linear map. Then we can find neighborhoods U of Jo and V of

= P(f,) such that the map P gives a one-to-one map of U onto V, and the
mverse map P~': VC G- UCF is continuous. (We shall show later in
Corollary 5.3.4. that P~ is smooth.)

PROOF. By replacing fby f=f—f, and g by g =g — 8o We may assume
that f, = 0 and g, = 0. Since DP(0) is an isomorphism between F and G, we
may use it to identify F and G, and assume that DP(0) is the identity.

Let Q(f) =f— P(f). Then Q(0) = 0 and DQ(0)h = h — DP(0)h = 0, so
we may apply Theorem 5.1.4. Since F is a Banach space all norms are
equivalent, and we pick one || ||. Then

1e(£) — (L <CU AN+ U AIDIf = £

if|fill <eand || f,Il <
Putting f; = fand f, = O we also have

le(fll<clfi?
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when || f|| <& We put
R(f,8)=f—P(f)+g=0(f) +s
and let
={f:IIfll<e and Y= {g:ligl<2é&}.
Then Xis a complete metric space. If f € X and g € Y then
IR(f, gl <CIfII*+ ligll < Ce*+ 8.
If e<1/2C and 8 < ¢/2 then Ce? + 8 <e¢, so R(f, g) € X. Thus R defines a

map R: X X Y - X. Moreover R(f,,g) — R( £, 8) = QO(f)) — Q(f,) so if
fohEXandgeY

IR(f1, &) = R(f,, &)l < 2Cell f, = £ .

When ¢ is small then p =2Ce<1 and R is a contradiction. To make
everything work we first choose € small compared to C, and then choose 8
small compared to e. Then it follows that from Corollary 5.2.2 foreachg € Y
there is a unique f € X with R(f, g) = f, which means P(f) = g. Moreover
the map P~': Y > X is continuous. To finish the proof we take any open
nelghborhood of zero V C Y and let U = P~ (V). Since P~ is continuous U
is open.

5.3. Inverses of linear maps. If L: F — G is a continuous linear map between
Fréchet spaces and if L is invertible then L™!: G - F is continuous by the
open mapping theorem. If L: (U C F) X H — K is a family of linear maps, so
that L(f)h = k is linear in h € H for each f € U C F, and if each L(f):
H - K is invertible, then putting V(f) = L(f)~! we obtain the family of
inverses V: (U C F) X K - H where V( f)k = h is the unique solution of the
equation L(f)h =k

5.3.1. THEOREM. Let L: (U C F) X H - K be a family of invertible linear
maps of Fréchet spaces and let V: (U C F) X K — H be the family of inverses. If
L is smooth and V is continuous then V is smooth and

DV(f){k, g} = -V(f)DL(f){V(f)k, g}.

Proor. Recall that DV( f){k, g} is obtained by differentiating V( f )k with
respect to f in the direction g. Now the difference quotient
[V(f+1g)k — V(f)k]/t

=-V(f+g)[L(f+ ©)V(f)k — L(f)V(f)k]/1
Ast—-0
[L(f+ 1)V(f)k — L(f)V(f)k]/t > DL(f){V([)k, g}

since L is C'. If Vis C° then by its joint continuity

V(f+)[L(f+ 1g)V(f)k — L(f)V(f)kl/t > V(f)DL(f){V(f). g}

It follows that the difference quotient for V' converges to the given limit. We
see from the formula for DV that V'is C'. It now follows by the chain rule and
induction that if Vis C" and L is C"*! then Vis C"*!. If L is C*® then V is
C*.
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For Banach spaces there is an easy criterion for inverting a family of linear
maps, since the set of invertible linear maps of H to K is open in the Banach
space L(H, K). We prove it in a different way.

5.3.2. THEOREM. Let F, H and K be Banach spaces. Let L: (U C F) X H - K
be a smooth family of linear maps L( f)h = k linear in h. Suppose that for some
fy € U the map L( f,): H - K is invertible. Then there is a neighborhood U of f,
such that L(f): H - K is invertible for all f € U, and the family of inverses V:
(U C F) X K - H is smooth.

PrROOF. We can assume f, = 0 by replacing f by f=f- fo- We can also
assume L( f;) is the identity by identifying K with H under the isomorphism
L(f,)~". Then we have a map L( f)k = k with L(0)h = h. Consider the map

P.(UCF)XH->FXH
defined by
P(f, h) = (f, L(f)h).
Then

DP(f, h)(f, k) = (f, DL(f){h, [} + L(f)K)

and DP(0,0)( f, k) = (f, k) is the identity. It follows that on a neighborhood
U X W of (0,0) the map P is invertible, and L( f)k = k has a unique solution
for all f € U and k € W, which we write as V( f)k = h. But since L(f)h = k
is linear in A, it follows that ¥( f )k = h is defined and continuous for f € U
and all k € K. That V is smooth follows from Theorem 5.4.1.

5.3.3. COUNTEREXAMPLE. Let C° be the Fréchet space of functions f(x)
which are smooth and periodic with period 2#. Define a smooth family of
linear maps

L:RXC% - C5
by setting

(LA = [ ) du

so that the value of L(¢)f at x is the average value of f over the interval starting
at x of length ¢. If we make the change of variables u = x + v we get the
alternative formula

[L(£)A(x) =f01f(x + tv) dv.

Clearly L(0) is the identity and hence invertible. But if » is an integer
L(27/n)sin nx = 0.

Indeed L(z) acts term by term on the Fourier series of f(x) and when
t = 2w /n it kills the terms sin nx and cos nx. Thus L(27/n) is not invertible.
Since 27/n - 0 as n » oo we have a counterexample to Theorem 5.3.2 and
also Theorem 5.2.4 when the critical space is not a Banach space.
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The reader may wonder why the same counterexample doesn’t work on the

Banach space CJ, of continuous periodic functions. Note that L: R X €3 - CJ

is continuous but that L: R —» L(C3,, C2.) is not! Hence the linear maps L(¢)

do not converge to L(0) = I as t -» 0. Moreover consider the derivative of
L(t)f with respect to ¢, which we write as L'(¢)f. Clearly

1
[L(1)A(x) =fouf'(x + tv) dv
involves f’. Thus L: R X C& - CF is C* but L: R X CJ, — €2, is not even
differentiable. The difference between C° and C* is striking,

5.3.4. COROLLARY. The inverse function P~'(g) in Theorem 5.2.3 is smooth
for all g in a neighborhood V of g,. Moreover the derivative DP(f)h =k is
invertible for all f in a neighborhood U of f, and the family of inverses
VP( f )k = h is smooth, and we have

DP~'(g)k = VP(P~'(g))k.

PrROOF. That the family of linear maps is invertible and that VP is smooth
follows from Theorems 5.4.2 and 5.4.1.
By Lemma 3.3.1 we can find a smooth family of linear maps

L(fi, fo)h =f0'DP(<1 —0)f, + th)hdt

with P(f,) — P(f,) = L(f,, X/, — f,), and with L(7, f)h = DP({)h. Since
L( fy, fy) = DP(f,) is invertible, it follows that L( f;, f,) is invertible for all f,,
/, in a neighborhood U of f;, and the family of inverses V( f,, f,)k = h solving
L( f,, f,)h = k is also smooth. Then

f = fi=V(h RIP() = P(f)].
Now letf; = P"!(g,) and f, = P"(g,). Then
P (g,) — P (&) = V(P (&), P7'(g))(8: — &)
Let us define
M(g,, g,)k = V(P—I(g1)9 P_I(gz))k-

Since V is smooth and P! is continuous, we see that M is continuous and
linear in k. Since

P~ (g) — P '(g1) = M(gy,8,)(8,— &)

it follows from the reverse side of Lemma 3.3.1 that P!
DP~Y(g)k = M(g, g)k. Now

M(g,g) = V(P \(g), P '(g)) = L(P \(g), P '(g)) "
=DpP(P'(g)) ' = vP(P\(g))

is C! and we have

so we have
DP~\(g)k = VP(P~'(g))k.
If P~ 'is C" and VP is C* then P~ 'is C"*! by the chain rule. Thus P~ 'is C*.
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5.3.5. EXAMPLE. Let C$°, be the Fréchet space of all smooth functions f(¢)
periodic with period 27, and let U be the open subset of all functions f(¢) with

e(f) =f02"f(t)dt;eo.

Define a family of linear maps
L: (Ug@;j,) X @;';r - @;,

by letting L( f )h = k where
k=dh/dt + fh.

Then the equation has a unique solution V(f)k = h, and V is smooth as a
map

V:(UCCR) XECE - C.

To see this is true, we recall the standard method for solving a first order,
linear ordinary differential equation. We begin by letting

F(r) = /0 '7(6) a8

so that F” = f. Note that F(0) = 0 and F(27) = ¢(f) # 0 by hypothesis. Then
the solution is given by

k(t) = e*ﬂ'){jo'eﬂ")h(o) do + C(f, h)}

where C is an arbitrary constant. We wish to choose C so that k() is periodic.
This happens when k(0) = k(27 ). Thus we need

l 27
Cc(f, h) = — FOpn(0)de
(f 1) = —55— [ Te™n(0)

which is possible if ¢( f) # 0. Note that C( f, #) depends smoothly on f and h
and is linear in Ah. It is easy to check that if f € C" and k € C" then the
solution A € C"*! for 0 <r < o0. It is clear from the formulas that V is
continuous, and then it is smooth by Theorem 5.3.1.

5.4. Examples in Banach spaces. We present a few of the classical examples
of the inverse function theorem in finite dimensions and in Banach spaces to
give the reader a feeling of how the theorem works.

5.4.1. EXAMPLE. Let f: U C R' - R!' be a real function of a real variable.
Then

Df(x)u = f'(x)u

and the linear operator Df(x): R' - R' is multiplication by f’(x). This
operator is invertible if and only if f'(x) # 0. If f’(x) > 0 the function is
increasing, while if f’(x) <O the function is decreasing. In either case it is
locally invertible.

5.4.2. ExaMPLE. The function y = x* has two inverses x = = /y for y >0
and none for y < 0. The derivative dy/dx = 2x is nonzero except at x = 0,
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where the function has a turning point and the map is not invertible. Since
d 1 1

dx iZ‘/; :7.;

we see that the derivative of the inverse is the inverse of the derivative.

5.4.3. EXAMPLE. Let y = x>. Then thé function has a unique solution defined
everywhere given by x = 3,/)7 . The derivative dy /dx = 3x? is not zero except at
x = 0. Since dx/dy = 1/3y?/3, we see that at y = 0 the inverse function is
continuous but not differentiable.

5.4.4. EXAMPLE. Let y = 4x> — 3x be the third Chebychev polynomial. We
have y’ = 12x2 — 3 =0 at x = = 1. A table of values is

s0 y covers the interval [-1, 1] three times while x covers it once. In this region
we can make the substitution x = cos § and use the identity

cos 30 = 4cos*d — 3cos
to obtain the three solutions
X = cos } arccos y.

In the region x =1 we can make the substitution x = coshs and use the
identity

cosh 3 = 4cosh’t — 3cosh ¢
to obtain the single solution

x = cosh § arccosh y.

Interestingly enough this latter solution is algebraic; it can also be written as

x=((y+h=1)"+(y-h"=1)) " 12
using the identity
arccosh y = log(y = \/y—2:~1)
Alternatively we can find the algebraic solution by substituting

2
u +1_1(u+1)
u

2u 2
which has two reciprocal solutions

u=xi\/x2—l.

We then get
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which has two reciprocal solutions

1/3
u=(yi\/y2—l) )
Knowing x as a function of # and u as a function of y gives x as a function of
Y.
The inverse function theorem tells us that there exists a single smooth
inverse function in a neighborhood of y = 1 which has its values near x = 1.
This solution is given by the algebraic formula for y = 1 and by the trigono-
metric formula for y < 1. That these two formulas patch together to form a
single smooth (and even real analytic) function is far from obvious.
5.4.5. EXAMPLE. Let f: U C R* > R? be given by (%) =f(;)- Then its

derivative
x\(u\y _ [9z/0x 0z/dy )\, y
of(3)(5) = (aw/ax dw,/dy (%)
is given as a linear map by the matrix of partial derivatives. This is invertible if
and only if the Jacobian determinant

9z/3x 0z/dy )
dw/0x dw/dy
is not zero. Geometrically J is the factor by which f expands areas infinitesi-
mally. When J # 0 the map f is locally invertible. If J > 0 the map preserves
orientation, and if J < 0 it reverses orientation.

5.4.6. EXAMPLE. As a special case, consider the map f: R? - R? given by

{z=x+y}

J = det(

w = xy

This has an interesting interpretation. If a 2 X 2 matrix has eigenvalues x and
y, then it has trace z and determinant w. We would like to recover the two
eigenvalues from the trace and the determinant. The Jacobian is

|

x) X7y

so J = 0 along the axis of symmetry x = y. When x >y the map preserves
orientation, while when x < y it reverses orientation. Therefore it folds along
the line x = y. Its image is the parabola z2 = 4w. Since

_ 1
J = det(y

22—dw=(x—y)’=0
we see that the region 4w < z2 outside the parabola is covered twice, with the
two solutions being obtained by interchanging x and y, while the region

4w > z? inside the parabola is not covered at all. The branch of the inverse
function with x > y is given by

x=(z+\/zz—4w)/2, y=(z—\/zz—4w)/2.

When the eigenvalues are distinct they are smooth functions of the trace and
determinant, but where the eigenvalues are equal they are not.
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5.4.7. ExaMpLE. Consider the function f: C » C mapping the complex plane
to itself given by w = z2. The derivative w’ = 2z is zero only at the origin
z = 0. Elsewhere the map is locally invertible, with two inverses given by the
two branches of z = yw. In cartesian coordinates z = x + iy and w = u + iv
the map f: R? - R? s given by

u=x?—y?
v =2xy |

We can solve these simultaneous equations by observing that
u + o? = (x% + y?)

from which it follows that

x= = ((\/u_2+—vz+ u)/2)l/2,
y==((W o —u)s2)”

where the signs of x and y are the same when v > 0 and opposite when v < 0.
When v # 0 the solution is obviously smooth. By the inverse function theorem
it is still smooth at v = 0 if u # 0. For the Jacobian determinant

_ 2x 2y _ 2 2
J—det(2y 2x)—4(x +y?)

is never zero except at the origin. In polar coordinates z = re’’ and w = se’?

we see that
s=r?
Y =20

so the map squares the radius and doubles the angle. Then the inverse map

A

takes the square root of the radius and halves the angle (which can be done in
two ways mod 2 7).
5.4.8. ExAMPLE. Consider the map f: R?> - R? given by w = 2z + z2 or

u=2x+x*—y2?
v=2y— 2xy ’
The Jacobian determinant is

2(1+ x) -2y

J = det
de -2y 2(1 - x)

) =4(1 — x> —y?)

so J vanishes on the unit circle x? + y? = 1. Inside the map preserves
orientation, and outside it reverses. The map is locally invertible except on the
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unit circle. If we parametrize the circle by x = cos # and y = sin 6 we see that
its image is
{u =2cosf + cosZﬂ}
v = 2sinf — sin26

which is the standard parametrization for the hypocycloid of three cusps
generated by a point on a circle of radius 1 rolling around the inside of a circle
of radius 3. The map folds along the circle except at the three cube roots of
unity, where it makes cusps. For points (}) inside the hypocycloid there are
four smooth solutions (}), while for points outside the hypocycloid there are
only two solutions. For example, if ¢ is a primitive cube root of unity then the
points which map to the origin w = 0 are z = 0, -2, —2¢, —2¢&. Corresponding
to these there will be four smooth local inverses defined in a neighborhood of
the origin.

There is an important result in the theory of singularities that any map of
the plane to the plane is arbitrarily close to one having only folds and cusps.
The map w = z? of Example 5.4.7 has no folds or cusps, just a double twist.
But the map w = z% + &7 looks like the map of Example 5.4.8, folding along a
circle with its image being a hypocycloid of three cusps. As ¢ — 0 the three
cusps collapse into the double twist.

5.4.9. EXAMPLE. Let B be a Banach space and let L(B, B) be the Banach
space of continuous linear maps of B to itself. Define a map P: L(B, B) —
L(B, B) by

P(L) =L
Then P is smooth and we have
DP(L)M = LM + ML.
When L = [ is the identity

DP(I)M =2M
so DP(I) is invertible with inverse
VP(I)N =N /2.

It follows that P is locally invertible in a neighborhood of the identity, and the
inverse map P~'(L) = VL is smooth. We could also define the function VL
for L near the identity using the power series expansion

T+A=I+34—-14%+ LA — 44+ ---
whose general term is
CD"1-3-5---@2n=3) ,,
PR 1-2-3---n

which converges absolutely for || 4|l < 1 by the ratio test. This shows P~ (L) =
VL is actually defined and smooth on all of the set {L: [L — I|l <1}.

5.4.10. ExampLE. The inverse function theorem can be used to prove
existence of solutions for ordinary differential equations.
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THEOREM. Let y = p(x) be a smooth monotone increasing function mapping
the open interval a < x < b onto the open interval ¢ <y <d with p’ > 0. For
every smooth periodic function g of period 2m with values in (c, d) there exists a
unique smooth periodic function f of period 2m with values in (a, b) solving

df/dt +p(f) =g

PROOF. Let C;, be the Banach space of functions of class C” periodic with
period 27. Let U be the open subset of C), of functions with range in
(a, b) = U and let V be the open subset of Cy, of functions with range in
(c, d) = V. Define a map

PUcCq,-Vcc,
by letting
P(f)=dfydt +p(f).
Then P is smooth and its derivative is
DP(f)h=dhn/dt + p'(f)h.

Since p’(f) > 0 we know from Example 5.3.5 that the equation DP(f)h = k
always has a unique solution VP(f)k = h, and if f € C}, and k € C, then
h € C,,. It follows from the inverse function theorem that P is locally
invertible, and the image of P is open.

Next we observe that at the maximum or minimum of f we have df/dt =
and p(f) = g. Hence p maps the range of f into the range of g. Suppose
moreover that we have two solutions of the equation, so that

p(f)=dfy/dt+p(f)) =g,  p(f) =dh/dt+p(f) =g
Then take the difference

d(f,—f)/dt +[p(f) —p(£)] =0.

It follows that wherever f; — f, is a maximum its derivative is zero and
p(f1) = p(f,). Since p is one-to-one, f; = f, and the maximum of f; — f, is 0.
Its minimum is also zero, so f, = f,. Hence our solutions are unique and P:
U - V is one-to-one.

It remains to show that P is onto. Let P(U) be the image of U under P in V.
We know P(U ) is open and not empty. If we can show that P(U ) is relatively
closed in V, then since ¥ is connected we must have P(U) = V. To see this, let
IS U be a sequence such that P( J;) = g; converges to some g € V. Since g is
continuous and periodic its image is compact. Therefore we can find a compact
subinterval [y, 8] C (¢, d) such that g and all the g; have their ranges in [y, ].
Let [a, B] = p~'([y, 8]). Then by our previous remark all the f; have their
ranges in the compact interval [a, B8]. Since

df,/dt=g;— p(f)

we have a uniform bound on the denvauves df,/dt. Then by Ascolis’ theorem a
subsequence of the f; will converge uniformly to a continuous function f with
range in [a, 8] C (a, b). By the above equation we also have df,/dr — df/dt
uniformly. Hence f; - f in C,,. Since P(f)~- P(f) and P(f) =g, > g we



NASH-MOSER INVERSE FUNCTION THEOREM 111

have P(f) = g. This shows that the limit g belongs to P(U) also. It follows
that P: U - V is globally invertible and the inverse is smooth.

5.4.11. EXAMPLE. We can use the inverse function theorem to solve partial
differential equations on manifolds. Let X be a compact Riemannian manifold
with metric

ds* =g, dx'dx’.

Let du = pu(x) dx be the associated measure where

b= Vdet 8ij

and let g*/ be the inverse matrix. There is an intrinsically defined second order
linear operator on functions called the Laplacian, defined by

f
Af = divgrad -——( =L )
f=divgrad /= 5| kg7

If X =S'X S!is the flat torus, we can regard a function on X as a function
f(x, y) doubly periodic in x and y, and

Af=03%f/3x? + 3%f/dy?
in the flat metric ds? = dx? + dy2. By contrast if X = S? is the sphere
parametrized by longitude 6 and latitude ¢, then

ds? = cos®y df* + dy?, p=cosy,
2 2

of L 9f _ of

Af = sec’y 207 2y ¢a¢

The operator A on S? is invariant under all rotations. Any linear second order
operator on S? invariant under rotations is a linear combination of 7 and A.

As before, let p be a smooth increasing function taking the open interval
(a, b) onto the open interval (c, d) with p’ > 0. We prove the following result.

THEOREM. For any smooth function g € C®(X) with ¢ < g < d there exists a
unique smooth function f € C®(X) with a < f < b solving the equation

p(f)—Af=gs.

PROOF. After we prove the Nash-Moser theorem we could work in C*(X).
Until then, we introduce the Banach spaces C”**(X) of functions which (in
local coordinates) have nth derivatives which satisfy a Holder condition of
exponent a for someain0 <a <1,

[f(x) = f() < Clx—y|~
Let U C @*>**and V¥ C C* be the open subsets of functions f and g with values
in U and V respectively.

Define a map

P:UCC¥™(X) -V CCYX)
by letting P(f) = p(f) — Af. Then P is smooth and
DP(f)h=p(f)h—Ah=k.
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We claim that this linear elliptic equation always has a unique solution
he C*eforfe UC C**andk € C* Since p’(f) € C*** we have all the
regularity we need for the coefficients. Since A is selfadjoint, the operator
DP(f) has index zero, and it is one-to-one if and only if it is onto by the
Fredholm alternative. To see that it is one-to-one, we observe that if Ah =
P’(f)h then integrating by parts

JA18RF+p(f)h?} du=0

and since p’ > 0 we must have 2 = 0. Then the inverse function theorem shows
that P is locally invertible everywhere, and its image P(U) is open.

As before we wish to show that P(U) is relatively closed in V. First we
observe that

p(range f) C range g.

For where f has its maximum Af < 0 and where f has its minimum Af = 0.
Now let g; — g in V. Since g is continuous and X is compact, the range of g
and all the g; will lie in a compact subset [y, 8] of (c, d). Then if P(f) =g,
all the f; will lie in a compact subset [a, B] of (a, b). On this compact subset p
is bounded, so we have an estimate

Il p(f)lleo<C.

Let L7(X) denote the Banach space of functions on X which (in local
coordinates) have n (distributional) derivatives in L, with 1 < g < oco. If we
pick ¢>dim X then by Sobolev’s embedding L) C C"~'. Moreover by
Gérding’s inequality

If 2 < COIAF I, +TF1,,).
Since Af, = p(f;) — g; and p(f;) and g; are bounded in c’c L,, the f; are

bounded in L2 C C'. Since the inclusion C' C C* is compact, by passingjto a
subsequence we may assume the f; converge in C*. Since Af, = p(f,) — g;, and
p(f;) and g; converge in C*, we have A f; converging in C*. Then by Garding’s
inequality the f; converge in C 2ta to a function f € U. Clearly P(f) = g. This
shows P(U) is relatively closed in V. Since V is connected, P(U) = V.

It is also clear that P is one-to-one. For if f; and £, are two solutions of

p(fi)—Afi=g  p(h)—-AfL=¢
then taking the difference

A(fi = £) =p(f) = p(£).
Integrating by parts

J{ath =67+ U= A1p(£) = p(£)]} du=0.
Since p is increasing, the expression

[fl _fZ][P(f|) _P(fz)] =0

and vanishes only when f; = f,. Thus P is one-to-one.
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Hence for every g € C* with ¢ < g < d there exists a unique f € C2** with
p(f)—Af=g. Since Af=p(f)— g, if g € C"** then f € C"*2** by in-
duction. If g € C* then f € C*.

5.4.12. ExaMPLE. We can study geodesics on a Riemannian manifold using
the inverse function theorem. For simplicity we shall take the manifold X to be
an open subset of R™; the general case can be handled with Banach manifolds
of maps. In local coordinates x = {x'} the metric has the form ds* = g, dx’ dx/,
and I'/ i« are the Christoffel symbols. A geodesic is a curve x* = f i(¢) satisfying
the equation

_df df’ df* _
P(f)_dt _[k(f)dt dt
Every curve of shortest length parametrized proportionally to the arc length is
a geodesic. Also the constant curve f = a is a geodesic. We would like to find a
geodesic with given endpoints a and b; this means we impose boundary
conditions f(0) = &’ and f'(1) = &".
Let C"[0,1] denote the space of functions of class C" on the interval
0 <t=<1 and let C"[0, 1]™ denote the m-fold product of the space with itself.
Our curve f(¢) will belong to the space C2[0,1]™, with fi(z) € C?[0, 1] for
I < i < m. The operator P defines a smooth map
P: C*[0,1]" -~ C°[0,1]".
To impose boundary conditions, let B be the map
B: C*[0,1]" - C°[0,1]" X R" X R™,  B(f) = (P(f), £(0), £(1)).
Then its derivative is given by
DB(f)h = (DP(f)h, h(0), h(1))
where the derivative of P may be computed as

kAT (f i Afk
(DP(1)h)’ ——+2Fk<f>‘ff; S a,f L 4y

This equation looks better if we introduce the covariant derivative along the
curve

{9} =—- + L f )
Then the equations become
DP(f)h=20h+ R(3,f, h)3,f

where R is the curvature tensor.

To invert the operator DB( f) we must solve the second order linear system
of ordinary differential equations for DP( f )k with given boundary values 4(0)
and h(1). By the Fredholm alternative this is possible if and only if there are no
nontrivial solutions to the homogeneous equations with zero boundary values.
The solutions of DP( f)h = 0 are known as Jacobi fields along f. There will be
a solution with #(0) =0 and dh(0)/dt equal to any vector in R”". If we



114 R. S. HAMILTON

normalize | dh(0)/dt|= 1, then by a compactness argument there will be at
least a finite time 7 > 0 such that the Jacobi field /4 cannot vanish again before
t = T. The first point where some Jacobi field vanishes again is called the first
conjugate point.

If f is a geodesic and its endpoints a = f(0) and b = f(1) are sufficiently
close, the derivative DB( f) has zero null space and hence is invertible. By the
inverse function theorem B is locally invertible near f. Since f is a geodesic,
P(f)=0 and B(f)=(0,a,b). If a4 is close to a and b is close to b, then
f B~Y(0, a, b) will be a geodesic, since P(f) = 0, and have endpoints  and
b. If a and b are conjugate points along a geodesic f then B fails to be locally
invertible near f, as can be seen for diametrically opposite points on a sphere.
When the curvature is negative there cannot be any nonzero Jacobi fields
vanishing at the endpoints, as can be seen by integrating by parts to get

/01{|a,h = (R(3,f, h)3,f, h)}di=

If (R(u, v)u,v)<0thenh =0

5.4.13. ExaMPLE. The classical Plateau problem calls for finding the surface
of least area with a given boundary. We shall look at a special case where the
surface is the graph of a function. Let D be a closed domain in the (})-plane
with a smooth boundary 3D, and let f(}) be a function defined on D. The
graph of z = f(3) is a surface bounding the curve which is the graph of f over
9D. If this surface has least area among all with the same boundary then f will
satisfy the nonlinear partial differential equation

P(f)=(1+f2) e = 250 Ly + (L +£2)1,, =

which says geometrically that the mean curvature is zero.

Let C"*%(D) denote the Banach space of functions on D which have nth
derivatives which are Holder continuous of exponent a (0 < a < 1), and let
C"**(3D) be the same for functions on the boundary. Define a map

B: C**%(D) » C*(D) x C***(D),  B(f)=(P(f), f|9D).
For a given function b on the boundary we would like to solve the boundary
value problem P(f) = 0 and f| 9D = b, which says B(f) = (0, b). The graph
of f will be the surface with least area bounded by the curve which is the graph
Of"?‘ilc derivative of B is given by
DB(f)h = (DP(f)h, k| 3D)
and DP( f)h can be computed explicitly:
DP(f)h=(1+f2)h, —2f.fhxy + (1 + f2)h,,
+2(fehyy = Kb )he + 2 S fox — fifoy )Py

Observe that DP( f )h is a second order linear partial differential operator in h
for each given f, which we shall show is always elliptic, and that DB(f)h
imposes Dirichlet boundary conditions on 4 as well.
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To see that the equation is elliptic we replace 0/0x and 9/dy by £ and 7 in
the highest order derivatives and compute the symbol

o(&,m) = (1+£2) —2f fén+ (1 + £2)n

Then it is easy to see that

o(é,n) =&+ 0+ (f,£—fm)

soo(§,m) =0 < £ =0 and n = 0. Since the equation may be deformed to the
Laplacian its index is zero and the Fredholm alternative holds. The homotopy
is accomplished by

o(&n) =8+ +1(fE—fn), O<i<Ll.

Note that there is no zero order term in DP( f )h. By the maximum principle
we conclude that there are no nonzero solutions of the homogeneous equation
with zero boundary data. Then by the Fredholm alternative we see that DB( f)
is invertible for any f. Hence B is always locally invertible everywhere. As
before, we can also prove that B is one-to-one and has closed range by making
some a priori estimates.

We will indicate how to obtain the required a priori estimates on solutions of
the Plateau equation P( f) = 0. First we observe if f and g are two solutions of
the equation over D, and if f < g on 9D, then f < g on D. This follows from
applying the maximum principle to the difference # = f — g, which satisfies a
second order elliptic equation with no constant term. Now any affine function
g satisfies the Plateau equation. Thus if P(f) = 0 then f assumes its maximum
(and minimum) on the boundary.

We can also bound the first derivatives of f in D using only the second
derivatives of f| 9D. To start we observe that the function

w=|vf]?=f2 +fy2
satisfies a second order elliptic inequality
(1+ 12wy = 2L S, + (14 2wy, + 2(fox + £, ) (fowe + £w,)
=(1+£2+£2) (2 +2£2+f2) + (w2 +w2) =0
and hence w assumes its maximum on the boundary. The tangential derivative
of fis of course known from f| 9D, so we must estimate the normal derivative
at a point on the boundary. By a rigid motion we can assume our point is at

the origin and the boundary is tangent to the x-axis. Suppose f has a Taylor

series
f(;)=a+bx+cy+dx2+---.

We must estimate the normal derivative ¢. We can find a constant C,
depending only on the derivatives of degree at most 2 of f| 9D, such that on
aD

f(;) —a—bx<C(y+x?).
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If 0D is strictly convex, then y = ex? for some & > 0. If we let g be the affine
function
x 1
g(y) =a+bx+C(1 +;)y

then f < g on 3D and hence on all of D. Then ¢ < C(1 + 1). The same trick
estimates ¢ from below also.

Finally we must estimate the Holder norm of £, and f,. Since f satisfies a
quasi-linear equation in divergence form

D SN [ PR
Y1+ 2+ 12 Y1+ 12+ 17
x y

it follows that the derivative g = f, (or f,) satisfies a linear elliptic equation in
divergence form with coefficients depending only on £, and f,, namely

( +ff)gx—fxfygy) . (—fxfygx+ (1 +f33)gy) =0.
(1+72+72)" (1+72+£2)7

Note that the matrix of the equation

x ¥y

1 L+£2 A,
(1 +£2+2)7 A 1+5

is strictly positive-definite. Since f, and f, are uniformly bounded, we can
appeal to standard results on linear elliptic equations in divergence form (see
Ladyzenskaja and Ural’ceva [10, Theorem 14.1]) to estimate the C* norm of
g = [, (also f,). It is then easy to estimate the C?*** norm of f on D directly
from the equation P( f) = 0 in terms of the C>** norm of f| dD.

It follows that the operator P is globally invertible. Hence for any function b
on 9D we can solve for a function f with P(f) = 0 on D and f = b on dD.

5.4.14. ExamMPLE. We consider the classical problem of a round object rolling
back and forth in an oscillatory motion in a smooth convex trough of general
shape without friction. We shall prove the following result.

THEOREM. For small values of the energy, there exist smooth oscillatory
solutions for the equations of motion which are uniquely determined as smooth
functions of their two real Fourier coefficients of order one. Moreover the period
of oscillation T is a smooth function of the total energy E for E = 0.

PROOF. Suppose the object has mass m, radius r, and radis of gyration 7. Let
e = r/r be the gyration ratio. We have the following table for the simplest
cases:

=1 for a hollow cylinder,
e2=1/2 for a solid cylinder,
e2=2/3 for a hollow sphere,
e2=2/5 for asolid sphere.
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We parametrize the motion using the distance s travelled by the center of mass
from its place of rest at s = 0. Let A(s) be the height of the center of mass
above its level of rest as a function of s and let g be the gravitational constant.
The total energy E is a constant, and it is the sum of the kinetic translational
and rotational energies and the potential energy. This gives the equation

lm(l + sz)(é)2 + mgh(s) =E
2 dt )
If we differentiate with respect to ¢ and divide by the linear momentum mds /dt
we get the equation
(1 + €*)d%s/dt* + gh'(s) = 0.

It is convenient to normalize the parameters of the problem. Let ¢ be the
curvature of the trough at its lowest point. Then the curve traversed by the
center of mass has curvature ¢ given by

é=c/(1—cr).

(Note that if cr > 1 the object won’t fit in the trough!) Then A(s) will have a
power series expansion (which may not converge)

h(s) =4é&s*+---.
Let k(s) = h’(s). Then k(s) has a power series expansion
k(s)=és+---.

Let T be the period of the oscillation and » = 2« /T its angular frequency. We
introduce dimensionless variables by the substitutions

o =27s, 0=wt.

Then the motion can be described by a smooth function o = f(8) periodic with
period 2 satisfying the equation

(*) d*/de? + (1+z2)k(f)=0
where k& is a smooth function with a power series
k(o) =0+ kyo?+ kyo® +---
and
i=—28
(1+ &)»?
is a dimensionless parameter that depends on the constants ¢, 7, and ¢, and is a
smooth function of the angular frequency v = 27 /T.
We always have the rest solution f = 0 for any value of the frequency. At

z = 0 we encounter resonance, and another branch of solutions bifurcates off,
giving rise to the oscillatory motions. Note that at z =0 the period of

oscillation is given by
V(1 —
T=2'rr\/(1 +&2)(1 —cr)
gc
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in terms of the radius r of the object, the curvature ¢ of the trough, and the
gyration ratio e&. For the simple case k(o) = 0 we have simple harmonic
motion, and the solutions of our equation (*) are given by
f(8) = xcos@ + ysin@

for any values of x and y, with z = 0. For a more general function k(o) it is
not so easy to solve, and the solution f(8) will contain other harmonics. Both
f(8) and the frequency parameter z will depend smoothly on the Fourier
coefficients x and y.

To see this, we wish to apply the inverse function theorem. The linearization
of the nonlinear operator (*) at f = 0 and z = 0 is the operator d*f/dx? + f
which of course is not invertible. Indeed this is why the solutions bifurcate.
The null space of the operator contains the functions cos 6 and sin 6, while the
image lacks them. Therefore we invent an operator we can invert.

Let U C R be an open set on which k(o) is defined. Let C;,, be the Banach
space of functions f(8) of class C” periodic in # with period 27. Let U C C2,
be the open subset of functions with range in U. Define a map

P:(UCC}L)XR*>CYLXR?
by letting P( f, u, v, w) = (g, x, y, z) where
g=d*/d8*+ (1 + w)k(f) —ucosf — vsin4,

_ 1 pr2a _ 1 o .
x—;fo £(8)cos 8.d8, y—ﬂj(; £(8)sin 6 d,

zZ=w.
Let us use a twiddle to denote a variation in a number or function. Then the
derivative of P,

DP(f,u,v,w)(f,a,6,%) = (g% 7, 2),

is given by
g=d*/de* + (1 + w)k'(f)f+ wk(f) — dicos § — sin#,
..___l 27 __l 27 ~ .
x“w_/; f(8)cos 846, y_'”fo f(8)sin6 dé,
i=w

If we take the standard solution f=0, u =0, v =0, and w = 0 the first
equation simplifies to
d*¥f | .

g =—-+f—iicosf — &siné.

8= 42 f
Now we claim that for each g, %, j, Z there is a unique f, i, &, W solving these
equations. This is immediately clear from considering the Fourier series of
£(0). The operator

Lf = d*f/d6* + f

kills the terms sin 8 and cos @ but is invertible on the others. We can choose i
and © to match the coefficients of g. Then we can solve for f, and the solution
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can be changed up to the same sort of terms, which allows us to satisfy the
equations for X and y. Of course we take w = 7. It is a little harder to see that
f € C2. Since Lf € C° we have its nth Fourier series coefficients ¢, bounded.
Then the coefficients for f are a, =c,/(1 — n?), so the series for f converges
absolutely and f € C°. Then using the equation d%f/d8? € C°and f € C2
Since DP(0, 0,0, 0) is invertible, it follows from the inverse function theorem
that for g = 0 and all x, y and z sufficiently small we can find a function f(8)
and numbers u and v depending smoothly on x, y, and z solving the equation

(%) d*f/d8* + (1 + z)k(f) = ucos§ + vsin4.

This will be a solution of (+) if and only if ¥ = v = 0. To see what happens,

consider the special case k(o) = o of harmonic motion. Then we can compute
u=xz, v =yz.

The set u = v = 0 is the union of the line x = y = 0 (corresponding to the rest

solutions) and the plane z = 0 (corresponding to the oscillatory solutions). The

reason this doesn’t look like one of Thom’s standard catastrophes is that the

motion is special due to the conservation of energy, and the resulting set of

solutions are all periodic and hence invariant under the rotation group S'. We

can exploit this symmetry.

Returning to the general case, let f(#), u, v be a solution of (**) for some
values of x, y, z. If we make the phase change § - 6 + a then f(0 + «) will
also be a solution of (x*) where the vectors (;;) and () have been rotated
through an angle a. It follows that their inner product

l=(;)-(g)=xu+yv

is a smooth function of x, y, z which is invariant under rotation in the

xy-plane. If r> = x2 + y? then / is a smooth function of r and z. Moreover it is

symmetric in 7, so / is a smooth function of r2 and z. Moreover / vanishes at
= 0, so I = r?m for a smooth function m of r2 and z. Thus

xu+yo = (x2 + y?)m(x? + y%, z).

If we perform integration by parts on (**) using the expression that shows the
energy is conserved in (*), we get

uy — ox =f2ﬂf[usin0— vecos ] d0=f2wﬂ[ucos0 + vsinf] do

fz'rrdf[doz-}-(l"r‘z)k(f)] de=0

so uy = vx. Then we can solve for u and v in terms of m to get
u=xm(x*+y%z), ov=ym(x*+y?z)

for some smooth function m of x? + y? and z. Clearly u = v = 0 when m = 0.
To complete the proof of the theorem we only need the following fact.

LEMMA. At x =y = z = 0 we have m = 0 and dm/9z = 1.
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PROOF. Since u = xm it suffices to show that 9u/dx = 0 and 3%u/3x3z = 1
at x = y = 0. Differentiating (=*) with respect to x in the variables f(8), u and
v gives

d? of v
d026x+(1+ )k(f) % 0+a sin @
or differentiating with respect to z gives
d? of _ ou v .
979z +(1+:2 )k(f) +k(f)—azcose+azsm0
while differentiating with respect to both gives
a2 w( )L 4 1o 1O
L L+ (N + DL L k()Y
0%u

_ 0%
—5;52-0050 a a9z sin§.

When x = y = z = 0 we have f = ¥ = v = 0 and the equations simplify to

2
d ﬂ_*_ﬂ_ﬂ 050+a—vsin0,

462 dx | dx  ox ¢ 0x
a4 of | of _ v
207 az+az az 50+$sm0,
> ?¥f 3% )L 8  df _ 3%u
Zar axay "oz T K O35 tax - axaz cos b + 55z Sind-

Now the image of the operator d2/df? + 1 contains no terms cos 8 or sin 6, so
we see that du/dx = dv/0x = du/dz = dv/dz =0 at x =y = z = 0. Since
f(8) has for its Fourier series the coefficients x for cos @ and y for sin#, it
follows that df/0x has coefficients 1 for cos 6 and 0 for sin §, while 9f/9z has
coefficients 0 for both. Therefore at x =y = z = 0,

9f/dx =cosf and df/3z=0

Then examining the last equation, we see that the only way to get a term
df/3x = cos 0 on the left is to have 9?u/9xdy = 1 on therightatx =y = z =
0. This proves the lemma.

If we persist in the above manner we can find the (formal) power series
expansion for (@) and m in powers of x, y, and z. Our calculations show that
if

k(o) = a+ k02 + kyo® +
then up to terms of degree 3 in x, y and z
£(8) = xcos @ + ysin8 — k,(x* + y?)
+ tky[(x% — y?)cos26 + 2xysin26] + - -,
m=z = (33 — 3k;)(x* +y?) +
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At any rate, since m =0 and dm/9z =1 at the origin, we can solve the
equation m = 0 in a neighborhood of the origin to obtain z as a smooth
function of x and y. More precisely, since m is rotationally invariant we get
that z is a smooth function of x? + y2. Its series starts like

2= (33 = 3hs)(x +2) + -

up to terms of order (x? + y2)2. Then the set of solutions to the equation (*),
which is the set of solutions to (**) with ¥ = v = 0, corresponds in our
parameter space (x, y,z) to the line x =y = 0 (consisting of the stable
solutions) and a smooth surface z = ¢(x2 + y?) invariant under rotations
(corresponding to the oscillations).

Finally, recall that the total energy

= %—m(l + 62)(%)2 + mgh(s)

is a constant of the motion. For our solutions E will be a smooth function of
the parameters x and y. Since a change of phase § — 6 + a rotates x and y but
does not change the energy, we see that E is a smooth function of x? + y2.
Indeed in our expansion

s=[xcosvt + ysinvt]/é+ - --
and hence
E=(mg/2e)(x*+y*) +---.

By the inverse function theorem we can solve for x2 -+ y? as a smooth function
of the energy E. Now z is a smooth function of x? + y2, v is a smooth function
of z near z = 0, and T = 27 /v. Hence the period T is a smooth function of the
energy E for E = 0. By an easy manipulation of series

2 ~
T=2m/ L+e [1 +A-SF + 0(E?)
é mg

where A = $k2 — 3k, is a dimensionless constant depending only on the

geometry of the trough. When the trough is a circle we have
k(¢)=sinec=0—03/6+---

from which we see k, = 0 and k; = —1/6. This gives A = +1/8. Since A >0

the period increases as the energy increases. The same formula applies to a

pendulum taking ¢ = 0.

5.5. Counterexamples in Fréchet spaces. In this section we present some
counterexamples to the inverse function theorem in Fréchet spaces. They show
that any straightforward generalization will fail, and serve to justify the extra
definitions and hypotheses which are necessary for the Nash-Moser inverse
function theorem. We being with some counterexamples where the derivative is
the identity at the origin but is not invertible at points arbitrarily close by.

5.5.1. COUNTEREXAMPLE. Let C*[-1,1] be the Fréchet space of smooth
functions on -1 < x < | and let P be the differential operator

P:C®[-1,1] » C®°[-1,1],  Pf=f— xfdf/dx.
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Then P is smooth, and the derivative of P is given by

DP(f)g=g—xg%: —xf%-

At f = 0 we have DP(0)g = g, so that DP(0) = I is the identity map. Surely
nothing could be more invertible than the identity. Since P(0) = 0, if the
inverse function theorem were true then the image of P should fill out a
neighborhood of 0. But it doesn’t. Let g, = 1/n + x"/n!. It is easy to see that
g, — 0in C®[-1, 1}; for the derivative of x"/n! is the same sequence again. We
shall show that g, does not lie in the image of P for any n > 1. Thus the image
of P does not contain any neighborhood of zero.

More generally, if b, # 0 then 1/n + b,x" does not belong to the image of
P. This can be seen by examining power series. Every smooth function on
[-1,1] has a formal power series expansion at 0 (which of course does not
converge unless the function is analytic). By an elementary computation if

f=ay+ax+a,x*+ax*+---
then
Pf=ay+ (1 —ag)a;x + (a, — a? — 2a,a,)x>
+ (a; — 3a;a, — 3aga;)x* + - -.

Suppose Pf = 1/n + b,x". First we have a; = 1/n. If n > 1 then a;, # 1 and
(1 — agy)a; = 0, so a; = 0. The next term is then (1 — 2a,)a,x2. If n = 2 then
a, = % and this term is zero, which contradicts Pf = § + b,x? when b, # 0. If
n > 2 then a, # 4 so we conclude a, = 0 and proceed to the next term, which
is then (1 — 3a,)a;x>. In general, we conclude thata; =a, = --- =a,_, =0
and arrive at a term (1 — kay)a, x*. If k < n then a, # 1/k; we conclude that
a, = 0 and proceed to the next term. When k£ = n then since a, = 1/n this
term must be zero. Thus it cannot equal b,x” for b, # 0. This gives a
contradiction. Hence 1/n + b,x" cannot be P( f) for any smooth function f if
b,#0andn>1.

It isn’t hard to see what is going wrong if we evaluate the derivative at
f=1/napplied to h = x*:

DP(1/n)x* = (1 — k/n)x*.

Thus DP(1/n) kills off the term x” in the power series. Even though DP(0) = I
is the identity, the linear maps DP(1/n) which are arbitrarily close by are not
invertible.

Note that this counterexample does not extend to Banach spaces. If we try
to write

P: C'[-1,1] » C°[-1,1]2

then the derivative DP(0) is the “identity” only as an inclusion of a dense
subspace, which is not invertible. Likewise

P:C'[-1,1] » C'[-1,1]?
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does not work because P has to take a derivative, which lands us in C°[-1, 1]
instead.

5.5.2. COUNTEREXAMPLE. The next example is of considerable geometric
interest. If X is a compact manifold then the group of smooth diffeomorphisms
6D( X) has the structure of a Fréchet manifold and is a Fréchet Lie group (see
Example 4.4.6). Its Lie algebra, the tangent space at the identity map 1, is the
space C®( X, TX) of smooth vector fields on X. The bracket operation of the
Lie algebra is the usual Lie bracket of vector fields. Each vector field v on X
gives rise to a one-parameter group e‘’ of diffeomorphisms called the flow of v,
obtained as the solution y = e"®(x) of the differential equation

dy/dt = o(y)
with initial conditions y = x at ¢+ = 0. This equation may be rewritten as
de’®/dt =vo e

which justifies the exponential notation. Note that e’ is the one-parameter
subgroup of the Lie group of diffeomorphisms with tangent vector v at the
identity.

Evaluating the flow at t = 1 we obtain the diffeomorphism e® called the
exponential of the vector field v. The exponential defines a smooth map

e: C*(X,TX) - D(X)

of the Lie algebra to the Lie group. The exponential of the vector field 0 is the
identity map 1 = e°. The derivative of the exponential map at the vector field
0 is the identification of the vector fields with the tangent space of the
diffeomorphisms at the identity map 1. Given a smooth map of a vector space
to a manifold whose derivative at a point is the identity map of the vector
space to the tangent space of the manifold, we would ordinarily expect to
conclude from the inverse function theorem that the map was locally invert-
ible, and hence filled out a neighborhood of the point on the manifold. Thus in
our case, we would expect that every diffeomorphism close to the identity was
the exponential of some vector field, so that a small diffeomorphism would
extend to a one-parameter flow. This is false. The result fails already for the
circle, where the following rather surprising result holds instead.

THEOREM. If a diffeomorphism of the circle without fixed points is the
exponential of a vector field, then it must be conjugate to a rotation.

ProOF. If a vector field has a zero its exponential has a fixed point.
Therefore a diffeomorphism without fixed points can only be the exponential
of a nonzero vector field. Call the vector field v. Parametrize the circle by a
parameter ¢, say the angle defined modulo 27, and write v = v(¢)d/dt. Since
v(t) # 0, we may define a new parameter

dt 27 dt
0=cf;(—5 wherec=1/f0 m
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Then 6 is also a parametrization of the circle modulo 27, and v = v(¢)d/dt =
cd/d0. Thus v is a constant vector field in the parametrization 6. Its exponen-
tial is the map

e®:0-0+c
which is a rotation in the parametrization by 6. The change from the parameter
t to the parameter 6 is accomplished by some diffeomorphism. Therefore e® is
conjugate by this diffeomorphism to a rotation. This proves the theorem.

Any power of a rotation is also a rotation. If a rotation fixes one point it
must be the identity. Thus if a power of a rotation fixes one point it must fix
them all. The same must be true of any diffeomorphism conjugate to a
rotation. Thus one way to find a diffeomorphism f not conjugate to a rotation
is to make f%(x) = x for some point x but f*(y) # y for some other point y.
The rotation ¢ - ¢ + 2« /k by an angle 27 /k has f*(¢) = t (mod 2) for all ¢.
If we modify it by an extra little push just in the interval 0 < x <2« /k, so
that f(0) = 2w /k but f(w/k) > 3w /k, then f%(0) =0 but fX(=/k) =Z7n/k
(mod 2). Then this diffeomorphism cannot be the exponential of a vector
field. By making k large and the push small, we can make f as close to the
identity as we like in the C® topology. Therefore the exponential map fails to
be locally invertible at the origin, even though its derivative is the identity.

It is not hard to see what goes wrong in this example. Although the
derivative of the exponential map is the identity at the origin, it fails to be
invertible at nearby points. To see this, we shall compute the derivative
explicitly by making an infinitesimal change w in the vector field v. Then the
flow y, obtained by solving the differential equation

{dy/dt =o(»),

y=x att=20

will experience an infinitesimal change z, which will be the solution of the
linear differential equation

[dz/dt = Do(y)z + w(y),
z=0 atr=0.

Just as the exponential map e® is obtained by evaluating the flow y = e at
t = 1, so the infinitesimal change De®w in the exponential map is obtained by
evaluating the infinitesimal change in the flow z at t = 1.

We compute a special case. If v(x) # 0 at a point x, then v(y) # 0 all along
the flow y = e™(x), 0 <t <1, which is a compact set. We can therefore
choose a coordinate chart in a neighborhood of this set in which the vector
field v is a constant. In this case the exponential map is given by e®(x) = x + v,
since the flow is y = e’*(x) = x + tv. Since v is constant, Dv = 0, and z is the
solution of

{dz/dt=w(x+ w),
z=0 atr=0

which is
4
z= w(x + rv) dr.
J_ wlx+ o) dr
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Then evaluating at ¢ = 1 we get
De*w(x) =/1 w(x + t0)dr
=0

which says that De®w, the derivative of the exponential map at v in the
direction w, is the average of w over the flow of v.

Consider the case of a circle. If v = 27 /k is a small constant vector field, its
exponential e® is a rotation through a small angle 27/k. The averaging
operator

De*w(t) =fl w(t +ZTW) dr
=0

annihilates the functions w(#) = sin k¢ or cos kt. More generally each term in
the Fourier series expansion of w is multiplied by some constant, and for these
terms that constant is zero. Thus the derivative of the exponential map at a
small rotation through an angle 2« /k is never invertible. Note that the
derivative in this counterexample looks like Counterexample 5.3.3.

The preceding examples make it clear that the derivative of an operator P in
Fréchet spaces may be invertible at one point but not at other points
arbitrarily nearby. If however P is to be locally invertible in a neighborhood
then its derivative must be invertible everywhere in that neighborhood. In
Banach spaces this would have followed automatically. Therefore it seems
reasonable in Fréchet spaces to add this as an extra assumption. Suppose then
that P(f) = g defines a smooth map between open sets in Fréchet spaces

P.UCF-VCG
and that for each f € U the derivative DP( f) is an invertible linear map of F
to G. (Note U may be made smaller if necessary.) We write its inverse
DP(f)~! as VP(f); this notation avoids confusion between D(P~') and
(DP)™'. Then VP( f )k = h is the unique solution of the equation DP( f)h = k.
We regard VP as a function of two variables, that is as a map on the product
space
VP:UXGCFXG-F

the same as we did for DP. Thus we avoid the space of linear maps L(F, G),
which is not a Fréchet space. Of course VP( f)k is linear in k for each f. It is
reasonable to ask that VP should be continuous and even smooth. We may
then ask if, with all these assumptions, P will be locally invertible? The answer
is no, as the following example shows.

5.5.3. COUNTEREXAMPLE. Let H be the Fréchet space of functions holomor-
phic in the entire complex plane, with the topology of uniform convergence on
compact sets. Define a map

P:H-H, P(f)=¢e’.
Then P is smooth and its derivative is given by
DP:HX H - H, k=DP(f)h=e'h.
The derivative is clearly invertible for all f, and the family of inverses

VP:HXH->H, h=VP(f)k=e"k
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is also smooth. Therefore it is rather surprising that the map P is not locally
invertible. Indeed the image of P does not even contain an open set. We can
even prove the following precise result on the image of P.

THEOREM. Let S be the subset of all functions in H which are never zero. Then
S is relatively closed in H — {0} and contains no open set. The fundamental
group w(S) is the integers Z. The map P: H - H has image S, and is a local
homeomorphism onto S. Moreover P is a covering map and identifies H as the
universal cover of S.

PROOF. If f(z) is an entire holomorphic function which has a zero but is not
identically zero, then the zeroes of f are isolated and of finite multiplicity. If y
is a curve on which f(z) is never zero, the number of zeroes of f(z) inside y
counting multiplicities is given by

(1/2i) f (f(2)/(2)) dz

by Rouché’s theorem. The integral is a continuous function in a neighborhood
of f € H, and since it is integer-valued it is locally constant. Therefore any
function close to f in H still has a zero. This shows that H — {0} — S is open,
so S is relatively closed in H — {0}.

Every nonconstant polynomial has a zero by the fundamental theorem of
algebra. The polynomials are dense in H, as we see by expanding in a power
series, and so the nonconstant polynomials are also dense. Thus S contains no
open set.

Since P(f) = e/ is never zero, the image of P lies in S. If g € S, we can
choose a branch of the logarithm at g(0) and define log g(z) in a neighborhood
of 0. We can extend log g by analytic continuation to the entire plane since the
plane is simply connected. Then f = log g solves e/ = g. This shows the image
of Pis all of S.

Suppose g; — g in H. Then g; — g uniformly on every closed disc. It follows
that log g, — log g uniformly on a disc around 0, and also on each subsequent
disc in the analytic continuation. Hence the f, = P7'(g;)=1logg ; converge to
f= P7!(g) = log g uniformly on each compact set, so J; = fin H. This shows
P is a local homeomorphism onto S. Moreover if g, is a continuous path in S
for 0 <t < 1, then g, is also continuous when restricted to any closed disc. If
P(fy) = 8o, We can then choose the f, = log g, to vary continuously on each
closed disc by analytic continuation for 0 < ¢ < 1. Thus g, lifts to a continuous
path f, € H with P(f,) = g,. Hence P: H — S is a covering map.

Since H is simply connected, H is the universal cover of S. For any g € §
the choice of P7'(g) =log g is unique up to a constant 2wni for integer
n € Z. This shows that the fundamental group m,(S) = Z. Let C* = C — {0}
be the nonzero complex numbers. Then C* C S. There is a projection S - C*
given by f — f(0). We can define a homotopy

¢: S X[0,1] > S
where

¢f(t, z) = f(zz).
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Then ¢£(0, z) = f(0) and ¢f(1, z) = f(z). Thus C* is a deformation retract of
S. This also shows 7,(S) = 7,(C*) = Z.

5.5.4. COUNTEREXAMPLE. Let E” be the Banach space of continuous func-
tions f(x) on the real line which vanish for x < 1 and have

AN, = supe™ | f(x)|< oo

and let E* be the Fréchet space of functions in E” for all n. For a product we
have the estimate

I fgll .y < U£U,ligl,.

Define a linear map Lf = g by letting g(x) = f(x/2). Then we have the
estimate

LA, < N f Iy,

so L defines a continuous linear map of E*" into E” or of E* into E*®. Define
a bilinear map B{ f, h} = k by letting k(x) = f(x/2)h(x/2). Then we have the
estimate

WB{f, h}l, <Nl NAl,

so B defines a continuous bilinear map of E” X E” - E"for0 < n < oo.
Define a nonlinear map P( f) = g by letting

g(x) = f(x) = f(x/2)’
so that P(f)=f— B{f, f}. Then P is a smooth map of E” to itself for
0 < n < . Its derivative DP( f )h = k is given by
k(x) = h(x) — 2f(x/2)h(x/2)

so DP(f)h = h — 2B{f, h}. Note that DP(0)h = h is the identity map. There-
fore for n < co the map P is invertible as a map of a neighborhood of 0 to a
neighborhood of 0 by the inverse function theorem.

We can be more precise. We can solve the equation P(f) = g recursively for
f using the formula

f(x) = g(x) + f(x/2)*

since the functions all vanish for x < 1. Indeed f(x) = g(x) for x < 2. Let us
introduce the norms

170, = supe™|f(x)] .

x<t

We prove the following result.
THEOREM. If g € E" and |l gll,, < § then the solution f € E" and || f || , < 1.

ProoF. We have ligll, , <3 for all «. Then || fll,, <3. Suppose || f1l,,,»
< ifor some ¢. Since

f(x) = g(x) + f(x/2)"
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we have
< lgll,, + A2, <3

also. Thus || f 1, < 3.

Observe however that the neighborhoods |/ gll, < 4 on which P is invertible
are shrinking as n - oo. Therefore it is not so surprising that P is not invertible
on E* at all. To see this let

0 ifx<l1,
[(x) =3 (x— e ™ ifl<x<2,
e mx if2<x<o0.

Then f, is continuous and f, € E™ but f, &€ E™*'. Let g, = P(f,). Then
g8.(x)=0for x =45s0g, € E* for all m. Now we can compute

I ll, = e2r=m
form =n,sof, - 0 asm — oo in E". Since P is continuous as a map of E" to
itself, g,, > 0in E" for alln,so g,, > 0in E*. But P~ '(g,) =f, € E® so Pis
not invertible on any neighborhood of zero.
Now by contrast the derivative of P is always invertible on a neighborhood
of zero. Let U= {fEE*: |l fll, <1}

THEOREM. If f € U then for each k € E* there exists a unique h € E* with
DP(f)h = k. Letting h = VP( f )k, the solution map VP: (U C E*) X E® -
E is smooth. Moreover we have the estimate

Wal, < llkll, + 4l fll5,llkll,.

PrROOF. We begin with the estimate. We can always solve for 4 recursively

from the formula

h(x) = k(x) + 2f(x/2)h(x/2)
which gives the estimate
Al < Ukll, + 21 fll, M All,.

When n =0 and || f Il <31, we get |l hll, < 2llkll,. Substituting this for the
last term gives the desired estimate. To prove that the solution exists, we can
repeat the previous argument on 1 < x < ¢ to get

WAl < Nkl + 4l Fll5, K,

and let + - co. To prove VP is continuous, choose sequences f; € U and
k; € E* with f,>f€ U and k; >k in E®, and let h;= VP(f)k; and
h = VP(f)k. Since

h(x) =k (x)+2f(x/2)h;(x/2),  h(x)=k(x)+2f(x/2)h(x/2)
we see by subtracting that
Nhj—hllg<Ilk;— kllg+ 3llh; — hllg + 2l f; — flloliAll
sollh; — hllyg > 0asj~ oo. Now
hy=k;+2B{f, h;}
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andif f; > fin E* and h; > h in E° then B{f; h;} - B{f, h} in E*. Thus h;
converges in E® to an element 4 with

h=k+2B{f k)

so h = h. If VP is continuous then it is smooth by Theorem 5.3.1.
5.6. Differential equations in Fréchet spaces. Let U be an open subset of a
Freéchet space F and

P.UCF-F
a smooth map. We can try to solve the ordinary differential equation

df/dt = P(f)

for a smooth path f(¢) on a <t <5, with values in F, with given initial
condition f(a) € F. For a Banach space the solution will always exist and be
unique. For a Fréchet space it may neither exist nor be unique, as the following
counterexamples show.

5.6.1. COUNTEREXAMPLES. Let C®[0,1] be the Fréchet space of smooth
functions f(x) on 0 < x < 1 and consider the linear differential equation

af/dt = df /ox.

A path f(1) € C*[0,1] for 0<¢<1 is a function f(x,?) on the square
0 <x <1, 0 <1< 1. The above equation has solutions f(x, t) = f(x + ).

Given any smooth function in C*[0,1] at t =0, we can extend it to
0 < x < 2. Then the above formula gives a solution for 0 < ¢ < 1. Since the
extension is not unique; neither is the solution.

By way of contrast, if we consider the same equation on the space C°[0, 1]
of smooth functions of x which vanish outside the interval 0 < x < 1, we see
that the solution exists for 0 <7< ¢ if and only if f(x) =0for0<x<e. In
this case the solution is unique.

Of course, on the space @°°[O 1] of smooth functions on x = 0 which vanish
on x = 1, the solution ex15ts for all time and is unique. And on the space
C2[0,1] of smooth functions on x < 1 which vanish for x <0, the solution
does not exist on 0 < ¢ < ¢ unless f(x) = 0 for x < ¢, and even in that case it is
not unique.

There is an interesting class of differential equations on Fréchet spaces
which we can solve.

5.6.2. DEFINITION. Let P:. UC F—> V C G be a smooth map between
Fréchet spaces F and G. We say P is a smooth Banach map if we can factor
P=QocRwhere R: UCF-> WCBand Q: WC B—- V C G are smooth
maps and B is a Banach space.

5.6.3. THEOREM. Let P: U C F — F be a smooth Banach map of a Fréchet
space F into itself. For every f, € U we can find a neighborhood Uof f,in F and
an € > 0 such that for all f € U the differential equation

df/dt = P(f)

has a unique solution with f(0) = f on 0 <t < & depending smoothly on t and f.
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PROOF. We can factor P = Q o R where R has range and Q has domain in a
Banach space B, and Q and R are smooth. Without loss of generality we may
assume f, = 0 and R(0) = 0. In the following discussion C will denote various
constants independent of the parameters ¢, 8, 7, and 6.

By Theorem 5.1.3, we can find a seminorm || || on F, an n >0 and a
constant C such that if || ;| z, I| /|l < n then

IR(f) = R(RN < Clfi = £l

for the norm || || 5 on the Banach space B. Since B has only one norm up to
equivalence, we can find a § >0 and a constant C such that if |l g,ll 5,
llg, Il p < 6 then

10(g) — ()l p<Cllig, — gl 5.

As special cases, since R(0) = 0 and [|Q(0)|l < C and we can take ¢ < 1, we
get

IR(Ipg<Cliflip ifllfllp<n,
le(g)llrp<C ifligllp=<@.

These are the estimates we shall use.

Let U= {f € F: || f Il p < 8}, and let C([0, €], B) be the space of continuous
paths g(#) € B on 0 <t <¢, where ¢ >0 and § > 0 will be chosen small. We
set up the map M( f, g(¢)) = k(¢) by letting

R(1) = R( 7+ ['0(s(8)) o).

We claim the following.

5.6.4. LEMMA. Let € and & be small compared to n, and m small compared to 8.
Let V be the set of paths g(t) in C([0, €], B) with || g(¢)|l 5 < 0. Then M defines a
continuous map

M: (Uc F)x (Vcc([o,e], B)) - Vcc(o,e], B)
which is a contraction in g for each f.

PROOF. By our estimates if g(¢) € V
supnf'+f’Q(g(o)) doll, <8+ Ce<n
t 0
if & and e are small compared to n, and

supllk(¢)ll < Cn<6

if n_is small compared to 6. Hence k(¢) € V. If M(f, g(t)) = k,(t) and
M(f, g(1)) = ky(t) then
sup lk,(2) — ky(2)ll < C € supllQ(g,(2)) — Q(g2()) £

< C€Esuplig (1) — g ()l
t

so M is a contraction of Ce < 1.
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It follows from the contraction mapping theorem that for each f € U there
exists a unique g(¢) € V with M( f, g(¢)) = g(¢). Moreover the solution g(t)
depends continuously on f. We let

(1) =f‘+f0‘Q(g(a)) df.
Then g(¢) = R(f(2)). Since P = Q o R,
Sty =7+ ['P(f(6)) a6

which implies that, for 0 <t <e,
df/dt = P(f)
andf=fatt=0 )
We write f(¢) = S(f) for the solution. We know that g(¢) € C([0, €], B)

depended continuously on f. Now the space of continuous maps of [0, ¢] into F
is a Fréchet space C([0, €], F) with norms

W £, =supll f(£)ll, forllll,onF.
t

We see that the solution map
S:UCF- C([0,¢], F)

is continuous. Moreover from the equation we see that the solution f(¢) is
smooth in ¢, and S defines a continuous map

S: UC F-C([0,¢], F)

into the Fréchet space of smooth paths on 0 < 7 < ¢ with values in F, which
has seminorms

N fll,.=supllD¥f(e)ll, forllll, on F.
t

To see that f(¢) depends smoothly on f we have recourse to the following
strategem. In Lemma 3.3.1 we saw that we can find a smooth map L( f;,, f;)h
linear in /& with

P(fl) - P(ﬁ)) = L(fo’fl)(fl _fo)~

Since L is obtained by averaging DP and P factors through a Banach space, so
does L. Therefore we can solve the system

dfy/dt = P(f,),
df,/dt = P(f,),
dh/dt = L(fy, f,)h

with f, = f,, f, = f,, and h =k at ¢ = 0. Let us write f, = S(f), f, = S(f,),

and h = M( f,, f,)h. These all exist if f, and f, are near a glven point and 4 is
near zero. Since the solution 4 is homogeneous of degree 1 in 4, it will exist for
all A € F and be linear in 4. Moreover S and M are continuous in f, f,, and A.
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Subtracting the first two equations we see that

d(fy — fo)/dt = L(f, f)(fi — %)
so that
S(fl) - S(ﬁ)) = M(f;o’ M —h)
Then by the reverse side of Lemma 3.3.1 we see that the map S(f) is C' in f.
In addition
DS(f)h=M(f,f)h=h
is the solution of the equation
dh/dt = DP(f)h
withh = hatt = 0.
In terms of the tangent functor
TP(f, h) = (P(f), DP(f)h)
we see that if f = S( f) is the solution of
df/dt = P(f)
with f = fat t = 0, then (f, h) = TS(f, h) is the solution of
d(f, h)/dt = TP(f, h)

with (f, k) = (£, h) at ¢ = 0. Now if each solution S is C’, then TS is also C"
so S is C™*1. It follows that S is C* in f.

5.6.5. COROLLARY. Let P(f, g) be a smooth Banach map and solve the
differential equation

df/dt = P(f, g)
with f = 0 at t = 0. Then the solution f = S(g) is a smooth function of g.

PRrOOF. We adjoin a new variable / in the same Fréchet space as g, and solve
the equation for the pair (f, h)
df/dt = P(f, h), dh/dt =0
with f =0 and 4 = g at t = 0. Then we apply our previous result. The same
trick works for time-dependent equations

df/dt = P(f, g,1)
where we adjoin a new variable x and solve
df/dt = P(f, g, x), dx/dt =1
with x = 0 at r = 0. This proves the following.

5.6.6. COROLLARY. If P(f, g, t) is a smooth Banach map, the differential
equation
df/dt = P(f, g, 1)

has a unique solution with f = fatt = a, and on a neighborhood of a given f,and
8, it exists for a fixed time ¢ > 0 and depends smoothly on f and g.
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PART I1. THE NASH-MOSER CATEGORY

I1.1. Tame Fréchet spaces.

1.1. Graded Fréchet spaces. The Nash-Moser inverse function theorem works
in the category of tame Fréchet spaces and smooth tame maps, which we shall
define in this part. Unfortunately the definitions involve a structure which is
more refined than the topology of the Fréchet space. Our counterexamples in
1.5.5 show that this extra structure is actually necessary, and that the current
results are in some sense the best possible.

The topology of a Fréchet space is defined by a countable collection of
seminorms {|| ||} with the condition that a sequence f; — f if and only if
lfi=fll, >0 for all n as j > co. We say that the seminorms define the
topology. Given a collection of seminorms, the topology is uniquely defined.
But clearly there may be many collections of seminorms which would define
the same topology. We wish to distinguish one collection.

1.1.1. DEFINITION. A grading on a Fréchet space is a collection of seminorms
{ll Il ,: n € J} indexed by the integers J = {0, 1,2,...} which are increasing in
strength, so that

Nfllo<Ufll,<Ifll,<---

and which define the topology. A graded Fréchet space is one with a choice of
grading.

We can of course insure that a collection increases in strength by adding to
each seminorm all the lower ones.

1.1.2. EXAMPLEs. (1) Let B be a Banach space with norm || || ;. Then B is a
graded space with || f 1|, = |l £l 5 for all a.

(2) Let 2(B) denote the space of all sequences { f,} of elements in a Banach
space B such that

H{f I, = § e |l fll < oo
k=0

for all n = 0. Then Z(B) is a graded space with the norms above.

(3) Let X be a measure space with measure p, let w = 0 be a positive weight
function, and let LY( X, g, w) be the space of all measurable functions f such
that

171l = [ e™ 1] dp < o0

for all n = 0. Then LY( X, p, w) is a graded space with the norms above.
(4) Let X be a compact manifold. Then C®( X) is a graded space with

Al =1 f ey

where C"(X) is the Banach space of functions with continuous partial deriva-
tives of degree < n. If V is a vector bundle over X then the space C*( X, V) of
smooth sections of ¥V is also a graded space.
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(5) Let @ be the space of entire holomorphic functions which are periodic
with period 27i and bounded in each left half-plane. Then % is a graded space
with norms

Il fIt,=sup{|f(z)|:Rez=n}.

A closed subspace of a graded space is again a graded space with the
induced norms. A cartesian product F X G of two graded spaces F and G is a
graded space with norms

N, =1fl,+ligl,.

1.1.3. DErFINITION. We say that two gradings (Il II,,} and {I| II',} are tamely
equivalent of degree r and base b if

Nfll,<Clflhy, and NI, <Clfll, 4,

for all n = b (with a constant C which may depend on n). All of the definitions
and theorems in this paper will remain valid when a grading is replaced by a
tamely equivalent one (except for a few remarks on precise norm estimates).
1.1.4. ExampLes. (1) If B is a Banach space, then the space Z(B) of
exponentially dccreasing sequences in B has the following equivalent gradings:
@ I{f}ll, = “{fk}”l'"(a) =23e" ol ARy
®) I{fi 31, = IH{ A imemy = {2 e""" Il fell$'/9, or
© {fe}ll, = “{fk}”l"(B) sup, e” ol Jill 5.
Ifr>0and C =3, e "™ < o then

”{fk}lllg’o(B) = ”{fk}”l"(B) ”{fk}”/f(g) = Cll{fk}l|1n+r(B)

(2) The space ¥ of entire holomorphic functions periodic with period 27i
and bounded in each left half-plane has the following equivalent gradings:

(a) 170, =17l = Zi["“’”mz) | dz,
(b) == {5 [ ra)
(c) £, =17l =sup{|f(z)]:Rez =n)

where the integrals are taken over a path with Re z = n. We have estimates for
I<g<oandr>0

Nf < ||f||L;< Nl < CHLN e
The final estimate follows from the Cauchy integral formula

_ n+r+2mf(§) d{
f( ) 2mi ‘[1+r { Z

with the integral taken over a path withRe{ = n + r; weseethat C = 1 /r < oo
when r > 0.
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(3) If X is a compact manifold, then the following gradings on C*(X) are
equivalent:

(a) the supremum norms || f 1, = Il f ll cn )

(b) the Holder norms || f Il ,, = Il f | cr+e(xy fOr 0 < <1,

(c) the Sobolev norms || f Il , = | fll 1r(x, for 1 <p < oo,

(d) the Besov norms [ fll,=Ilfllgpteax) for 0 <a<1, 1<p<co,
1 <g< oo

For example, by the Sobolev embedding theorem if » > dim X /p then

noxy S ntrcxy
”f”C(X) CIlflle+(X)

@ If (Il I} is a grading and || I, = Il f I ,,, then {II Il,} is also a grading
but is not tamely equivalent to the first.

(5) Let LY(R?) denote the Fréchet space of smooth functions on R” all of
whose derivatives lie in L,. Let a« = (a,,...,a,) be a positive multi-index and
define weighted Sobolev norms

1/2
Iy = {fRd(l g ) AP d§} .

Then LY(R?) is a graded space for any of the gradings {|| [|2}, but they are not
tamely equivalent for distinct a. Weighted gradings are very useful for para-
bolic PDE’s, where two space derivatives count for one time derivative.

1.2. Tame linear maps.

1.2.1. DEFINITION. We say that a linear map L: F — G of one graded space
into another satisfies a tame estimate of degree r and base b if

LA, < CUfIl 4,

for each n = b (with a constant C which may depend on rn). We say L is tame if
it satisfies a tame estimate for some r and b. A tame linear map is automati-
cally continuous in the Fréchet space topologies.

1.2.2. ExampLES. (1) Define L: =(B) —» =(B) by (Lf), = e"*f,. Then || Lf ||,
< | fll,,soLis tame.

(2) Define L: LY(X, p,w) = LY(X, p,w) by Lf=w'f. Then ||Lf|l, <
Il £l o4, s0 L is tame.

(3) Let L: C®°(X) —» C®(X) be any linear partial differential operator of
degree r. Then || Lf ||, < Cll f Il ,,, so L is tame.

(4) Let 9 be the space of entire holomorphic functions periodic with period
2xi and bounded in each left half-plane, with

Il fIl,=sup{|f(z)]|:Rez=n}.

Define L: ¥ - P by Lf(z) = f(2z). Then || Lf Il , < || f Il ,,,, s0 L is not tame.

(5) Let C®[a, b] denote the space of smooth functions on the interval [a, b]
with the grading

Ilfll,=sup sup |D*f(x)].
k<n asx<b

Define a linear map L: C%[0, 1] » C®[-1, 1] by Lf(x) = f(x?). Then L is tame
and || Lf|l, < CIl fll,,. The image of L is the closed subspace C[-1,1] of
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symmetric functions with f(-x) = f(x), because the (formal) Taylor series of a
symmetric function contains only even powers of x. Since L is one-to-one, the
inverse map L™": C&[-1,1] - C*[0, 1] exists and is continuous by the open
mapping theorem. However L™ ! is not tame. For the 2nth coefficient of the
Taylor series for Lf = g becomes the nth coefficient for the Taylor series of
f = L™g, so the best estimate possible is

IL™'gll, < Cliglly,.

(6) Define L: Z(B) —» Z(B) by (Lf )y = fo4- Then | LfIl, <l fll,, so L is
not tame.

If L satisfies a tame estimate of degree r and base b, then it also satisfies one
of degree 7 and base b for 7 = r and b = b. If L is tame with respect to one pair
of gradings on F and G then it is also tame with respect to any pair of tamely
equivalent gradings.

1.2.3. DEfFINITION. We say L is a tame isomorphism if L is a linear
isomorphism and both L and L™! are tame. Note that two gradings on a space
are tamely equivalent if and only if the identity map is a tame isomorphism
from the space with one grading to the space with the other.

A composition of tame linear maps is tame. Indeed if L satisfies a tame
estimate of degree r and base b, while M satisfies a tame estimate of degree s
and base b + r, then LM satisfies a tame estimate of degree r + s and base b;
forifn=b

“LMf”n < C‘”Mf”n+r< C“f”n+r+:'

1.3. Tame Fréchet spaces.

1.3.1. DEFINITION. Let F and G be graded spaces. We say that F is a tame
direct summand of G if we can find tame linear maps L: F > Gand M: G - F
such that the composition ML: F — F is the identity

L M
F->G-F.
1.3.2. DEFINITION. We say a graded space is tame if it is a tame direct

summand of a space Z(B) of exponentially decreasing sequences in some
Banach space B.

1.3.3. LEMMA. A4 tame direct summand of a tame space is tame.

PrROOF. If Fis a tame direct summand of G and G is a tame direct summand
of H, then F is a tame direct summand of H.

1.3.4. LEMMA. A cartesian product of two tame spaces is tame.

PrOOF. If F is a tame direct summand of Z(B) and G is a tame direct
summand of 2(C), then F X G is a tame direct summand of Z(B) X Z(C) =
(B X C).

1.3.5. LEMMA. The space LY( X, p, w) is tame.

PRrROOF. Recall that this is the space of all measurable functions with

||f||,,=fxe"‘"|f|dp<oo



NASH-MOSER INVERSE FUNCTION THEOREM 137

for all n. Let X, = {k <w <k + 1} and let x, be the characteristic function
of X,. Define maps

L M
LY(X, p,w) > Z(Ly(X, p)) > LT(X, g, w)

by (Lf), = A fand M{f,} = Z; X, f,- Since
I{ /i, = Ze™ £ Li(X.p)

it is easy to verify that | Lf ||, < CI| f Il , and | M{ f }II , < ClII{ £ }]] .-
Since ML = I, LY( X, p, w) is a tame direct summand of Z(L,(X, u)).

1.3.6. THEOREM. If X is a compact manifold then C*(X) is tame.

PrOOF. The strategy is to write ©*( X) as a tame direct summand of a space
L(X, p, w) where X is a Euclidean space R with coordinates ¢ = (£,,...,£,),
p = d§ is Lebesgue measure, and the weight function w = log(l + | £|) where
| € =¢2+ --- +£2. This will of course be accomplished by the Fourier
transform.

To begin, embed X in some Euclidean space R“, which we can always do if
d = 2dim X + 1. Since X is compact it will lie in a large ball B4. Let CT(R?)
denote the graded space of smooth functions on R for which all derivatives
tend to zero at infinity with the grading

Il f1l,= sup sup|D°f(x)]
laj<sn X

where the sup runs over all partial derivatives D of degree | « | at most n. Let
C&(B“) denote the closed subspace of functions which vanish outside the ball
B¢ with the induced grading. We can find a continuous linear extension
operator e: C®(X) —» CF(BY) satisfying |lef ||, < CIl f Il .. It suffices to choose
a tubular neighborhood of X, extend the function to be constant along the
fibres, and cut off with a smooth bump function. If i denotes the natural
inclusion and p the restriction map then ||if |, < Cll fll ,and llpf Il , < CIl f1l,,
and we have three tame linear maps

e=(x) Sep(BY) Seg(RY) Le(x)

whose composition is the identity. We proceed to factor i with the Fourier
transform % and its inverse

LT (RY, dg, log(1 + €1))

s\

s (8% e (RY)

i

Functions in CF(B?) are of Schwartz class S, so their Fourier transforms
exists. Since the Fourier transform takes a derivative D* of degree | a |< n into
multiplication by a polynomial {* of degree |a|<n, we can relate the
derivative norms to the power norms. The Fourier transform naturally takes
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1

functions in L, into functions in C, so the map ¥ ' is well defined and

satisfies
||6f"'g||,, <Clgl,.

Then ! is tame. The same is true for %; however the estimate is not so
precise. Since B? is compact we can convert a sup norm on B into an L,
norm. But when we apply 4 we get a sup norm estimate on the transform. To
convert this to an L, norm we must consume a power (1 + | {|)" with r > 4.
This gives an estimate ||5f ||, < Cll f|l,,,,, which shows ¥ also is tame. This
completes the representation of C°( X) as a tame direct summand of

Le(R?, d§, log(1 + ¢ 1)),
which is itself a tame direct summand of =(L,(R?, d¢)).

1.3.7. COROLLARY. If X is a compact manifold with boundary then C*(X) is
also tame.

PROOF. Let X be the double of X. We can write C*(X) as a tame direct
summand of C®( X) by choosing an extension map ¢ such that its composition
with the natural restriction map is the identity

ex(X) Se=(X) > e=(x).

We can define ¢ first in local coordinates and then patch together with a
partition of unity. Let R" have coordinates (x, y) with x E R and y € R""!,
and let R’} be the subspace with x = 0. If f(x, y) is a function on R’ , we
extend it to the other side by putting

(o]
fx,p) = [~ o) f(ex, y) de
t=0
where ¢(7) is a function which satisfies the condition
[ty de = -1y
0

forn =0, 1,2,..., which makes all the derivatives match up along the boundary
x = 0. An example of such a function is

22

€ (@AY G (/A — 14
A0+ 0° sin )

o(t) =

as the reader may “easily” verify by writing ¢(¢) as the real part of a
holomorphic function and using contour integration.

Since ¢(¢) goes to zero very rapidly as ¢ approaches zero or infinity, there is
no problem with the convergence of the integral, and we have an estimate
llefll, < Cll fll, for the sup norms || fIl, = Il fllc» (or the Holder, Sobolev
and Besov norms too). Since |l pf I, < CIl f Il , also, we have written C®(X) as
a tame direct summand of C®( X). The above construction generalizes easily to
manifolds with interior corners, which are locally diffeomorphic to products of
lines R and half-lines R* . Observe that if we extend in two different directions
by the above operator the extensions commute.



NASH-MOSER INVERSE FUNCTION THEOREM 139

1.3.8. COROLLARY. If X is a compact manifold with boundary and CF(X) is
the closed subspace of functions in C*(X) which vanish on the boundary together
with all their derivatives, then CF(X) is tame.

PROOF. Beware that C°(X) is not even a continuous direct summand of
C*(X). However CX(X) is a tame direct summand of C*(X) for the double
X. Let X’ denote the “mirror image” of X in X, and let ¢ and p’ denote the
extension and restriction operators defined before for X”. Then p’e’ = I so &'p’
is a projection operator on @*( X). The complementary projection 1 — ¢p’ has
the subspace CF( X) as its image, so it is a direct summand. Since ¢ and p’ are
tame, sois 1 — ¢'p’.

1.3.9. COROLLARY. If X is a compact manifold and V is a vector bundle over
X, then the space C®(X, V) of sections of V over X is tame.

PROOF. Let I = X X R be the trivial bundle. Then C®( X, I) = C*(X). If I¢
denotes the d-fold Whitney sum of I with itself, then C*( X, I?) is the cartesian
product of d copies of C*(X, I), and hence is tame. We can write any vector
bundle V as a direct summand of some trivial bundle 7¢. Since

Co(X, VO W) =C®(X,V) XC?(X,W)
it follows-that C®( X, V) is a tame direct summand of C®( X, I¢) and hence is
tame.

1.3.10. THEOREM. The space & of entire holomorphic functions periodic of
period 2wi and bounded in each left half-plane is tame.

PROOF. We claim that & is tamely isomorphic to the space Z(R) of
exponentially decreasing sequences of real numbers. Any function f € ¥ may
be expanded in a series

f(z) = 2ee.
k

We define the isomorphism % — Z(R) by identifying the function f in ¥ with
the series {c,} in Z(R). We can recover the constants c, by the integral
formula

___]_ n+2mi .
= 21rij,., e kf(z) dz

for any value of n, since the integral of a periodic function over a period is

independent of the path.
% has two equivalent gradings

1 n-+2mi
=5 [ 1) dz, 1l =sup{|f(2)| : Rez = n)
T n
and Z(R) has two equivalent gradings
"{ck}"lf=ze"klck|’ ||{ck}ll,7=sipe""|ck|.
k
We have the obvious estimates

||{Ck}||1; < ”f” L? < ”f"l‘:o < ”{Ck}HI;I
which shows that & is tamely isomorphic to Z(R).
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1.3.11. ExaMPLE. Let E[0, c0) be the space of continuous functions f(x)
defined on 0 < x < co which go to zero faster than any exponential in x, with
grading given by the norms

£, = supe™|f(x)].

Then E[0,00) is tame. To see this, let C[0,2] be the Banach space of
continuous functions on 0 < x < 2. Define a linear map

L: E[0, %) - 2(CJ0,2])

by letting Lf = {g,} where g,(x) = f(x + k) for 0 <x <2. Next choose
continuous functions ¢,(x) with ¢,(x) =1 for 0 < x <1 and vanishing for
x = 2, while ¢,(x) vanishes for x <k or x =k + 2 and 2¢, = 1. Define a
linear map

M: 2(c[0,2]) - E[0, )
by letting M{g,} = f where

f(x) = 3 u(x)gulx — k).
k=0

Then L and M are easily seen to be tame. Thus E[0, o0) is a tame direct
summand of Z(C[0, 2]), and hence is tame.

Let Ey[1, o) be the closed subspace of functions in E[0, o0) vanishing for
0 < x < 1. It is easy to write E,[1, c0) as a tame direct summand of E[0, ),
so it is also tame. Note that E,[1, o0) is the space of E® of Counterexample
5.3.4. To define the splitting map E[0, o0) — E,[1, 00), we restrict the function
to 0 < x < 1, extend the restriction to 1 < x < 2 by reflection, cut off by a
continuous bump function equal to 1 on 0 <x <1 and 0 for x =2, and
subtract the result from the original function.

The linear map Lf(x) = f(x/2) defines an isomorphism of E[0, c0) onto
itself. Since | Lfll, = | Il ,,, the map L is not tame.

I1.2. Tame maps.

2.1. Definition of a tame map.

2.1.1. DErFINITION. Let F and G be graded spaces and P: UC F-> G a
nonlinear map of a subset U of F into G. We say that P satisfies a tame
estimate of degree r and base b if

IP(AN, <A+ fl,.)

for all f € U and all n = b (with a constant C which may depend on n). We
say that P is a tame map if P is defined on an open set and is continuous, and
satisfies a tame estimate in a neighborhood of each point. (We allow the degree
r, base b, and constants C to vary from neighborhood to neighborhood.)

2.1.2. ExaMPLE. Let E[0, o) be the Fréchet space of continuous functions
f(x) on 0 < x < oo decreasing faster than any exponential, graded by

I fNl,=supe™|f(x)],
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introduced in Example 1.3.11. We define a map
P: E[0,0) - E[0, o0)

by letting P(f) = f2. Then P is tame. To see this we observe that
I fgll g <Ilfll,ligl,

for all p and gq. Hence if || fll, < C then | P(f)Il, < Cll fIl ,. This shows that
P satisfies a tame estimate of degree 0 and base 0 on the balls {Il fIl, < C},
which are open and fill out the space.

2.1.3. COUNTEREXAMPLE. Let & be the space of entire holomorphic functions
periodic with period 27/ and bounded in each left half-plane, with norms

lfIl,=sup{|f(z)|: Rez=n}.

Define an operator E: ¢ > ® by Ef =e’. Then E is not tame. For any
neighborhood of zero contains a set { f: || f |l , < 8} for some b < o0 and & > 0.
Let fi(z) = 8¢*~ Then f, € P and || £, |l, = 8, while || f ||, = §e*("~» and
I Pf I, = %" ™", If E satisfies an estimate || Ef ||, < C(1 + || {1l ,..,) for any
n = bon the set { f: || f1l, < 8}, then we would have an estimate

e&e"("_") < Cdek(n+r—b)

for a fixed n, b, 6, and C and all k - oco. This is impossible, so E is not tame.
The best estimate is the obvious one |le” ||, < e'/!=. Notice how differently the
estimates for e/ behave in & and C*[a, b]. (See Example 2.2.4.)

2.1.4. EXAMPLE. Any continuous map of a graded Fréchet space into a
Banach space is tame. Any continuous map of a finite dimensional space into a
graded Fréchet space is tame.

PROOF. Let P: UC F - B be a continuous map into a Banach space B.
Given f, € U, pick a constant C > || P(f;)ll and let U= {f: | P(f)Il < C}.
Since P is continuous, Uis open, and Uisa neighborhood of f,. For all n we
have [|P(HIl,, = IP(Hl<C<CA + Il fll,,). Thus P is tame.

For the other case, let P: U C R" —» F be continuous. Given f, € U, pick a
compact neighborhood K of f,. Then since P is continuous, [|P(f)Il, is
continuous on X for all n, so we can find a constant C, with

IP(I,<C,<C(L+I1fl,)

on K. Thus P is tame.

If a map P satisfies a tame estimate for one pair of gradings on F and G,
then it also satisfies a tame estimate for any tamely equivalent pair of gradings.
If P satisfies a tame estimate of degree r and base b, then it also satisfies a
tame estimate of degree 7 and base b when 7= r and b = b. Moreover, our
definition of tame for general (possibly) nonlinear maps coincides with our
previous definition when the map is linear.

2.1.5. THEOREM. A map is a tame linear map if and only if it is linear and
tame.

PROOF. Suppose L is linear and tame. Then L satisfies a tame estimate
Lfll, <c(+ 1 fll,y,)
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for all n=b and all f in some neighborhood of the origin. Increasing b if
necessary, we may assume that the neighborhood is of the form { f: || f Il ,,, < €}
for some £ > 0. For any g # 0 let f =eg/llgll,. Then || flI, = e so [ LfIl, <
C(1 + 11 fIl ;). Since L is linear we have

Lf=elg/ligly,
and if we multiply the estimate for fby |l gll ..,/ we get
NLgl, < C(lighyy,/e+ ligh,.).
Since ligll ., < Cligll,,,forn=band 1 /e < C, we have
ILgll,<Cligll,+,
when n = b. Thus L is a tame linear map.
2.1.6. THEOREM. A composition of tame maps is tame.

PROOF. Let F, G and H be graded spaces with open sets U, V and W. Let P
and Q be two tame maps

P G
UCFS5VCG-WCH

such that the composition QP is defined. Given any f, € U C F we can find a
neighborhood U of f, on which P satisfies a tame estimate of some degree r
and base b

NP, <C(A+1fll,,) form=b.

Likewise we can find a neighborhood ¥ of g, = P( fy) on which Q satisfies a
tame estimate of some degree s and base ¢

HQ(g)“n < C(l + "g"n+3) forn=c.

By increasing b or c if necessary we may assume b = ¢ + r. Since a tame map
is assumed to be continuous, P~ (V) is a neighborhood of f,, so by shrinking
U if necessary we may assume P(U) C V. Then for all f € U and all n = ¢ we
have

which shows that the composition Q o P satisfies a tame estimate of degree
r + s and base ¢ in a neighborhood U of f,.

For a function P( f, h) = g of two variables, we may wish to assign different
degrees to f and . We say that P satisfies a tame estimate of degree » in f and s
in & and base b if

NPCf, W, < CULfll ey + Al + 1)

for all n = b, with constants C = C, independent of f and 4. On the product
space P satisfies a joint tame estimate of degree max(r, s).

More generally, consider a map L: F X H — G linear only in the second
factor separately, which we write as L(f)h = g, grouping the parentheses to
reflect the linearity.
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2.1.7. LEMMA. If L(f)h is linear in h and satisfies a tame estimate of degree r
in fand s in h and base b for all fin a || ||, neighborhood of f, and all h in a
1Nl ., neighborhood of 0, then it satisfies the estimate

”L(f)h”n < C(“f”n-l-r”h”b+s + ”hHrH—s)

for all n = b, with constants C = C, independent of f and h, for all fin a || |,
neighborhood of f, and all h without restriction.

PROOF. Suppose the given estimate holds for all % in the zero-neighborhood
lAll,,, < e Given any h, pick h =Ah with A =¢/I|lAll,,, and apply the
given estimate to L( f )A, so that

WLCARN, < Cf Ny, + DAN, ., + 1)
By linearity L( f )4 = AL( f)h. Clearly we have the estimate

NLC R, < S0 Uy + DllAl s, + CllE,-

Since ¢ is constant and |[All,,, < CllAll ,,,, the lemma follows. In the same
way we can prove the following result.

2.1.8. LEMMA. Let B(f){g, h} be bilinear in g and h and satisfy a tame
estimate of degree r in f, s in g, t in h and base b, for f in a || || ,.., neighborhood
of fy, ginall |l ., neighborhood of 0, and h in a || |l ..., neighborhood of 0. Then
B satisfies the estimate

1B(f){g, k}I,
<CUfN e Nghpe WAl e, + Nl Al oy, + gl TR, )

for all n = b, with constants C = C, independent of f, g, and h, for all f in a
Il 1| -, neighborhood of f,, and all g and h without restriction.

Suppose now that F and G are graded spaces and P: UCF—-> G is a
nonlinear map. We say P is a smooth tame map if P is smooth and all its
derivatives D*P are tame. The category J is defined to be that whose objects
are tame spaces and whose maps are smooth tame maps. We shall state and
prove the Nash-Moser theorem in terms of this category.

2.2. Partial differential operators. We prove first a standard result in interpo-
lation theory which will be useful in estimating differential operators.

2.2.1. THEOREM. If X is a compact manifold and | <m <n then for all
fEC(X)
Nz i< cClifimnrlie.
PRrOOF. It suffices to prove the result for f € CF(R?) a smooth function on

Euclidean space with compact support, since we can then use a partition of
unity argument on X. Moreover it suffices to prove the case

IFuE<Cliflilifiy

since we can derive the other cases by replacing f by a derivative D°f. Since the
maximum of the first derivative occurs at a given point in a given direction, it
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suffices to prove the result on the line. We claim then that for f € CF(R) we
have

sup |f'|<2sup|f”|sup|f] .

If we replace f by af and x by bx, we multiply f’ by a/b and f” by a/b%. If
f Z 0 we may thus assume sup | f'|= 1 and sup | f'|= 1. Moreover by transla-
tion we may assume sup | ' | occurs at the origin. Replacing f by —f and x by
—x if necessary, we may assume f(0) = 0 and f’(0) = 1. By the second mean
value theorem

f(1) = £(0) + £(0) + 3/"(£)
for some £ in [0, 1]. Then f”(§) = -1 so
sup | f|=f(1) = 5.

This completes the proof.
The above estimate also holds for the Holder norms C”*¢, the Sobolev
norms L, and the Besov norms B;';°.

2.2.2. COROLLARY. If (i, j) lies on the line segment joining (k, 1) and (m, n)
then for any functions f and g in C*(X)

NfI gl <Cifll ligh,+Mf1,0gl,).

PROOF. Let (i, j) = t(k, 1) + (1 — t)(m, n) with 0 < ¢ < 1. By the previous
result

I <cCluflehrn s, ligh;<cCliglilgl,™
Since x'y!' 7' < C(x + y) for x = 0, y = 0, the result follows.
2.2.3. COROLLARY. If f and g are functions in C°( X)) then
g, <CUlfl, gl + 1 floligl,).

PROOF. Again it suffices to prove the result on CJ’(R?) since we can patch
together with a partition of unity. If D* = (3/dx")™ - - - (3/9x“)* denotes a
partial derivative with multi-index a = (a,,...,a;) of length |a|= a,
+ - -+ +a, then by the product rule

DY(fg)= X DPfD%.
Bt+y=a

2.2.4. EXxaMPLE. Define P: C®[a, b] » C®[a, b] by P(f) = ¢’. Any point
has a neighborhood on which || fIl, < C. Then on that neighborhood we also
have |le” |, < C. A typical derivative of e/ looks like

()= o{ e (2]

This gives us an estimate
2 2
(&) e, = rverna| 24

dx? + &
X

dx

y

< Hefllo{
0

0
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Since || fI? < CIl f Il 1l f Il by interpolation, we see that when || f ||, < C we
have || Pf1l, < C(1 + || fII,). The same argument works for higher derivatives,
and P is tame.

Let U be an open subset of [a, b] X R and let p(x, y) be a smooth function
on U. Let U be the open subset of C[a, b] consisting of functions y = f(x)
whose graph lies in U.

2.2.5. THEOREM. The operator P: U C C®[a, b] = C*®[a, b] defined by
Pf(x) = p(x, f(x))

is tame.

PrOOF. We shall show that P satisfies a tame estimate of degree 0 and base 0
in a neighborhood of each function f, € U C C%[a, b]. Given fo. let N be a
compact neighborhood of the graph of fyin U C [a, b] X R. Then p(x, y) and
all its derivatives DJD"p(x, y) are bounded on N. The set N C U C C*[a, b]
of all functions whose graphs lie in N is a neighborhood of f, in U C C%[a, b].
Using the chain rule we can write

(&) pesn =3 5 Lpie an G - &

where the sum ranges over terms with j + i, + --- +i, = n (and some terms
may occur more than once). For f € N we have || f ||, < C and

| Lot st

SO we get an estimate

"(d%)np(x, )] <

where the sum ranges over terms with i, + - - - +i, < n. By interpolation we
can bound || fII; < CIl f /" when || f I, < C. Therefore

NP(AI,<CcQ+IfI,)

CINfl, - Iflly,

when f € N.

Let X be a compact manifold and let ¥ and W be vector bundles over X. Let
U be an open subset of V and p: U C V' - W a smooth map of U into W
which takes fibres into fibres. If C®°(X, V) is the space of sections of the
bundle V over X, then the set U of sections whose image lies in U is an open
subset. Define a map P: U C C®(X, V) - C®(X, W) by composition with p,
so that Pf(x) = p(f(x)). We call p a nonlinear vector bundle map and P a
nonlinear vector bundle operator.

2.2.6. THEOREM. A nonlinear vector bundle operator P is tame.

ProoF. If f, € C®(X, V) we claim that P satisfies a tame estimate of degree
0 and base 0 on a neighborhood of ;. Indeed let N be a compact neighborhood
of the image of f; in V, and let N be the set of sections whose images lie in N.
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Then N is a neighborhood of f, in C*(X, V), and we claim that || Pf]l, <
C(1 + Il f1l,) for all f € N. By using a partition of unity we can reduce the
problem to proving such an estimate in local coordinates. If X has dimension k
and V has fibre dimension /, then ¥ has local vector bundle charts in R**/, and
p is given locally by a function p(x, y) on an open set in R**/ with x € R*
and y € R’, while a section f is given locally by a function y = f(x). Then we
must prove an estimate

Ip(x, FON, < C(1+ 1L f()I,).

The proof is now exactly the same as before, except for having more di-
mensions.

Again let X be a compact manifold and let ¥ and W be vector bundles over
X. A nonlinear partial differential operator of degree r from V to W is a map P:
U C C®(X,V) - C®(X, W) such that Pf(x) is a smooth function of f and its
partial derivatives of degree at most  at x in any local charts.

2.2.7. COROLLARY. Any nonlinear partial differential operator P: C*(X, V) -
C®(X, W) is tame.

ProoOF. Using jet bundles, we can write P = QL where L is a linear
differential operator of degree r and Q is a nonlinear vector bundle operator as
before (involving no derivatives). Then |LfIl,<Cll fIl,., and [|Qgll, <
C(+ligh,),sollPfll,<C + |l fll,,) for all fin a neighborhood of any
point.

If P(f) is a nonlinear differential operator of degree r in f, then its
derivative DP( f)h is also a differential operator of degree r in f and 4. From
this it follows that P is a smooth tame map, and all its derivatives also are tame
with degree r and base b.

2.3. Tame Fréchet manifolds. We can define a tame manifold as one with
coordinate charts in tame spaces whose coordinate transition functions are
smooth tame maps.

2.3.1. THEOREM. Let X be a compact manifold and B a fibre bundle over X.
Then the space C*(B) of smooth sections of B is a tame manifold.

PrOOF. Let f be a section of B. We can find a vector bundle and a
diffeomorphism of a neighborhood of the zero section onto a neighborhood of
the image of f in B which takes fibres into fibres. We take the collection of all
the maps on sections induced by such diffeomorphisms as our atlas of
coordinate charts. The coordinate transition functions are vector bundle maps,
which we proved are smooth tame maps in the last section.

2.3.2. COROLLARY. If X is a compact manifold and Y is another manifold (of
finite dimension) then the space (X, Y) of smooth maps of X into Y is a tame
manifold.

PROOF. M (X, Y) is the space of sections of the product bundle X X Y over
X.
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2.3.3. THEOREM. Let X, Y, and Z be finite dimensional manifolds with X and Y
compact. Then the composition map

C:M(Y,Z) XM(X,Y) - IM(X, Z)
is a smooth tame map.

PROOF. First we show C is tame. Let f, € IN(Y, Z) and g, € IM(X, Y) be
two reference maps. We can cover X, Y, and Z by coordinate charts with
ranges being closed balls in Euclidean spaces R/, R, and R”, such that each
map takes a closed ball into the interior of another ball (by a positive amount).
Then any maps f and g close to f; and g, in the || ||, sense will take the same
closed balls into the same closed balls. In order to estimate the maps in our
coordinate charts on the Fréchet spaces M (X, Y) (etc.), it suffices to estimate
their local representatives in the balls in R’ (etc.). We may as well take them to
be all unit balls. Let B/ be the unit ball in R’ (etc.). Then we have the following
estimate.

2.3.4. LEMMA. Let f: B™ > B" and g: B' » B™ be smooth maps. Fix a
constant K and assume that || fll, <K and |gll, < K. Then we can find
constants C, depending on K such that for n = 1

Nfogll,<C(lfIl,+ligl,+1).
PROOF. By a repeated application of the chain rule we can find constants

3 such that forn =1

ck,j| ,,,,, J

n

D'(fog)(x)= % 2 G Df(g(x){D"g(x),...,DMg(x)}

k=1 ji+ - +jx=n
with jj,...,j, = 1. This gives us the estimate
||D"(f°g)||0<C§ > NfNligly ---ligly,.
k=1 ji+ - +jx=n

Now by interpolation

£l < CUFI§r—0/G=D) fljk=D/n=D,

ligl; < Cligl{"=/¢=Djjg||y=D/»=D
and inserting this above we get

ID"(feg)ll < Clighf"(lighllfll, + N fIlgl,).
When || fIl, < K and |l gll, < K and C may depend on K
ID"(fog)llo=<C(ifll,+ligh,)

forn=1.Whenn=0, | fogll,<C.Since |l fo gll, = Zi_,ll D¥(fo g)ll the
lemma follows.

Now the lemma shows that the composition map C(f, g) = f o g satisfies a
tame estimate of degree 0 and base 1 on neighborhoods of f, and g, open in
Il I, (sothat || £ I, and || gl are bounded). Hence C is tame.
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We saw earlier in 4.4.5 that C is a smooth map, and its higher tangents 7"C
themselves are formed by compositions and derivatives, so the T"C are also
tame. Thus C is a smooth tame map of manifolds.

A smooth tame Lie group is a smooth tame Fréchet manifold § which has a
group structure such that the multiplication map C: § X § - § and the inverse
map

V:6-96

are smooth tame maps. The following gives an example.

2.3.5. THEOREM. Let X be a compact manifold and let 5D( X) be the diffeomor-
phism group. Then S)( X) is a tame Fréchet manifold. The composition maps

C: D(X) X D(X) - D(X)

and the inverse map
V:D(X) - D(X)

introduced in Example 4.4.6 are all smooth tame maps. Hence )( X) is a smooth
tame Lie group.

PROOF. )(X) is an open subset of M (X, X) and hence a smooth tame
Fréchet manifold. The composition map C is a smooth tame map by the
preceding example. We shall show V is a smooth tame map. Fix f, € D(X). If
f1is near f;, then f; 'f = g is near the identity map 1, and since f = f,g we have

=g =) e Thus
V(f) = C((CV(f), 1)) V(4)-

If we can show ¥ is a smooth tame map in a neighborhood of 1, then it will be
also in a neighborhood of f;.

Let B, denote the closed ball of radius » in R". We can find coordinate charts
on X with values in the ball B; such that the inverse images of the ball B, still
cover X. If fis a diffeomorphism of X near the identity, the local representative
of f in each coordinate chart will map B, into B, and cover B,. Then f~! will
map B, into B,. We prove the following estimate.

2.3.6. LEMMA. Let f be a smooth map of B, into By in R". If € > 0 is sufficiently
small and if || f(x) — x|, < ¢ then f~ ' is a smooth map of B, into B, and

i, <cArli, +1)
for alln= 1.

ProOF. It follows from the inverse function theorem that f is 1-1 and locally
has a smooth inverse. That the image of B, covers B, is a topological result
from degree theory. Let g = /! on B,. We know that

Dg(x) =Df(f'(x))”
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and if € > 0 is small we have an estimate || Dgll, < C. Since f o g = 1 we have
D"(f o g) =0 for n = 2. By our previous formula

Df(g(x))D"g(x)
+2 2 G, DM(8(x)){D7g(x),....Dg(x)} = 0
k=2 ji+ - +j=n
which we can solve for D"g(x) to get
D"g(x)
= -Dg(x) X 2 G, D(g(x){D/g(x),...,Dg(x)}.
k=2 ji+ - +jy=n

Since jj,...,j, =1 and k =2 we have jj,...,j, <n — 1 also. We have the
estimate

"
ID%gllo<C S I N7l gl - lgl,
k=2 ji+ - +jp=n
By interpolation
Nl < CllfIr— R/ =Dy fl k= D/=D]
gl < Cligli{mi=b/¢= g|| =D/ (n=2)

and || fIl; < Cand |lgll, < C. This gives

n
ID"%gllg< C 3 I fIE=D/ D] g|| /=2,
k=2

We now proceed by induction on n. When n = 1 the theorem holds. Suppose
we know that

hgh,—y < Cfll,—; +1).
By interpolation
(F Uy + D) < CUf I, + DD
when || f|l, < C. Inserting this above gives
ID"glly<CIlfll,.

Adding in |igll,_, proves the lemma. Since the higher tangents 7"V also
involve only derivatives, compositions and V, we see that T"V is also tame,
and V is a smooth tame map.

2.3.7. COROLLARY. The space $(X) of all compact smooth submanifolds of a
finite dimensional manifold X is a smooth tame Fréchet manifold. So is the space
R.(X) of all compact regions in X with a smooth boundary.

PrROOF. We refer the reader to Example 1.4.4.7, where we show that the
coordinate transition functions are composed of compositions and inverses of
the type already discussed.
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We can also define a smooth tame vector bundle as a Fréchet vector bundle
whose coordinate charts are smooth tame maps. Likewise we can define a
smooth tame connection on such a vector bundle as one for which the local
representatives I' are smooth tame maps.

2.3.8. ExaMPLE. The bundle C®%R,(X) of all smooth functions on compact
regions with smooth boundary in a finite dimensional manifold X is a smooth
tame vector bundle. The intrinsic flat connection is a smooth tame connection.

PRrROOF. We refer the reader to the discussion in Examples 1.4.3.6 and 1.4.5.4.
The previous estimates should make it clear that all the maps involved are
smooth tame maps.

I1.3. Inverses of families of linear maps.
3.1. Smooth tame inverses. The following result is very useful.

3.1.1. THEOREM. Let L: (U C F) X H — K be a smooth tame family of linear
maps. Suppose that the equation L( f)h = k has a unique solution h for all f and
k, and the family of inverses V( f )k = h is continuous and tame as a map

Then V is also a smooth tame map.
V:(UCF)XK-H.
PrOOF. By Theorem 5.3.1, V is smooth zind
DV(f){k,g} = -V(f)DL(f){V(f)k, g}

Since V and DL are tame, so is DV. That D"V is also tame follows by
induction on n.

3.2. Ordinary differential equations. It is an important observation that not
only do differential equations provide us with examples of tame maps, but so
do their solutions. This is particularly easy to verify for ordinary differential
equations. We begin with the solution in Example 1.5.3.5.

3.2.1. THEOREM. Let C52 be the space of smooth functions periodic with period
2, and let U be the open subset of functions f(t) with

fz”f(z) dt #0.
0
Let L(f)h = k be the linear differential equation
dh/dt + fh =k
and let k = V( f)h be its solution. Then V is a smooth tame map
V:(UCCR) XCE - C2.

PrROOF. We already saw that the solution exists and is unique when f € U
and that the solution ¥V is smooth. We shall show that V is tame. We saw that
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V is given by the following formulas:

F()= [1(6)d0, (1) = ["'1(0) b,

_ 1 27 Fo)
C(f,h)————ec(f)_lfo eFOR(6) do,

k(1) = e—F<'>{/O'eF<0>h(0) do + C(f, h)}.

Now CF is a closed subspace of C*[0,2x], but not a topological direct
summand (see Example 1.2.2). Even if f(z) € C, the integral F(¢) will not,
unless ¢( f) = 0, which is exactly the case we must avoid. Therefore we regard
the formulas above as giving a map

V: (U ce®[0,27]) X €[0,27] - C*[0,27]

where U is all functions not necessarily periodic with integral not zero. Then V
will take C2 into itself, and ¥ = V| C5,. We claim V is tame. It then follows
that V is also, for the same estimates will hold on the subspace.

Now all of the following maps are smooth tame maps:

e*[0,27] - €=[0, 2], (1) » F(r) :jo’f(e)do,
©=[0,27] - R, (f) =f02”f(0)do,
C*[0,27] - €*[0,27], F(t) - ef®,
C>[0,27] - €*[0,27], F(t) - -F(1),
€=[0,27] X €=[0,27] - €=[0,27],  (f(2), g(1)) = f(1)g(2),
R—{0} >R, x—>(ex—1)7",
R - €C*[0, =], cof(t)=c

and the solution V¥ is a rather complicated composition of these maps. Since a
composition of smooth tame maps is a smooth tame map, ¥ and V are smooth
tame maps.

We can also make tame estimates on the solution even when we lack an
explicit formula, by the usual procedure for a priori estimates. As an illustra-
tion, we consider linear first order systems of ODE’s. Let H be a finite
dimensional vector space and let » = h(t) be a smooth path in H. Let
L(H, H) be the space of linear maps of H into itself and let f = f(¢) be a
smooth path in L(H, H). We write f - h for the linear map applied to the
vector. Then we can consider the linear first order system

dhjdt—f-h=k

on & < ¢ < w with initial conditions h(a) = 4 € H. This defines a family of
linear maps

L:C*([a, w], L(H, H)) X C®([a, @], H) » C*([a, w], H) X H
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with L(f)h = (k, h). For a given f, k and h there will exist a unique solution 4
by the usual existence theorem for ODE’s, and we write & = V( f)(k, h) for
the solution, which defines a map

V:C®([a,w], L(H, H)) X C®([a, w], H) X H > C*([a, w], H).
The Fréchet space C®([a, w], H) is graded by the norms
lhll, = sup sup|D/h(t)|
t

j<n
where | /| is any convenient norm on H. If H = R" we can take the Euclidean

length. In this case L(H, H) is the space of n X n matrices, and the system
looks like

dn'’ S i , , ]
e .2112'(1)’1’(’) =k'(1) (I1<i<n).
j=
3.2.2. THEOREM. The solution map V for the first order linear system is a
smooth tame map. On any set || f ||, < K it satisfies estimates
Al < Gkl + LA, (Iklo + | 2]))
with constants C, depending on K.
PrOOF. We begin with the following estimate.
LEMMA.
Il < C(llkllo + | A]).
PrROOF. We introduce the norm
k] = supe™ | (1) .
t
Since
h(t) = [k(8) + £(8) - h(8)] d8 + i
a

we have

(1) = [(eMO0[eTMK(0) + £(0) - e h(6)] dO + 7M.

Since
f’e"“’—’) di < %

a

we have the estimate for A > 0
[[A) | <${| TR+ 171G TR + | B

If l fll, < K and we choose A > K, we can subtract the middle term on the
right from the left to get the estimate

[TAY I < C{I[K] ]\ + | A}
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with a constant C depending on K and A. Since |[#] ], is equivalent to || 2|l,,
we have

Hhlly < C(llkllo + |I?|).
Having a low norm estimate, we can use the equation to get estimates on the
high norms. Since
dh/dt=f-h+k
we get the estimate
ldn/dell, < CULFIL IR+ I FllG IR, + l&IL,).

When n = 0 we have

Nall, = Nhllg+ lldn/dtlly < C(lkll g + | A]).
We proceed by induction on n. Suppose

Nall, < C{tkll,—y + I fll,—\(Ilkllg + | A1])}.
Then remembering || fl, < C

AN,y = NAll, + Ndr/dell, < C{llkll, + I £IL(Ilkllg+ | 7])}

which proves the estimate. Thus V is tame. It is a smooth tame map by
Theorem 3.1.1, since L is a smooth tame map, being a differential operator.

We can apply this result to get a theorem for periodic solutions of periodic
systems of ODE’s, analogous to our previous result for a single equation. Let
@f(H ) be the space of smooth functions A(¢) with values in the finite
dimensional vector space H which are periodic with period p, so that h(¢ + p)
= h(z). Let f(1) € @;’( L(H, H)) and consider the first order linear system

df/dt —f-h=k
as defining a smooth tame map
M: G:’(L(H, H)) X G;"(H) -~ CX(H)

by M( f)h = k. There may not always be a solution, as we see when p = 2,
f=0, and k = sin z. We let U be the set of all f € Gf(L(H, H)) for which the
homogeneous equation

dh/dt —f-h=20
has only the trivial solution # = 0. If H has an inner product and f(¢) is

symmetric and positive-definite or negative-definite with respect to this inner
product for all ¢, then f € U; for

fop(f-h,h)dt:f

p<dh
0

E s h> dt = 0.
3.2.3. THEOREM. The set U is open. For all f € U and k the equation
M( f)h = k has a unique solution h = W( f )k. The map
w: (U C C2(L(H, H))) X C*(H) - CX(H)

is a smooth tame map.
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PrOOF. We can regard G°°(H ) as a closed subspace of C*([0, p], H). Given
f € C=(0, pl, L(H, H)) and h € H we can solve the homogeneous equation

dh/dt —foh=0
with £(0) = & and let h( p) = }7 We write h:= N(f)h. This defines a family of
linear maps

N:C>([0, p],L(H,H)) XH—-H

with & = V(£ X0, k) | {t = p}. Since V is a smooth tame map by Theorem 3.2.2
and evaluation at p is a continuous linear map to a finite dimensional space,
we see N is a smooth tame map. Suppose f is periodic. Then we get a nonzero
solution of the homogeneous equation with coefficients f if we can find a
nonzero h € H with N(f)h =h. Thus f€ U if and only if 7 — N(f) is
one-to-one; and hence also invertible, since H is finite dimensional. Since the
set of invertible linear maps in L(H, H) is open and N(f) depends continu-
ously on f, we see that U is open.

When f € U, we can try to find a solution & of the periodic equation for a
given periodic k by solving the initial value problem on [0, p], and hope that a
fortuitous choice of 4 will make & periodic. This clearly happens when h=h.
To be systematic, we can start with A =0 and let h, = V(f)(k,0) be the
solution of the inhomogeneous equation

dh,jdt —f-h, =k

with h,(0) = i, = 0 at 1 = 0. We then let &, = h,( p). Clearly &, is a smooth
tame function of f and k. Now we wish to change /, by a solution 4, of the

homogeneous equation so that & = h, + h, will be periodic. We need # = h or
h, + hy=h, + h,. Now h, = 0 and h, = N( f)h,. Thus we must solve

}-{2 - N(f)h_z = h-l'
Since H is finite dimensional, it is easy to see that N defines a smooth tame
map
N:UC @p°°(L(H, H)) - L(H, H).
It suffices to choose a basis in H and represent N( f) by a matrix, each element
of which depends smoothly on f. It is tame because L(H, H) is finite

dimensional. Since taking the inverse of a matrix is a smooth map, we see that
the map f —» (I — N(f))~!is also a smooth tame map. Then we choose

h—z =[1- N(f)]-lh—l-
As a composition, £, is a smooth tame function of f and k. Thus so is

h=hy+hy=V(f)(k,0)+ V(£)0, h,).
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Letting h = W( f )k defines a smooth tame map which gives a commutative
diagram

1=

(Ucer(L(H, H))) X C°(H) C2(H)
! !

(T ce=([o, p], L(H, H))) x €=([0, p], H) > €=([0, p], H)

on the set U for which I — N(f) is invertible. It is then clear that W is a
smooth tame map also, since the estimates for W will hold for W.

3.3. Elliptic equations. Let X be a compact manifold without boundary, and
let ¥V and W be vector bundles over X. A linear partial differential operator of
degree r from V to W assigns to each section A € C®(X,V) a section
k € C®(X,W) in a manner which depends linearly on the derivatives of
degree r or less, so that locally
(*) 2 fo-Dh=k

laj<r

where D = (3/9x")™ ---(3/dx")* is a partial derivative of degree |a|= a,
+ --- +a,. The coefficients f = { f,} themselves form a section of a bundle
D'(V,W) of all operators of degree r, as may be seen by considering what
happens to the f, under a coordinate change. We can identify D'(V, W) with
the bundle L(J'V, W) where J' is the r-jet bundle of V, or with L(V, JW)
where JW is the r-cojet bundle of W. The formula (x) defines a map
L(f)h = k where

L: C™(X, D'(V,W)) X C2(X,V) - C=(X, W).

It is the generic partial differential operator of degree r with coefficients f. Of
course L is a smooth tame family of linear maps.

To each linear differential operator L( f) of degree r we associate a principal
symbol o( f) which is a homogeneous polynomial of degree r on the cotangent
bundle T* X with values in L(V, W), given in local coordinates by

o(f)= 3 f£°

o =r

where £ = £{gS2 - - - €27, The operator L(f) is called elliptic if o(f)¢ €
L(V,W) is always invertible when § 5 0. If L(f) is elliptic, then it is well
known that the null space of L( f) is finite dimensional, and its range is closed
with finite codimension. We let U C C®( X, D'(V, W)) be the open set of all f
for which the linear operator L( f) with coefficients f is elliptic and invertible.
Then for each f € U and each k there exists a unique 4 solving the equation
L(f)h=k.

3.3.1. THEOREM. The solution S( f )k = h defines a smooth tame map
S:(UCC®(X,D'(V,W))) X C®(X,W) - C2(X, V).

PrOOF. We need to exercise some care in the choice of the gradings, since
Gérding’s inequality fails for C".



156 R. S. HAMILTON

To make the following argument work, we need only the following simple
properties:

(1) The norm || ||, is the norm || ||, of the section and its derivatives of
degree less than or equal to n.

(2) The interpolation inequalities hold.

(3) There is a multiplicative estimate for the f and 4 norms

lfrllo < Cllifllglall,.
(4) Garding’s inequality holds for any elliptic operator L and the A-norm
lall, < C(ILAllg + liAlly).

There are many possible choices. We can take norms || ||, in C"*Y measuring
the nth derivative with a Holder exponent 0 < y < 1. Or we can take || f |, to
be the C” norm and || 4|, or | kI, to be the L} norm measuring » derivatives
in L, for 1 <p < co. All these gradings will be tamely equivalent.

LEMMA. If f, € U then we can find an € > 0 and a constant C such that if
1 f— follo <ethenf € U and for all h

Al < CIL(f)hll,.
PROOF. If f, € U then L( f;) is invertible, so we do not need the slush term
in Garding’s inequality, and
lAll, < CIL(f)hll,.
Now [|L(f)hllg < Clifllollkll, and L(f)h — L(fy)h = L(f — f)h, so
Nall, < CIL(f)RI, + Clf—=flllAll,.
When (| f — f,ll, < e and Ce < 1, we can subtract the last term from the other
side. This proves the lemma.

Now we proceed to estimate the higher derivatives in the usual way, by
differentiating through the equation, paying careful attention to how the
estimates depend on the coefficients. To avoid local coordinates, we have
recourse to the following strategem. Pick a vector field v on X and pick first

order linear differential operators v, from C®(X,V) and C*(X,W) to
themselves whose symbols are

ov,(¢§) = (& o)1

where [ is the identity matrix. Then the operator V,L(f) — L(f)V, has its
principal symbol zero, so it is itself of degree r. Hence there is a uniquely
determined v, f with

V,L(f) = L(f)v,= L(V,f)

and v, is also a first order linear differential operator on C*(X, D"(V, W))
with symbol as above, as we can see from the formula (*). If we pick a finite
number of vector fields v which span the tangent space at each point, then

Al < c(||h||,,+ Env,,hu,,).

We shall prove the following estimate.
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33.2. LemMA. If | f — foll <eand L(f)h = k then
WAl e, < CUIEN, + I FIL0KNG).
Thus V( f )k = h satisfies a tame estimate of degree -r and base r.

ProoF. This holds if n = 0. We assume it is true for some n and proceed by
induction. First note that by the product rule and interpolation

NL(A)nl, < C(IRl .y, + N fI NRIL)
which shows L is tame of degree r and base 0. The induction hypothesis says
all,y, < CUL(L)RI, + HFILNLCS)ARI).
Applying this to v, 4 instead of h
Wil ey < CULCF)V RN, + I FULNL(F)Voh1,).
Now we use the fact that
L(f)V.h = V,L(f)h = L(V,f)h.

Since L(f)h = k we get

NL(f)V hll, < CUlkll oy + AN, + 1 f1 A1),

Using our estimates on || A4]|, and ||All,,,, from the previous lemma and the
induction hypothesis and simplifying

NL(f)V,hll, < CUkl oy + 1fILqlENG).

We can use this estimate and the corresponding one for » = 0 in our previous
estimate for Vv, h to get

19kl e, < CLUEN py + Hf i TED) + I ALK + I ENG) ).
Now by interpolation
NN kN < COLfI oty + 1 F TGN RN 40,
NALUAN < CUAN ol f .
Onourset |l fll, < Cso
N hll s, < CUKN iy F 1 f e k).

Summing over a finite number of v
VAllyyar < C(Ie, + SIV,01,)
v

which shows that
WAl e < CUEN gy + 1A, LK)

This completes the induction.

Even in the case where L( f) is not invertible we can still define an inverse
of sorts, up to something of finite dimension. Choose finite dimensional vector
spaces N and M and continuous linear maps

J:C®(X,V)>N, i:M-C2X,W).
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We assume that in some norms | | on M and N we have
|jh|< CliAll,—,
while for all n we will surely have
|ix], < C|x|
for all x € M. We then define a map
L:C®(X,D'(V,W)) XC®(X,V) X M- C*(X,W) XN

by letting L(f)(h, x) = (k, y) where f € C(X, D"(V,W)), h € C*(X, V),
k€C®(X,W),x €EM,y €N, and

L(f)h+ix=k, jh=y.

We let U C C*(X, D'(V,W)) be the open set (by Fredholm theory) of all
coefficients f of elliptic operators L( f) for which L£( f) is an isomorphism. We
can do this in a neighborhood of any f;. It follows that for all f € U and all k
and y there exist unique 4 and x solving the equation.

3.3.3. THEOREM. The solution S(fXk, y) = (h, x) defines a smooth tame
family of linear maps
S: (U cC=(X,D'(V,W))) X C®(X,W) X N - C°(X,V) X M.
When L(f) is injective we can forget N, and when it is surjective we can forget
M. Always put y = 0 and forget x. Then for each f € U and each k there exists a
unique h in the null space of j (a subspace of finite codimension) such that
L(f)h — k lies in the image of i (a subspace of finite dimension). Moreover if we

define the Green’s operator h = G( f )k as above, then G is a smooth tame family
of linear maps.

PrROOF. The argument proceeds much as before, except for the annoying
presence of i and j. For a given f,, Garding’s inequality can be modified to

Nall, + | x|< COIL(f)h + ixllg + | jh|)

since j is injective on the null space and i is transversal to the image of L( f).
Then as before if || f — f, Il < & we have

Rl + [x|< COIL(f)h + ixll + | jh])

when ¢ > 0 is small enough to subtract off the extra error term on the right
from the left. For the induction step we prove the following estimate.

334.LemMA. If || f — fyllo < eand L(f)h + ix = k and jh = y then
Nall,., + | x|< CUEN, + 1INkl +CQ+1F1L) ]y -

ProOF. The result holds for n = 0. We assume it is true for some n and
proceed by induction. We can put x = 0 in the estimate. Then for all A

Wall,e, < CUL(L)RN, + UFULMECf)RIG) + CA+ N fI,)|jR] -
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Applying this to VA instead
Iw,hll, e, < CUL(f)V I, + 1 FILNL(f)V,AI,)
+CA+SI,) 1R
If |jh|<Cllhll,_, then |jv, h|<Cllhll,. By the first estimate [All,<
C(llk\ly + |y ). Hence this term will cause no trouble. For the others, we have
V,L(f)h = v,k — v,ix

and we always have

Iw,ixll, < Cllixll ., < C| x|

since i is continuous. But by the basic estimate |x |< C(llkll, + |y|) also.
Thus

1w, L(f)Rll, < CUIkll, ey +[y])
As before

L(f)Voh = V,L(f)h = L(V,[)h
and

NL(v,f)hll, < C(Al o, + 0 fUL R,
By the induction hypothesis
IL(f)Vohll, < KNy + 0 f L llllg + (T4 D f I y) |91}
Using this estimate also for n = 0 and interpolating as before
IWhll, < C{IKkI o + 1 f i llkllg + (X1 flLe0) | 2]}

Summing over a finite number of v gives the desired estimate for || 1|, ,, . As
| x | is already estimated, we are done.

We can also prove tame estimates for solutions of elliptic boundary value
problems. We shall only discuss the simplest cases, but the results extend even
to weighted systems (see Martin Lo [11]). Let X be a compact manifold with a
smooth boundary 90X, and let ¥ and W be vector bundles over X and Z a
vector bundle over dX. We shall consider a single equation L(f)k = k of
degree r taking a section 4 of V to a section k of W, with coefficients f forming
a section of the bundle D'(V, W). For boundary conditions we will also have a
single equation B(g)h = [ of degree s < r taking the section 4 of V into a
section / of W with coefficients g in a bundle D*(V, Z), so that locally

B(g)h= T g,Dh|0X
|B=<s
and we put M(f, g)h=(k,1). We let U be the open set of all f&
C*(X, D'(V,W)) and g € C*(X, D(V, Z)) such that L(f) is elliptic, the
boundary condition B(g) is coercive, and the boundary value problem L( f)h
=k on X and B(g)h = on 90X has a unique solution # € C*(X, V) for all
k €C®(X,W)and | € C®(0X, Z), i.e., M(f, g) is invertible. There are well-
known algebraic conditions for the boundary conditions to be coercive, but
they are not so easy to state. They include the following special cases. We say »
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is a normal cotangent vector if » L T0X, and we say » > 0 if » points inward.
(With local coordinates x',...,x%"! and x¢ = 0, then » = »(x)dx" is normal
and points inward if »(x) > 0.)

Case 1. Let V, W and Z be trivial bundles so that s, k and / are functions,
and let r = 2. Then in local coordinates

L(f)h= Ef” S

We say L is strongly elliptic if oL( )¢ > 0 for all ¢ # 0, which happens if %/ is
positive definite. Let 1 be the constant function. Then the coefficient f° =
L(f)1. If L(f)1 <O and L(f)h = 0 then the maximum of 4 occurs on the
boundary.

Case la. Suppose s = 0. Then g is a function on dX and B(g)h = gh. If
g >0 then this is a Dirichlet boundary condition, which is known to be
coercive. Moreover it has index zero, so the operator M( f, g) is invertible if
and only if the only solutions of the homogeneous equations L( f)h = 0 and
B(g)h =0areh = 0.If L(f)1 <0 this happens by the maximum principle.

Case 1b. Let s = 1. Then in local coordinates

ok
B(g)h= Eg'F +g%.
i X

Note that g = (2, g'd/9x’, g°) is given by a vector field on dX pointing along
X, and a function on dX. The vector field points inward if and only if
oB(g)r >0 for any normal » > 0. In this we have Neumann boundary
conditions, which are known to be coercive. If L( )1 <0 and B(g)1 <0 then
the only solution of the homogeneous equations is trivial by the maximum
principle, and M( f, g) is invertible since the index is also zero.

Case 2. Let V, W and Z be general bundles, and let » = 1 and s = 0. Then in
local coordinates

LU = 255 L. 3 sthe

and
B(g)h* = X glh®.

a
Since B(g) has degree zero, it is a vector bundle map of V| 9.X into Z. We shall
require that B(g) always be surjective. Its null space Null B(g) is a vector
subbundle of V| d.X. The homogeneous boundary condition B(g)h = 0 says
h| 90X € Null B(g). We distinguish between real and complex equations.
Case 2a. For real equations with real coefficients, any boundary conditions
are coercive provided

dim Z = 1 dim V.
Case 2b. For complex equations with complex coefficients the condition is

more complicated. Let £ be any real cotangent vector at a point in the
boundary which is not normal to the boundary, and let » be any cotangent
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vector at the same point which is normal to the boundary at the same point
and points inward, so » > 0. If L( f) is elliptic then oL( f)» is invertible, and
the linear map

[oL(f )] '[eL(f)E]

is an automorphism of the fibre of V at that point which has no real
eigenvalues. For oL( f )¢ is linear in £ since r = 1, and if

[oL(f)7] '[eL(f)¢]v = Ao

for some v € V then

oL(f)(é—Ar)v=0.

If A is real then ¢ — A is real, and ¢ = Av since v is normal and £ is not. Since
L( f)is elliptic we have v = 0.
We can decompose the fibre of V at the point as a direct sum

Vi(f, &)@V (f.67)

of eigenspaces whose eigenvalues have imaginary part positive or negative.
Then B(g) is a coercive boundary condition for the elliptic operator L( f) if
and only if Null B(g) is transversal to V™ (f, §, ») for all such £ and ». Using
the homogeneity in ¢ and », it suffices to check the condition for |§|=1,
|v|=1, and ¢ L » in some inner product on V. Hence the set of pairs (f, g)
such that L(f) is elliptic and B(g) is coercive is open. When dim X = 3 we
can continuously rotate § into ~§ without passing through the normal covec-
tors. Since oL( f )£ is linear in £

VE(f, & v) =V (f, & 7).

Hence dim ¥+ = dim V™ = dim Z when dim X = 3.

For an elliptic equation L( f) with a coercive boundary condition B(g), the
map M(f, g) always has finite dimensional null space and closed range of
finite codimension, and its index

I(f, g) = dimNull M(f, g) — codimIm M( f, g)

is locally constant. Hence one way to evaluate the index is to deform the given
problem into one for which it can be computed. If the index is zero and the
only solution of the homogeneous equation is trivial, then M( f, g) is invert-
ible.

We now give the following result.

3.3.5. THEOREM. Let U be the open set of all pairs (f, g) in
C®(X, D"(V,W)) X C*(aM, D*(V, Z))

such that L(f) is an elliptic linear operator of degree r and B(g) is a linear
coercive boundary condition of degree s, and the boundary value problem

L(f)h=k onX, B(g)h=1 ondX
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has a unique solution h € C®(X, V) for all k € C*(X, W) and | € C*(3X, Z).
Then the solution h = S( f, g)(k, 1) defines a smooth tame family of linear maps

S: (Uc C>(X, D'(V,W))) X C*(3X, DV, Z))
XC®(X, W) X C®(3X, Z) - C~(X,V).
PrROOF. Again we must choose gradings on our spaces with the properties

listed before, and we also need the condition that for / € C*(3X, Z) and
l€C®(X, Z)

Wlo=inf{lillo: 1| 3X =1}.
This condition works for the grading C"*? but not for L;. Another possibility

that works is to take || ||, as the norm in the Besov space B4/P)*" where d is
the dimension (with dimdX = dim X — 1). Then we have Cy CBi{rccC’
fory >d/p.

Choose f, € U. Since the equation L( f;) is elliptic, the boundary condition
B(g,) is coercive, and the solutions are unique, we have a strong Gérding’s
inequality

all, < CUNL(f)RIlg + IB(go)All,—,).
As before, if | f — foll, <eand llg — goll ,_, < & we have
Nal, < CIL(f )Rl + 1B(g)All,—s) + CULf = fyllg + llg — goll,_ )l A,
When ¢ > 0 and § > 0 are small enough then
Al < CUIL(f)Allg+ I1B(g)RI,_,).
3.3.6. LemMA. If IIf—follg<e, llg—goll,—s <8, and L(f)h =k and
B(g)h = lthen foralln=r
WAl < CUlkl,—, + W1l ,—s) + CU f =, + gl )UK+ N1,—y).

ProOF. This holds for n = r. We assume it is true for some n and proceed by
induction. Let v be a vector field on X which is tangent to the boundary, so
that v| 8.X is also a vector field on d.X. We choose first order linear differential
operators v, on C®(X,V), C®(X,W) and C®(3X, Z) whose symbols are
oV, (£§) = (§ v). Then we also get first order linear operators on
C*(X, D'(V,W)) and C*(3X, D*(V, Z)) so that

v.L(f) =L(f)v, + L(v,f), V,B(g)=B(g)v,+ B(v,8).
By the induction hypothesis, for all &
Ikl < COL(f )R, -, + 1 B(g)hIl,—,)
+CUf o, + gl — YL RN + IB(f)gll,—,).
Applying this to VA instead
v hll, < CUL(f)V,hll,_, + 11B(g)V,hll,_,)
+CU ey + gl UL ) Vhllg + 1 B(g)V,hll,—,).
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Now we have
NL(f)vhll, -, <lvkll,_, + IL(v,f)hl,_,,
IB(g)v,hll,—,<lv,gll,_, + 1 B(v,g)hll ,_,
and
WL(v,f)hll,—, < CUAl, + 1 fll—, i I1AlL,),
NB(v,g)hll ,—, < CIAll, + llgll,—ssillAll,)
and from the induction hypothesis
Nall, < CUkll,—, + Hl,—s) + CU N, + gl — ) kllg + 11,—),
Al < C(lkllg + 21 ,—,).
Combining these estimates and interpolating where necessary
NL(f)Vohll o, + 11B(g) Vbl ,—y < CUKN oy + M —gi1)
FCU SN yepiy + gl )kl + HHN,—,).
Then using this estimate for # and for 0
N, hll, < CUkl,—pqy + N ,—gsy)
+C( f Il iy + NG )UK + L)

This estimates all the tangential derivatives, but we must still estimate the
normal derivative at the boundary from the equation L( f)k = k.

Choose local coordinates near the boundary x!,...,x4 ! and x4 = 0. Let K
be a compact neighborhood of a given point and let || ||, x denote the #n-norm
over K. We can cover the boundary with a finite number of patches of this
sort. Then for n = r we will have

I’hd )
(ax ) n—r+1,K

WAl < (Env hll, + 2 2
summing over a finite number of vector fields v tangent to the boundary and a
finite number of patches K at the boundary On the patch K we can write

L(f)h=L¥f)n + EL(f) +Lo(f)h

where L,(f) and Ly( f) are linear differential operators of degree r — 1 whose
coefficients are just some of the coefficients of L( f ), and where

L¥(f)n? = Zfﬁ

(3x “)

and f? = oL( f)dx?) is the symbol of L( f) in the normal direction. Then f?
is always invertible, and if || f — f; |l ; < & with & sufficiently small we will have
the estimate

) e < O+ 1£E ).
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We can solve for

a’h” -1
=2 (fF) L¥f)r*
(0x?)" E( )
and we see that
TN < CULH Il o+ 1F 1 g 1L F R 5)-
(axd) m,K
Now L¥(f)h = k — 3421 L,( f)dh/dx’ — Ly( f)h and
oh oh dh
L, — < Cl||— + — s
J(f)axj m.K ( 0x’ lm+r—1,& 1/l x ax’ r—l,K)

NLo(f)Al e < CUAN gy i+ W N i MR D ).

We can extend 9,/dx/ outside of K to be a smooth vector field tangent to the
boundary for 1 <j < d — 1. This gives us the estimate

ILE A, < C(IIkH,,, UV, + Hfll,,,HhII,)

summing over a finite number of v tangent to the boundary. Since
I L*(f)hll o < CliRll, we have

'k <c(uknm+2nvuhnm+,_l+nfnmuh||,).
(axd)' m,K v
Wenowletm =n — r + 1 and get
o
. < (ko + SUSAL + 1l sllAD,).
(axd) n—r+1,K ( " v )

Combined with our previous estimate on || v, k||, we get
WAl ey < COKN iy + W)
FCS Ny + gl s )Nl + 1121 ,—,).

3.4. Symmetric systems. Let X be a compact manifold with a smooth
boundary dX. Let V be a vector bundle over X, and let V* = L(V, R) be the
dual bundle. We write ( , ) for the pairing of ¥ and V*. Let L(f)h = k be a
linear differential operator of degree 1 mapping sections 4 in V to sections k in
V* with coefficients f in the bundle D'(V, V*) of all such operators. We say
L(f) is a symmetric operator if its symbol oL( f)(£) is symmetric, so that for
allh, and h, in V

(oL(&)hy, hy)y= (oL(£)hy, hy).
We say that the boundary X is nowhere characteristic if oL(»)h # 0 when
h#0 and » # 0 is a normal covector at the boundary. In this case the
boundary 90X divides into two components 3* X and 9~ X, such that for an
inward pointing normal covector » > 0 we have oL(») positive-definite on
9" X and negative-definite on 9~ X.
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We wish to solve the symmetric system L(f)h = k with given boundary
values h=h" on 3% X and no condition on 9~ X. This will be possible
provided there exists a function ¢ on X such that oL(f)(dt) is always
positive-definite for the covector dt € T*X. This result is due to Friedrichs. We
call ¢ a positive weight function.

LEMMA. Let L(f) be a symmetric system nowhere characteristic at the
boundary. If there exists a positive weight function, then both 0% X and 3~ X are
not empty.

PROOF. Let X and £ be the points where ¢ has its minimum and maximum. If
oL( f)(dr) is positive-definite, surely dr # 0. Hence X and £ lie in 9X. At X the
covector dt is an inward pointing normal covector, and at X it is an outward
pointing normal covector. Then X € 3* Xand X € 9~ X.

It is also possible to consider the case where X is a manifold with corners. At
the corner we allow X to be modeled on R™ 2 X {R =0} X {R=0}. We
must assume that at each corner there are two boundary components intersect-
ing, one of which belongs to 3* X and the other to 3~ X. The following
argument goes through unchanged, because in our estimates we take deriva-
tives parallel to 3+ X only, and they need not be parallel to 0~ X also. This is
important for finding local solutions of the equation, or for showing that
compact support is maintained in a certain set.

Let Di(V, V*) denote the subbundle of the vector bundle D'(V, V'*) of first
order operators which are symmetric. Let h € C*(X, V) and k € C®(X, V'*).
In local coordinates h = {h*} and k = {k,}, and the pairing is given by

(h, k)= Jhk,.
Then locally f = { f,js, f,5} and the operator is given by
L(f)hﬂ 2 aﬁa ; + Efaﬂh“ =

We see that L( f) is symmetric if and only if £ = f;a The zero order terms of
fap need not be symmetric. We let U denote the open subset of C*( X, D(V, V'*))
of coefficients f of symmetric operators which are nowhere characteristic at the
boundary and have at least one positive weight function.

3.4.1. THEOREM. For each f € U C C¥(X, Di(V,V*)), each k € C*(X, V*)
and each h™ € C®(3% X, V) there exists a unique h € C®(X,V)with L(f)h =k
and h|3* X = h* . The solution h = S(f )k, h™ ) defines a smooth tame family
of linear maps

S: (U c @=(X, Di(V, V%)) X C=(X,V*) X C*(3* X, V) » C*(X,V).

PrOOF. We shall show how to derive the a priori estimates that prove S is
tame. If we replaced functions by distributions and derivatives by differences,
we could also prove the necessary regularity for the solution, but we leave this
to the reader.
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To begin, we choose an inner product ( , ) on the bundle V giving an
isomorphism between ¥ and V*. We also choose a smooth positive measure on
X given locally by dp = p(x)dx where p(x) is a positive function and dx is
Lebesgue measure. Finally we choose a smooth normal cotangent vector field »
on dX pointing inward. Then there is a uniquely determined smooth positive

measure dji on 3.X such that du = vdji. In local coordinates if x = (x!,...,x™)
with x” =0 and % = (x',...,x™"!) then dp = p(x',...,x™)dx"...dx™ and
dii = j@(x',...,x" Hdx'...dx" "and » = »(x',...,x™ ")dx™. Then we have

p(x's..xm710) = w(x!,.. o xm Da(x!. L xmTY).

We define inner products on C*(X, V), C*(0X,V) and C®°(* X,V) by
letting

((hk)Y= [ (h k) da,
((hk)ye= [ (hk)di ((hik))o= [ (hik)di

and we let

1ANG = (Choh))s TRIG = (ChyR))as AN = ((hoh)) .

We shall measure & € C*(X, V) in a norm || 2|l , which measures the size of
the first n derivatives in the L, norm || A|l,. Similarly for k, and for h* =
h|9* X we have ||h™ ||, , analogously on 3" X. But we shall always measure
f € C®(X, D{(V,V*)) in a norm || f|l,, which measures the size of the first n
derivatives in the supremum norm || f ”o sup, | f(x)| . It will be clear from
the context which is meant. Both gradings satisfy the interpolation inequalities,
and | fhlla < ClifllgllAll,.

We define the dlvergcnce of a section f = { faﬁ, fap} of the bundle DYV, V™)
to be the section div(f) = f = { faﬁ} of the bundle L(V, V*) given locally by

f;ﬁzz aa, aB+2/;x 103.“(3‘) 2];3-

Thus div is itself a linear first order operator. We get the following formula.
3.42. LEMMA. For allh € C®( X, V)
2((L(f)h, hy)= ({div(f)h, b)) = ((oL(f)(»)h, h)) 5.

ProoF. This follows at once when we integrate by parts.

Pick an f, € U. Then for all f in a neighborhood || f — f, Il < € of f, the
symbols oL(f)(dt) on X and oL(f)(v) on a neighborhood of 3* X will be
uniformly positive-definite and oL( f )(») on 3~ X will be negative-definite, for
¢ > 0 sufficiently small. If in addition || f — f,|l, < e then || f|l, < C. We let U
denote any open neighborhood of f; such that for all f € U the symbols
oL( f)(dt) and 6L( f )(v) are uniformly positive- or negative-definite and || f ||
is uniformly bounded.
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3.4.3. LEMMA. For allf € U and all h
—((L()n, hYY<C(IRIZ+ ] 3* X13.,).

PRrOOE. This follows from Lemma 3.4.2. Since || f |, < C on U, Idiv( Hlly <
C, and

| ({div(f)h, h))|< Clihl3.

On the other hand, oL( f)(») is positive-definite on 9" X and negative-definite
ond” X, while || fll,<Con U, so

((aL(f)(»)h, k)Y, <Clh|3* X113 ..

This proves the lemma.

Next we introduce the parameter p, and we measure e ?‘h using the weight
function . The following estimates will hold for all p sufficiently large with
various constants C all independent of p. We always take f € U and let
k=L(f)hand h* =h|3" X.

3.4.4. LEMMA. We have the estimate
ple?hllg < Clle ™kl + Vplle k" Il ).
PRrROOF. For any function ¢ on X
L(f)oh = $L(f)h + oL(f)(de)h
and taking ¢ = e~ 7"
L(f)e ?h=eP'L(f)h — poL(f)(dt)e ?h.
Then
P <<0L(f)(dt)e"1"h, e""h))
= ({ePL(f)h,ePh))— ({L(f)e"'h, e ?'h)).

In the first term oL( f )(dt) is uniformly positive definite for f € U, while the
last term is bounded by Lemma 3.4.3. Thus

plle”hrIIZ< Clle P hllglle ?klly + Clle™”hlI3 + Clle™”h* |13 .

When p = 2C we may eliminate the term Clle ?'h||3 on the right. Then
completing the square gives
2
—pt 9 —pt C, - 12 —ptp+ 112
fplle?hlly — —=llePklly| <—=lle™?kll3 + Clle™”h* 113
/r p

which gives

/7 lle=Phlly < —f:ne—f"kno +Clle™h* g .
p

which proves the lemma.
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Now we prove the main estimate

3.4.5. LEMMA. For all n = 0 we have

ple?nll, < c(le=?kll, + plle P, )

+C(I f ey +p") (e ™%kl + Vo lle P Il ).

PRrOOF. The result holds when n = 0 by the previous lemma. We assume it is
true for some n and proceed by induction. To simplify the discussion we let

E,=lle Pk, +plle?n*1, .,
+ (1 f sy + ") (e ™kl + Vo lle™P R g4 )

so that we have
plle™?hnl,<E,

for the induction hypothesis. We point out first that by interpolation (since

Hfl, <C)
(IHf Iy +p' e ?kll,, < CE,,
(W fll,ey + ' Wplle Pt I, . < CE,
where /, m = 0 and / + m < n. As a consequence we have
PE,<CE,,,.

We begin by estimating tangential derivatives. Let v be any smooth vector
field tangent to the boundary. Choose a first order linear differential operator
¥V, on sections of V' =~ V* with symbol

ov,(£) = (¢, 0).
Then there is a uniquely determined operator v, on sections of D(V, V*) with
V.L(f) = L(f)v, + L(V,f).
In general if || f I, < C we have
NL( )R, < C(NAl . + AR
by interpolation. Now since
V(e P'k) = e P'v k — pe P (V,t)k
we have
le ”"v.kll, < Clle™”kll ., + Cplle™?kll, < CE, .
Also since |7, f Il < Cll fIl; < C we have
NL(v,f)e?hll, < C(le™”hll oy + I Fll s lle?R1,)
and
plloL(w,f)e P hll, < C(plie hll, + pll fl i1l Phll,).
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Since e ?'L(V,f) = L(V,f)e " + poL(V,f)e ?, by interpolation we get
le P L(V,f)hll, < Clle™hll oy + C(I fll4p + P )le™PRll .
But we know that forp =1
e hllg <plle ?hllg< C(lle™kllg + Vp e Iy, )
s0
”e_p’L(Vof)h “n < C”e—pth "n+1 + CEn+l'
Now e P’ L(f)V,h = e 7'V, k — e P'L(V,f)h, so that
le ' L(f)V.hll, < Clle™”hll .\ + CE,.,.
We now apply the induction hypothesis to v, 4 instead of h. This gives
plle v, hll, < C(lle”L(f)V,hl, + |plleP'v,n| 3" X1, )

+C(1f s +2") (L) Voo + VP e 7,k 8% X1l ).
Since v is parallel to the boundary, and
e ?'v,h= v, (e ?h) + p(v,t)e Ph
we have
le7?*w, k|3 Xl y < Clle™”h* |l .y . +Cplle™?n* I, ..
This gives us
plle?' v hll,<Clle ?hll ., + CE, .
Now V(e P'h) = e 'V h + p(V,t)e P'h so we get
pliv,(e?h)ll, < Clle™?hll ., + Cplle™?'nll, + CE,,.
By the induction hypothesis
plle™®hll, < CpE, < CE,,,
so we have the following estimate.
3.4.6. LEMMA. If v is parallel to the boundary
plIv(e”R)ll, < Clle?hll,,, + CE,.,.

Next we must estimate the normal derivatives. To do this, we pick a finite
number of vector fields v,,...,0,_;, v,, which span the tangent space at each
point, such that v,,...,v,,_, are all parallel to the boundary, while (», v, )= 1.
We choose operators V; as before with symbols

ov;(§) = (v, €)1

Let g = (g, 815---8m) be a section of the bundle Lg(V,V*)"*! that is,
(m + 1) sections of Lg(V, V*). We can form the operator

L(f)=g+&vi+ 18,9,
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with f € D{(V, V*). This defines a linear vector bundle map
A: Lg(V, V)" S DIV, v*)

with Ag = f. Since the vector fields span TX, 4 is surjective. Then we can find
a smooth right inverse (which is not unique)

B: DYV, V*) - Ly(V,v*)"*!
with AB = I. Let
B(f) = (Bo(f)’ Bl(f)’-"’Bm(f)) = (go’ gl""’gm)'
Then each B; is a linear vector bundle map
B;: Dg(V,V*) - Lg(V,V*)
and for any f
The symbol of L( f) is

oL()E) = 3 (69)B(1)

and since v,,...,v,,_, are parallel to 9.X,
oL(f)(») = B,(f).

For all f € U the automorphism B,( ) is uniformly invertible on a neighbor-
hood of the boundary. Let ¢ be a smooth function with compact support in
this neighborhood which is identically 1 on a smaller neighborhood of the
boundary, and let

G(f)=¢B,(f)'B(f).

Then ¢B,(f)~ ‘~and each C( f) is a smooth nonlinear vector bundle operator,
and forallf€ Uandn=0

16B,(f) a<c+1f1,), IC(HI,<c+1rl,).

We can write

¢V, =B, (f) 'L(f) — G(f) — 2 G(f)v,

j<m

and apply this formula to e ?‘h. Thus
OV, (e77'h) = 6B, () 'L(f)e™Ph = Co(f)e?h = T G(f)v;(e ).

j<m
This gives us
I69,,(e?h)Il,, < CIL(f)e™hll, + I FILIUL(F)ehll,)
+C(lle™nll,, + I £ 1l ,Ile=?"Rll,)
+C 3 (IIv,(e R, + 1 £ 11,17, (e™P )l ).

j<m
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Since L(f)e ?'h = e P’k — poL(f)(dt)e ”'h
IL(f)e PRI, < Clle ™k, + Cp(lle 2RI, + I f1l e Phll,).
By interpolation we get
6w, (e P )l < C(lle?kll,, + I £l lle™"klly)
+Cp(lle™nll, + I fll .o lle?hlly)
+C X v (eI,
j<m
Now plle ”’h|l , < CE, by the induction hypothesis, while
plfll, i lle”Phlly < Cllfll,,H(IIe_’”kIIo +plle Pt ||0,+) < CE,
also. Thus we get the following result.

3.4.7. LEMMA. We can find a differential operator Vv, with symbol 0¥, (v) = I
on 3" X, a finite number of operators V; acting parallel to the boundary, and a
function ¢ equal to 1 in a neighborhood of the boundary, with

oV, (e ?h)l,<C X lIv,(e ?h)ll, + CE,.
j<m

Now clearly we have an estimate
VAlly < (AN, + 169, + 19,1, |
v

where v runs over a finite number of vector fields parallel to the boundary.
Applying this to e”?’h and using Lemmas 3.4.6 and 3.4.7 we get

ple ?hll, ., <Clle?hll ., + CE,,,
remembering that pE, < CE,,,. Now if p is large enough compared to C
(which may depend on n) we get
plle ™l < CE,,,
which completes the induction. This proves Lemma 3.4.5.
3.4.8. COROLLARY. For alln
Nall, < CUIkl, + TA* 1, o) + ClLfI (Ll + AT g, 4 ).

ProoOF. Take any p large enough in Lemma 3.4.5. This shows that h =
S(f)(k, h™) satisfies a tame estimate of base zero and degrees 0 in k and 4™
and degree 1 in fon a || ||, neighborhood of any f, € U. Thus S is tame. Since
it is a family of inverses of a smooth tame linear family, S is even a smooth
tame map.

Part III. THE NASH-MOSER THEOREM

IIL.1. The proof.
1.1. Statement of the theorem.

1.1.1. THE NASH-MOSER THEOREM. Let F and G be tame spaces and P:
U C F > G a smooth tame map. Suppose that the equation for the derivative
DP( f)h = k has a unique solution h = VP( f)k for all f in U and all k, and that
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the family of inverses VP: U X G — F is a smooth tame map. Then P is locally
invertible, and each local inverse P~ is a smooth tame map.

Observe by contrast with the inverse function theorem in Banach spaces that
we need to invert the derivative DP( f) for all f, not just one, and the whole
collection of inverses must be “nice”.

Of course we also have partial results if DP is merely injective or surjective.
Let P be a smooth tame map.

1.1.2. THEOREM. Suppose DP is injective with a smooth tame family of left
inverses VP. Then P is locally injective.

1.1.3. THEOREM. Suppose DP is surjective with a smooth tame family of right
inverses VP. Then P is locally surjective. Moreover in a neighborhood of any
point P has a smooth tame right inverse.

1.2. Normalizations. To begin the proof of the Nash-Moser theorem we make
several normalizations which simplify the proof of the theorem. Let F and G be
tame graded spaces and let P: U C F — G be a smooth tame map of an open
set U in F into G. We suppose that DP( f)h = k has a solution h = VP( f )k
where VP: U X G - F is also a smooth tame map.

1.2.1. LEMMA. We may assume F = 2(B) and G = Z(C) for two Banach
spaces B and C.

ProoF. If VP is invertible, then F and G are tamely isomorphic, and we may
assume F = G, identifying them by DP(0). Since F is tame, we can find an F
with F X F ~ 3(B) for some Banach space B. Define a new map P:UC 2(B)
— Z(B) by letting U = U X F and

P(f,f)=(P(f), ).
Then we have
DP(f, f)(h, k) = (DP(f)h, k) = (k, k)
which has the solution
VP(f, f)(k, k) = (VP(f)k, k) = (h, k).

Then P satisfies all the same hypotheses as P.

If DP is only injective with a left inverse VP, we can let F X F~3(B)and
G X G~ 3(C) and define a new map P: U C =(B) - 2(B X C) by letting
U=UX Fand

P(f,f)=1(0,f P(f),0)
since (B X C) = Z(B) X 2(C) = FX F X G X G. Then
DP(f, f)(n, k) = (0, , DP(f)h,0)
is also injective with left inverse

VP(f, )11k, k)= (VP(f)k,I)
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and P satisfies the same hypotheses as P. If DP is only surjective with a right
inverse VP, welet U= U X F X G X G and define a map P: U C (B X C)
- 3(C) by letting

P(f, [ 88 =(P(f) 2.
Then

DP(f,f. 8 &)(h, h, k, k)= (DP(f)h, k)
is also surjective with right inverse

VP(f. 1.8 8)(k, k)= (VP(f)k, k)

and P satisfies the same hypotheses as P.
We wish to find a solution of the equation P(f) = g. Givenany f, € UC F
with P(f,) = g, € G, we shall find a solution f near f, for any g near g,.

1.2.2. LEMMA. We may assume f, = 0 and g, = 0, and hence that P(0) =

PrOOF. We may replace P(f) =g by P(f) =g where f-=f—f0 and
g = g — 8, Then P satisfies the same hypotheses as P, since it differs only by
composition with translations, which are invertible.

The maps P, DP, D?P and VP will all satisfy tame estimates on a
neighborhood of zero. It is convenient to normalize these estimates.

1.2.3. LEMMA. We may assume that P(f), DP(f)h, D*P( f)h* and VP(f)k
satisfy tame estimates of degree 2r in f, r in h, and 0 in k ( for some r > 0) and
base 0 on the set {I| fll,, < 1}.

PROOF. On the space F = Z(B) of sequences f = {f,} of elements in B we
have the operators V?: F — F given by (V?f), = e?*f,, which satisfy || v?f ||,
=l fIl 5+, Similar operators exist on G = Z(C). We may replace P by a new
map of the form

P(f)= vP(V*f).
If P satisfies an estimate

on | fll, <& forn = b, then P will satisfy an estimate

“F(f)” < C(l + “f“m+q—p+s)

on || fll,—, <24 for all m = b — q. By choosing p and g large enough we can
make P, DP, D?P and VP satisfy tame estimates of base 0 on a set {|| f Il , < 8}.
Of course we cannot make them all have degree zero, since the degree of DP
plus the degree of VP will be an invariant. But we do have enough freedom to
make VP(f)k have degree O in k. Then the degrees of P(f), DP(f)h,
D?P(f)h?* and VP(f)k in f and h are finite, so they will be at most 2r in f and
r in A for some r. For convenience we assume r > 0. Finally if we replace P( f)
by P(f) where f = ¢f for some constant c, this dilation will make & = 1. Since
the dilation and the operators V7 are all invertible linear maps, the other
hypotheses of the theorem all remain valid.
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1.2.4. LEMMA. On || f |l ,, < 1 we have estimates
IP(AON, < CUfllsar
IDP(f)hll, < C(IAll,op + 1 fllia IR1L),
ID2P(f){hy, o}, < CUA o BN, + LAy AL,
HIf i WA TR L),
WP()kI, < C(lkll, + 1 fIl 42, 1Kllg)
for every n = 0 with a constant C which may depend on n.

PrOOF. The second, third and fourth estimates are immediate consequences
of the fact that the maps satisfy tame estimates of degree 2r in f, r in & (or h,
and A,) and 0 in k and are linear in 4 (or A, and 4, separately) and k. For the
first estimate we would expect || P(f)ll,, < C(1 + Il f Il ,,4,,), but P(0) = 0, so
we can do without the 1 in the estimate. This may be seen by integrating the
second estimate using the formula

P(f) = P(0) + fo 'DP(if ) fdt

which gives us the estimate

IPCAN, < CUFN ey + W Tia I FL).

Since l| fll o4, < Cll fll ;42,and || fll, < Cll f Il ,, < C the result follows.
1.3. Injectivity. In this section we only need that DP is injective with a left
inverse VP.

1.3.1. THEOREM. There exists a 8§ > 0 such that if || fyll,, <8 and || fill,, <&
then

Lfy = fllo< CIP(f) — P(f)ll,-
Hence P is injective on || f || ,, < .

PRrROOF. We use Taylor’s theorem with integral remainder

P(f)) = P(fy) + DP(f)(fi — fo)
+‘/(;l(1 —1)D*P((1 — 1) fo + 1f,)(fy _f0)2 dr.
Since VP( f,)DP( f,)h = h we have
5=t = Ve {P() — P(%)

1
~ [ = 0D%(( ~ )y + )~ 1)’ )
Using the tame estimateson || f1l,, < 1

Now by interpolation

IA=KIZ<CIfi =Kl A = fKllo



NASH-MOSER INVERSE FUNCTION THEOREM 175

and || f; = foll, < I fillo, + 1 oll 5, < 28. Hence
If we take 8 < 1/2C the result follows.

1.3.2. COROLLARY. If || fyll,, <& and || fi|l,, <& for the same & as before,
then foralln =0

+CU Al s2r + 1 ol 2 IPCS1) = P(fo)lo-

ProoF. Using the higher norm estimates

ID2P((1 = ) fo + o) (f, = o) Na < CULA = foll i, I /i = o1,
+C( AN 2 + 1 follar2 )i = K12
By interpolation
Wy = follws Uy =Bl < ClLfy = folluia Lfy = Sollos
Wf = RNZ<CIfi = follo L fy = follo.
But
WA = follasar < WAl psar + W follsar, i —folly, <C
sO
||D2P((1 - t)fo + tfl)(fl _fo)znn = C(”f]”n+2r + “f0“n+2r)”fl — Jollo.
Then using the previous formula and the higher norm estimates on VP
Ifi = foll, < CUP(f,) = P()N,
FCU Al rar + 112 IPCS) = P(f)llo
+CIUD*P((1 = D)fy + 1h)(fy = /o)l
+CU Al iz + 1 follaaa ID?P((U = 1)y + )/ = £5) -

Plugging in our earlier estimate on D?P and using || f, — fyll, < CIl P(f,) —
P(f)ll, from the previous theorem completes the proof.

1.3.3. COROLLARY. We also have

”fl _fo - VP(fo)[P(fl) - P(fo)]“n
< Clh = follwsar Vi = follo + Cll foll iz, N /1 — KlIG-

PROOF. By our previous estimate

ID2P((1 = 0)fy + th)( £, — £)*1l,
SCUfy = follysa A = Fll + Cll fyll a1 £, = £112
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since Il fill ,12, <l foll pia, + 1 fi — foll 15 2,- We can rewrite our formula as
fi = fo = VP(S)[P(f) — P(£,)]
= -VP(5) [ (1= )DP((1 = 1) fy + ), — fy) dr.

Then using the estimates on VP the result follows.

1.3.4. Problem. How much more is true? Is || f ||, < Cl| P(f)Il ., for some
s? Is the image of P relatively closed in a neighborhood of zero? Is P a
homeomorphism onto its image? Is the image a submanifold? Does there exist
a smooth tame left inverse for P locally?

1.4. Smoothing operators. The proof of the Nash-Moser theorem involves the
use of smoothing operators, which are particularly easy to construct on the
model spaces Z(B). For each ¢ we construct a linear map S,: 3(B) - Z(B)
such that S, = 0 fort <0 and S, > I as ¢t > co. Choose a smooth function s(u)
with s(u) =0 for ¥ <0 and s(u) =1 for u =1, while 0 <s(u) <1 in be-
tween. If f = {f,} is a sequence in Z(B) we let

(8:/)i = s(t = k) fy-
The smoothing operators S, satisfy the following estimates.
1.4.1. LEMMA. Forallm <n
IS, fIl, < Ce™ =™ f1l,,, (1= S)fIl,, < Ce ™ fl,
with a constant C which may depend on m and n.
ProOF. Recall that

NN, = Ze™ N fill 5.
k

Now [I(S,f)illg <l fillg for all ¢t and k, while (S,f), =0 for <k and
(I —S]f)=0fort=k+ 1. Thus

IS, [, < 2 e™ll fill g< e ™" fll,,

k<t
and
WI=S)fll,< 2 e fll g < Cem=m1| f1I,

k=t—1

with C = e" ™™

1.4.2. COROLLARY. If | < m < n then we have the interpolation estimate

WAt clfinsng!

with a constant C depending on |, m and n.

ProOF. For all ¢

Nl < NS fllp+ (T = S)fNl,, < Ce™ DM flI, + Ce ™| f1I,.

If f # 0, we can choose ¢ with the last two terms equal. This happens when

e = fll /N,
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Then
Mflnt<cCclfliz—™1fliim!

as desired.
We shall need to estimate the solution of the equation in 2(B),

ki + cSk, =1,

where c is a constant. Since £, is a smooth path in 2(B), it is represented by a
sequence of smooth paths k, ;in B for j = 0, 1,2,.... Likewise /, is represented
by a sequence /, ; of paths in B. We define a smooth path a, in Z(R),
represented by a sequence 4, ; of smooth functions with values in R, by setting

t .
a,;= exp(cfos('r —Jj) d'r).
Letting a prime denote differentiation with respect to ¢, we have
a;,j = cs(t _j)at,j
and
(atkt), = at(k; + cslkt) = allt'
Therefore
ak, = agky + / " a,l,do.
0=0
Leta, , = ay/a,, so that
t .
ag, ;= exp(—cfos('r —J) dT).
Dividing by a, we get the following result.
1.4.3. THEOREM. If k; + ¢Sk, = I, then
t
k, = ag ko + fa 0. dadb.
This is of course the classical formula for the solution of a linear first order
ordinary differential equation, adapted to our space of sequences in a Banach

space. In order to use the formula we must estimate the kernel a, ,. Clearly we
always have 0 <aqy, ;< 1.

1.4.4. LEMMA. For all 0, t, and j we have
e“ay, ;< C(e” + e%).

PROOF. If <@ or 1 <j + 1 the result follows from a,, , <1. 1f >, + 1
then s(r—j)=1 for all =0, so ap,;=e "% and e“a,, = e’ If
0 <j + 1 then

a,, <ex ft —j)dr) = et
o <exp|l—c| s(r—j)dr|=e
j+1

50 e“ay, ;< e“U"D < ee”/. Therefore the lemma holds with C = e*.
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1.4.5. LEMMA. If 0 < q < c then
foo eay, dt < C(e? + ).
t=0

PROOF. If j < § we have a,, ; < Ce“’™" and
f evaq, dt < Ce® f el gt < Ce

=0 =6
provided g <c. If § <j we break up the integral into two parts. Since

ao,j<l

J
f evay,; ; t<f e? dr < Ce¥
=6
while since a4, ; < CeUi—0

[ evag, < Cecl [~ et dr < Cel.

=) =)
This proves the lemma.

1.4.6. THEOREM. If k| + ¢S,k, = I, for 0 <t < T then for all p =0 and for
O0<g<c

T T
[e® Ik, dt < Clikll g + ch e NN, + NN,y dr
0
PROOF. We have
k= agko+ [ ag,1gdb.
6=0 "’
Since
Ik, = e lik, I 5
J
we have

je‘"nk I, dt = jzeq Pk, N 5 dt

t
<f Eeq'e‘”{ao nillko 1l g + fazoao’,,jllla’jll,,dﬂ} dt
The first part is bounded by

2 epj{ fTO

J =

O,Jdt}llkojllg c2e<P+q>f||ko 115 < Cliky

ptq’
The second part is bounded by
T .
‘/;:0281”{'/; ao,jdt}lllajllgdo </ Zepl(eqj+eq9)||laj||3d0
J
< Cfozoul,,u,,ﬂ + e, do

which completes the proof of the theorem.
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1.5. Surjectivity. We now describe the plan of attack for solving P(f) = g. If
we were working with Banach spaces, we could solve an ordinary differential
equation for a path f, starting at f, = 0 such that P(f,) goes in a straight line
from P(0) = 0 to g. The equation is

£ =cVP(£)[g— P(£)]

where a prime denotes differentiation of a path with respect to ¢, and c is a
constant. Since DP o VP = I we have

DP(£,)f = c[g = P(£)].
If k, = g — P(f,) is the error then k, = g and
k;+ck,=0

which shows that k, = e”“‘g. Thus the error goes to zero as fast as any
exponential we desire, and f, converges to a solution fof P(f) = gas¢ — co.

In Fréchet spaces there is no reason to expect that the differential equation
will have a solution. However the spaces =(B) and 3(C) possess the smooth-
ing operators S, described before, which may be used to mollify the differential
equation so that it will have a solution. Since S, — I as ¢ — oo, the behavior in
the limit is much the same as before.

1.5.1. Algorithm. Let f, be the path in =(B) with f, = 0 which solves the
differential equation

£ =cvP(s,1)8[s = P(£)].
We shall show that f, converges to a solution f of P(f) = g as ¢t — oo, while the
error k, = g — P(f,) goes to zero exponentially in any norm. To obtain this

result we must choose ¢ > 2r + 1. To see that the error does go to zero, we
observe that k, itself satisfies a differential equation.

1.5.2. LEMMA. Let f, be the solution of the algorithm and let
k,=g=P(f), 1, =[DP(s,f,)— DP(£)]f.
Then
k; + ¢Sk, = 1,.
ProOOF. The algorithm says that
= cVP(S,f,)S,k,.
Since DP o VP = I we have
DP(S,f,)f = cS,k,.
Now P(f,)’ = DP(f)f/, so
k, + ¢Sk, =[DP(S,f,) — DP(f)] f =1,

The question naturally arises whether the algorithm will have any solution at
all. We can write the differential equation as

=V f.8)

where
V(t’ /s g) = CVP(S,f)St[g - P(f)]
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Here ¥ maps an open set in R X F X G into F. Observe that V factors through
a Banach space. For let Z,(B) denote the subspace of sequences { f,} in Z(B)
with f, = 0 for k > T. Then Z(B) is a closed subspace and all the norms || ||,
are equivalent on 2,(B). Hence =,(B) is a Banach space. The image of the
smoothing operator S, lies in Z,(B) for t<T. Hence S,f € Z,(B) and
S,[g — P(f)] € 24(C) for ¢t <T. This shows that ¥ factors through the
Banach space Z(B) X 2,(C) for ¢t < T. Indeed if we let

Z(t,f,8) = (8.1, Sle = P(N)]), W(] k)=cVP(f)k

then V= W o Z and Z maps into 2,(B) X Z,(C).

It follows by Theorem 1.5.6.3 that the algorithm has a solution for at least a
short time with any initial data in its domain. Moreover there will be a largest
half-open interval [0, w) with w < o0 on which the solution exists. We shall
establish a priori estimates for the solution independent of w, which show that
the solution remains in the domain of definition and is uniformly continuous.
If w were finite, the solution f, would converge to a value of f in the domain of
definition as ¢ - w. Since w < oo, the equation still factors through a Banach
space. We could then solve for a solution on [w, w + €) which extends the
original solution to [0, w + &), contradicting the optimality of w. It then
follows that w = oo, the solution exists for all time, and converges to a solution
of P(f) = g ast — oo. This is the plan. To make it work, we turn now to the
derivation of the a priori estimates.

1.6. A priori estimates. We now estimate the various terms in the algorithm
using the tame estimates on P, DP, DP and VP.

1.6.1. LEMMA. Foralln =0and q = 0
NN g < Ce?(llk, M, + 1 A1 i ).
PROOF. Since f| = cVP(S, f,)S,k, we have
N g < CUSK M i g + CUS fill iy g2, 1S .
Using the estimates on the smoothing operators the result is immediate.

1.6.2. LEMMA. For alln =0
W, < CHAN 1o Lk .
PrOOF. We have
1, =[DP(s,1,) = DP(£)] £
Then
l, = -B(f,, SF){(I = S)f,, £}

where

B(f, ) By = [ D?P((1 = w)f + uf ) {h, ) du
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It is immediate that B(f, f XA, h'} is smooth and bilinear in 4 and };_ and
satisfies a tame estimate of degree 2r in f and f and degree r in h and h and
base 0. Thus

W B(f, f)(h, B}, < Cllhll,, RN, + ClAILAN,,,
+C(Nf N psar + 0 AN a2 IAILIAN,.
Applying this estimate to /,,
NN, < CUCE = S) A VAN, + 0T = S)LI N e
+CU £l gz + WS £l i L = SYEI £,

We estimate these three terms using the properties of the smoothing operators
and our previous estimate for f. For the first use

NI — Sl s, < Ce "l fll 4o, and I £, < Ce"llk,ll,.
For the second use
(= S)fNl, < Ce "D fll .1, and N £, < Ce™ Pk, I,
For the third use | S, £l ..., < Cll £l ,1,, and
(1= S)fll, < Ce "Il fll,,< Ce™™ and |l f/Il, < Ce"llk,ll,

since || £,11,, < 1. Then the lemma follows.
The following barrier estimate will show that the solution remains bounded
in the lowest norm.

1.6.3. LEMMA. If the algorithm has a solution f, on 0 <t < T then with a
constant C independent of T

T T 2
[k llgde < Clgly, + ([T kg dr)
0 0
PROOF. By our estimate for the solution of k; + ¢S,k, = I, we have (for
c>2r)
T T
[ ¥ Ikdlodr < Cliglhy, + C[ &> l1llg + 1,11, .
0
Our estimates for f say that

7115, < Ce?lik,llo and Il f/ll,, < Ce*lik,Il,

from which we see that

12, < C [ lkllo db,
0

I £ll,, < cf’e“"’uk,nodo < CeZ"/’eZ"’uk,noda.
0 0

By our estimates for /, we have
W o< Cll il 1k Mg and [I7,0l,, < Cll fll 4kl
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which shows that

t
e NIy + N,y < Cez"llk,llof e*®llkqllo do.
0

For ¢ < T the integral from 0 to ¢ is of course bounded by the integral from 0
to T. Then if we integrate this estimate the result follows, since

T T 2
/&wmfwummsdf&whmmy
0 0
To apply the barrier estimate, let
T
Krzfe”kaom.
0

Then we have K, < Cligll,, + CK}.
1.6.4. LEMMA. Either K, < 2C|Igll,, or Ky > 1/2C.

ProoOF. We have K (1 — CK;) < Cligll,,. If K;<1/2C then 1 — CK =
1/2and K- <2Cligll,,.

Now K clearly depends continuously on 7. If we choose I gll,, < 1/4C?
with the constant C above, then 2Cligll,, <1/2C. It follows from the
estimate above that K cannot cross the forbidden region between 2C| gll,,
and 1/2C. Since K, = 0, K must remain on the small side, and we get the
following result.

1.6.5. LEMMA. If |l gl ,, < & and § is sufficiently small then

T
[Fe ik llgde < Cligly,.
0

1.6.6. COROLLARY. We also have || f1I,, < Cligll,,.

PrROOF. We have || f'Il,, < Ce*"||k,ll 5, and the result follows by integrating.
If ligll,, <& and C8 <1 then || £ll,, <1, and the solution of the algorithm
remains in the domain of definition.

We still have to estimate the higher order norms. We begin with a pre-
liminary step to start an induction.

1.6.7. LemMA. If || gl ,, < 8 and § is sufficiently small then

T
[Teer kg dt < Cliglyy
0

PRrROOF. By our estimate of the solution of k; + ¢S,k, = /, we have (when
c>2r+1)

T T
Lw”WmmmscMmm+CLWHWWM+Mme-
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Since || /1l ,, < Ce?" |k, |l g and || £/l 4,4 < Ce“ * V| k||, from Lemma 1.6.1,
we have

£, < cfo’eZ"’uk,,uodK Cligl,,,
I fllaey < Cffe(4r+])0“ka ”0 do < Ce(2'+l)'flez"0”k0”0 de
0 0

< Ce@+iigll,,.
By the estimate for /, in Lemma 1.6.2 we have
W o< Cll Al kMg and N1l 500 < ClIfill 4y 1Kl
so that
e VLN + 1N 5y pq < Ce@ V0 g1, ll K-

Integrating this estimate we have

T T
/0e<2'+‘>'||k,nodz< Cliglly.; + c1|g||2,f0 eV k||, dt.

If Cllgll,, <1 we may subtract the last term on the right from the left, and
this proves the lemma.
We can now prove the following estimate.

1.6.8. THEOREM. If f, is a solution of the algorithm and if |l gll,, < & with §
sufficiently small, then for all n = 2r and all ¢ = 0 we have

T
[0 £ e g dt < CeTligll,

with a constant C which may depend on n and q but is independent of T. Note that
8 > 0 is independent of n and q.

PrROOF. We write n = p + 2r. We shall do the proof by induction on p.
From Lemma 1.6.1 we have

N1t gaar < CelHa¥200 1k |1
so that by the last lemma

T T
S UA N gr2 0 < CeT [[eCrD?llky g d6 < Celgllay.

This starts the induction for p = 1.
Assume that for some p = 1 and all ¢ = 0 we have

T
./; “ f,lllp+q+2rd0 < CeqT”g”p+2,.

Then [ £ll 12, < Cligh, 4, and £l 4441 < Ce®*ligll 5, Conse-
quently by Lemma 1.6.2

VLN, + M yzpiy < Ce® D il s, 1kl
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By the estimate for the solution of the equation k| + ¢Sk, = [, we have

T T
[Nk e < Clgl g+ e LI + Ly d.

Since
T
[Tkl di < Clgly,,
0

we have

T
f e(2’+1)’"kt"pdt < C"g“p+2r+l + Cligh 42,1815, 41
0

By Lemma 1.6.1 we have
" f;l"p+q+2r+l =< Ce(q+2r+ 1)’(”kt"p + " .’; ”p+2r” kl “ 0)
and since
T
1fll o2 < Cliglysz, and [k, llgde < Cliglly, .,
0

we have
LTV gt < CeTUgN iz, + N ).
When || gll,, < & < 1 we have by interpolation
llgl|p+2r“g”2r+l < C”g"p+2r+1“8”2r< C”g“p+l+2r
which eliminates the last term and completes the induction.

1.6.9. COROLLARY. If f, is a solution of the algorithm on 0 < t < w < oo and if
Il gll,, < & with 8 sufficiently small then

WA, <Cligll, forn=2r

with a constant C depending on n but independent of t, and
Lim I f,—fl,=0.

[L,Tow
PROOF. The first estimate follows from
t
1A, < [ 51,46 < Cligll,
0
which is the previous theorem with ¢ = 0. Since
T
jo £, de<Cligl,
with a constant independent of T, we have also

[ £, de<Cligll, < oo
0

and therefore
h_xg;f £, de =0
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since || f/|l,, is a continuous function of # with a finite improper integral. Then

lim I~ £ll,< tim [ 1,d6=0
4 T

L,Tow S Tw

and the corollary holds.

As indicated before, we consider the largest open interval 0 < 7 < w < o0 on
which the solution exists. If w were finite, the previous estimates show that
f,—~f, as t > w for some f, € F with || £,ll,, < 1. We could then use our
existence theorem to prolong the solution past w. Therefore w = co, the
solution exists for all time, and f, —» f, as t - oo for some f_ € F with
Il £ Il,, < 1. Moreover we have || £ Il,, < Cllgll, for all n>2r. Since f/ =
cVP(S,f)S,[g — P(f)] and f, converges to f,, as ¢ = oo, we must also have f’
converging as ¢ — 00. Since for all n

o0
Lnﬁmm<amm<w

we must have f converging to zero. Since S, converges to the identity
t gl g t

VP(f,)[g — P(£f:)] =0

and if we apply DP( f,), we get that g — P(f,) =0, so P(f,) = g. Hence f_
is a solution. This shows the following.

1.6.10. THEOREM. If |i gll,, < & with &8 sufficiently small, then the algorithm f,
converges at t - oo to a solution f_ of P(f..) = g, and for all n = 2r we have

N, <Clgh,.
We can show the convergence more dramatically.

1.6.11. COROLLARY. If |l gll,, < & as above, then for all n = 2r we have
0
Leﬂﬁmﬂascnmuﬂ
and consequently

I = foll, < Ce'ligll s
PROOF. By the end of the proof of Theorem 1.6.8 we have

oo
/0 e(2’+')'||k,“p dr < Cligll pr2,41

for all p = 0. By Lemma 1.6.1
I, < Ce* ' (llk Il gy + 11 A1L N K LG).
We also have || £, I, < Cligll,. Then integrating

(o]
f e'llfll,dt<Cligll,ey + Cligl,liglly,44-
0

Since |l gll,, < & < 1 we have
ligl,lighy+ <Cligll,

by interpolation. This proves the first result, and the second follows im-
mediately.
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1.7. The inverse map. We finish the proof of Theorem 1.1.1 where DP is
invertible. We have seen that in neighborhoods of 0 the map P is both injective
and surjective, and hence invertible. From Theorem 1.6.10 we have the
estimate

NP~ (g)l,<Clgl,

for all n = 2r, which shows that P! satisfies a tame estimate with degree 0
and base 2r. Moreover by Theorem 1.3.2 if P(f;,) = g, and P(f,) = g,

"P—‘(gl) - P_l(go)”n <Cllg, — gll,

+C(”P—1(gl)“n+2r + ”P-l(g0)||n+2r)”gl = &ollo-
Combining this with the above estimate

1P~'(g) — P_](gO)”n <Cllg, — goll, + C(llgi !l ps2, + 8ol ns2, )l g8y — &ollo-

This shows that P~! is continuous, and provides a tame estimate for the
modulus of continuity. By Corollary 1.3.3 we also have

1P~'(g) — P~ (go) — VP(P"(gO))(g, —g)ll,
< ClIP7(g) — P (82 1P (g)) — P7'(g0)llo
+C”P.-l(go)”n+2r”P—l(gl) - P_l(go)“(z)'

Using
1P~ (gl ysar < Cligoll sy
1P7'(8)) — P7'(80)llo < Clig, — gollo,
1P~ (g) = P (8ol ns2r
<Cligy = 8ollusar T CUlg N asar T g0l ura)lI g1 — 8ollo
we get

IP~'(g) — P7'(g) — VP(P™'(g)) & — &),

< Clig) — 8ollnsa-l181 — 8ollo + CUIg N sar + 80l nsa )81 — 8ol
Replacing g, by g and g, by g + tk we get

'P"(g+ tk) — P"'(g)

; — VP(P~'(g))k

n

< Ct“k”n+2r”kn0 + Ct(” &1 ” n+2r + ”g0"n+2r)”k"%
Letting t — 0, we see that P! is differentiable, and
DP\(g)k = VP(P (g))k.

Then since VP and P! are continuous, so is DP~!, and P! is C'. It now
follows by the chain rule that P! is C*. Since VP and P! are tame, DP ! is
tame. Then so are all the derivatives D"P~!, and P! is a smooth tame map.

When we only know that DP is surjective with a right inverse, we proceed in
a less direct fashion.
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1.7.1. THEOREM. The solution f, = S(g) defined as the limit of the algorithm

£l =cVP(S.£)S[g— P(£)]
defines a smooth tame map in a neighborhood of the origin || gll,, < & which is a
right inverse for P, so that P o S(g) = g.

ProoF. First we argue that S(g) depends continuously on g. If we let
S,(g) = f, be the solution at time ¢z, we know by Corollary 1.5.6.6 that S,(g)
depends smoothly on g for all z. By Corollary 1.6.11 the continuous functions
S,(g) converge uniformly to S(g), so S(g) is continuous also.

Next we differentiate the algorithm itself. This shows (by the argument at
the end of the proof of Theorem 1.5.6.3) that DS,(g)k = h, is the solution of
the differential equation

h, = VP(S,f,){cS[k — DP(f,)h,— D*P(S,£){ . S;h}]}.
Now we recall the definition of the tangent functor
TP(f, h) = (P(f), DP(f)h) = (g, k).
Its derivative is
DTP(f, h)(f, k) = (DP(f)], DP(f)k + D*P(f){h, f}) = (8, k).
It is easy to check that a right inverse for DTP is given by
VIP(f, h)(g k) = (VP(1)g,VP(/)[k — D*P(1)(h,VP(1)8}])= (7. k).
We can set up the algorithm for TP the same way we did for P. This gives

(f/ /) = cVTP(S, ., Sh,) (S8, Sk) — TP(f, h,)]
which reduces to the equations

£, =cvP(S,1)8[g — P(£)],
h, = cVP(S,f,)[ S,k — DP(f,)h, — D?P(S,f,)
{Slht’ VP(Stft )[S,g - P(fl)]}]

which gives the same equation for f as before. Therefore the tangent TS, to the
solution S, for P is the solution to the algorithm for the tangent TP. It follows
that TS, converge uniformly as ¢ - co. Therefore S is C' and its tangent
TS = lim,_, ,, TS,. Moreover TS is also tame. Then by induction on n we get
T"S being continuous and tame for all n. Thus S is a smooth tame map.

I11.2. Applications.

2.1. Embedding surfaces of positive curvature.

2.1.1. EXAMPLE. Let M be a compact strictly convex smooth surface in R°.
Then M acquires a Riemannian metric of strictly positive curvature. The
converse is a classical result due to Nirenberg [15].

2.1.2. THEOREM. Let M be a compact oriented surface with a Riemannian
metric of strictly positive curvature. Then M can be isometrically embedded as a
smooth convex surface in R>.
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PROOF. Since the surface is oriented and the metric has positive curvature,
the surface has positive Euler class by the Gauss-Bonnet theorem, and hence M
is the sphere S2. Let F denote the Fréchet manifold of all smooth strictly
convex embeddings of M into R, and let § denote the Fréchet manifold of all
smooth Riemannian metrics on M of strictly positive curvature. There is an
operator P: ¥ —» § which assigns to each embedding the induced metric. We
shall show that P is surjective. In fact P represents % as a principal fibre bundle
over § with group being the group of Euclidean motions. To see that P is
surjective we will show that the image of P is both open and closed and that §
is connected. Our main interest lies in the first of these three assertions, since it
is here we use the inverse function theorem.

We let Greek indices a, 8, y denote tensors on R? and Latin indices i, j, k
denote tensors on M. We let f* be the functions on M giving the embedding,
g.p the Euclidean metric on R? g;; the induced metric on M, and 9, the
induced covariant derivative on M. Then we have

i = 8apdi [0, 1.

We let g, be the volume form on R? and p,; the induced area form on M.
Then the unit outward normal n? is given by the formula

Fagydi f* a-fﬂ = 8ag" Pa'j-
If b, is the second fundamental form of the embedding then we have
on* = ijg',kakfa’ 9,0,/ = -b;;n"

by the usual calculations.
The operator P(f*) = g;; is given by the formula

8i; = 8ap0i f*3,f*
and its derivative DP(f*)f* = g, ;18 given by
81 = 8ap9: S0P + 8ap8, 170, "
We can decompose f* into its tangential and normal components &' and w. Let
fo =69, + wn".
Then the linearized equation becomes
(*) 8, = 8ud,B* + g;9,6% + 2b, .

Observe what this equation says; a tangential motion &’ changes the metric g, ; '
by its Lie derivative in the direction &', while a normal motion w changes the
metric proportionally to the second fundamental form. Since the equation ()
does not involve any derivatives of w we may reduce modulo b;; to obtain the
equation

(%%) g, = gikajﬁk + gjkaiﬁk mod b;;.

We can first solve (**) for 6 and then solve algebraically for .
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2.1.3. LEMMA. The equation (**) for a strictly convex surface is an elliptic first
order system mapping sections ©* of the two dimensional tangent bundle TM into
sections of the two dimensional quotient bundle Q = LX(TM)/B, where L2(TM)
is the 3 dimensional bundle of symmetric tensors é: and B is the one dimensional
subbundle spanned by b, ;.

PROOF. Let
L(%);; = gud;8* + g,9,0° mod b,;
be the operator. Then its symbol is
oL(§)5;; = gu$,;* + g6 modb,;
in the direction of a cotangent vector §,. If 6L({)% = 0 then we have
gl " + g 50" =0 modb,,.

Choosing a special coordinate system at a point we can make

L _ [ ¢ _[&
D—(62)’ g_(gz),

_[(1 0 _ (A0
g"f‘(o 1)’ bff‘(o xz)'

Then our equation ¢L({)d = 0 becomes
2¢, 8" $,0' + §,0? A, O
=0 mod .
HO' + G5 28,07 0 A,
This implies the equations
A0 — A2 =0,  §He' 4§52 =0.
There will be a nonzero solution v only if the determinant is zero. Thus

>\2§1 _}‘1§2
det( {2 ¢

When the surface is convex we have A, > 0 and A, > 0. This forces {, = 0 and
¢, = 0. Hence the equation is elliptic.

)=/\2§,2+)\122=0.

2.1.4. LEMMA. For a strictly convex surface M the elliptic operator L is always
surjective and has null space of dimension 6.

PROOF. Since the rigid motions of R* give elements in the null space of L, it
is clear why the null space has dimension at least 6. We claim that the index of
the elliptic operator is exactly six. Since any two convex embeddings can be
joined by a path of convex embeddings, it suffices to check the index for one
example. The standard sphere S? is particularly simple, since b, ; = 8- Then
the equation

g,.,(ajak +g,8,0*=0 modg,;



190 R. S. HAMILTON

says that the rate of change of g;; in the direction ©* is proportional to g, o
which means that &* is an infinitesimal conformal transformation. In complex
coordinates on the sphere the condition is that = ©#(z)d/dz be an analytic
vector field. If w = 1/z then

9/9z = -w?d /dw

and hence to represent a finite vector field at infinity, ©(z) must grow no faster
than z2, so

6(z) = az®> + bz + c.

This gives three complex or six real parameters. To complete the lemma, it
suffices to show that L is always surjective. Since L is elliptic, this is equivalent
to the assertion that the adjoint operator L* is injective. The dual bundle to the
quotient bundle Q = L%(TM)/B is the subbundle of symmetric tensors A*/
with b, ;h"/ = 0. The adjoint operator L* is given by

L*hi = 28,hV.

Then the next theorem shows L* is injective. Its proof is similar to (and slightly
easier than) the classical proof of infinitesimal rigidity for convex surfaces (see
Spivak [23]).

2.1.5. THEOREM. Let M be a compact strictly convex surface in R* and let h'/
be a symmetric tensor on M with

k=0 and bh'=0.
Then h'/ = Q.
PROOF. We proceed by a series of lemmas.
2.1.6. LEMMA. Let ¢ = p;, h*'3,f*. Then
79,47 = 0.
PROOF. We have u'/u;, = 8/ and 9,0,/ = —b;n*. Therefore
w308 = 8,h7'8,f* — byh/'n".
2.1.7. LEMMA. Let v}, = h'u g, f%3;f". Then 9,0} = 0.
PrOOF. We have
PapdifPO ST = 1i8agn®,  00;fY = ~byn”
and so

aivti = aihijp‘aﬁyfﬂajfy + ,"‘ijhijgaﬂno - bijhij“aﬂyfﬁny'

2.1.8. LEMMA. Let s be the support function s = g, f “nB, Then
vig® = 2sdet(h").
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PrOOF. We have
p’uﬁ'yajfyalfa = Il‘jlgﬂano
which makes
Ojer = gﬁofﬁno * P jsh R
and it is easy to see that
Bt hURK = 2 det(R').

2.1.9. LEMMA. If b, ;h"/ = 0 and b is strictly positive-definite then det(h"/) < 0,

and equality holds only when h'/ = 0.

PROOF. We can simultaneously diagonalize b,; and 4"/. Since the eigenvalues
of b,; are positive, those of 4"/ must have opposite signs, which makes the

determinant negative. If one eigenvalue of 4% is zero, so must be the other.
LEMMA. If the origin lies inside M, the support function s is strictly positive.

PrOOF. The origin lies on the inside of the tangent plane and the normal on
the outside.

2.1.10. LEMMA. If 8,0’ = 0 and p'/9;¢, = O then
f v'¢; dp = 0.
M

Proor. If pif8j¢,- = 0 then 3;¢, = 9;¢,. Consequently regarding ¢ as a 1-form
we have d¢ = 0. Since H'(M, R) = 0 for a convex surface, ¢ = di for some
function ¢, so ¢; = 0,. Then by Green’s theorem

v dp = [vdydp=—[0,0'-ydp=0.
fM ¢, dp. f ydp f Vdp
2.1.11. COROLLARY. For the v}, and ¢} above we have
[ vigtdn=o0.
M
PROOF. Sum over a. We see now that
f sdet(hV) dp = 0.
M

Since s >0 and det(h”/) <0 we must have det(h"/) = 0 everywhere. Thus
h' = 0.

It follows that for each convex embedding f* the operator DP( f*)f* = g, J
is surjective with a six dimensional null space. We can find a right inverse
fe = VP(f*)g, ;- Since it is obtained by solving the elliptic operator L whose
coefficients depend smoothly on /¢, we know that our right inverse VP is a
smooth tame operator. Then by the Nash-Moser inverse function theorem the
operator P is locally surjective, and the image of P is open. If we wanted, we
could normalize six parameters of f (for example, the image of a point, the
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direction of the tangent plane at the point, and the direction of a curve through
the point in the tangent plane) to make P invertible. This shows P is locally a
bundle of fibre dimension 6. We shall briefly sketch the rest of the proof. To
show that § is connected we first appeal to the uniformization theorem, which
shows that any two metrics on M are conformally equivalent, up to a
diffeomorphism. Next we observe by a lengthy calculation that if g and e®g are
conformally equivalent metrics of strictly positive curvature, then e’®g also has
strictly positive curvature for 0 < < 1. Since the orientation-preserving dif-
feomorphisms of S? are connected (and indeed have the homotopy type of the
rotation subgroup) this shows how to connect any two metrics of strictly
positive curvature by a path of such metrics.

To complete the proof we must show that the image of P is closed. Since
translation does not change the induced metric, let %, denote the closed subset
of convex embeddings in % whose center of mass lies at the origin. Then
P(%,) = P(%). We claim that P: %, — § is a proper map, which is to say that
the inverse image of every compact set is compact. From this it follows easily
that P(%,) is closed in §. To see that P: %, — § is a proper map, we must
establish a priori estimates for embeddings f* with center of mass at the origin
in terms of the induced metrics. We must estimate the size of the derivatives of
the f* using constants which depend only on the size of the derivatives of the
induced metric g,; and a lower bound for its curvature. Since C*(M) is a
Montel space, every bounded set is compact. In making our estimates on the
derivatives of the f* we may use the induced metric g;; and its connection 9;,
for if we take various metrics in a compact subset of § they are all equivalent,
and the various connections 9; differ only by lower order terms involving
derivatives of the g;;, which are all bounded in a compact subset of .

Suppose then that we have a collection of embeddings f* with center of mass
at the origin whose induced metrics lie in a compact subset of §, and hence
have all their derivatives uniformly bounded and their scalar curvatures
bounded uniformly away from zero. A positive lower bound on the scalar
curvature gives a positive upper bound on the diameter of a surface. Hence the
£ are all uniformly bounded. Since

8"8apd; f*0; 1 = 2

the first derivatives 9, f* are also uniformly bounded. The next step involves a
very clever estimate due to Weyl. Let b = trace b;; be the mean curvature of
the embedding and k = det b;; the scalar curvature. Note that by Gauss we
know k from g;; without knowing the embedding.

2.1.12. THEOREM (WEYL). For any compact convex surface we have the
estimate
Ak

max b?> < max 4k — —.
M M k

PRrOOF. A lengthy computation shows that b satisfies the equation
(bgyy — b,,)38b = Ak + |8, [ — 3,52 + k(b? — 4k).
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At the point where b assumes its maximum we have 9,5 =0 and 3,0,b is a
negative matrix. If M is convex then b;; is a positive matrix, and so is
bg;; — b,;. Also | 3,b;, |* = 0. Hence at this point

Ak + k(b* — 4k) <0, b*<4k — Ak/k

and the theorem follows.
This theorem shows that the mean curvatures b are uniformly bounded.
Since

|b, | =b>—2k
the second fundamental forms b, ; are also uniformly bounded. Then since
a,.aj o= —b,-jn"‘

and the n* are unit vectors, the second derivatives aia, f¢ are also uniformly
bounded. One is now in a position to use standard results about elliptic
equations to estimate the higher derivatives as well. This completes the proof.

2.2. Shallow water equations.

2.2.1. ExampLE. The shallow water equations describe the motion of an
incompressible inviscous fluid where the wave-length is long compared to the
depth, so that the vertical component and variation of the velocity of the fluid
may be neglected. This approximation is very good for tidal waves. To simplify
the discussion we assume that the earth is a perfect sphere covered with water
and neglect the rotation of the earth. We choose our units of length, time and
mass so that the depth of the water at rest is 1, the acceleration due to gravity
is 1, and the density of the water is 1. We let g,; be the Riemannian metric on
the earth sphere S and 9, the induced covariant derivative. The motion of the
water is described by a tangent vector field v = v'd/3x’ on S giving the
horizontal velocity (independent of the height) and a function 4 on S giving the
height of the water. The shallow water equations for v and 4 are

dv' /3t + v/3;0' + g¥3;h = 0,

(%) . ‘
oh/dt + v’/3;h + hd; v’ = 0.

The first equation is Newton’s law that force equals mass times acceleration.

Since the density is one the force equals the acceleration. The term

v’ /0t + v/8;0’

is the acceleration of a particle moving in the water, which is the sum of the
acceleration due to the change in the velocity at the point with time and
acceleration due to the change in velocity when the particle moves to a region
of different velocity. The force on the particle is

g;h
which is the gradient of the function 4. If the particle is on the surface it must
gain potential energy to climb to a greater height; while if the particle is on the

bottom it gains potential energy from an increase in the pressure, and the
pressure equals the height. The force is the gradient of the potential energy.
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The second equation is conservation of mass. The mass per unit area is the
height, so the rate of increase of mass per unit area with time is 94 /9¢. On the
other hand, the transport of mass is given by hv/, so the rate at which mass
flows out per unit area is given by its divergence

3;(hv’) = v/3,;h + hd, v/

and the equation follows. Note the equations make sense on any Riemannian
manifold. We shall prove the following results.

2.1.2. THEOREM. The shallow water equations (*) admit a solution on any
Riemannian manifold (A) with any initial conditions v and h > 0 at time t = 0
for a short time 0 < t < & (where ¢ depends on the initial conditions), and (B) for
a long time 0 < t < T with initial conditions v near 0 and h near 1 (how close
depending on T).

Proor. First we modify the equations by replacing 4 by k = 2yh . This is
reasonable since we want 2 > 0 on physical grounds anyway. (When 4 = 0 the
bare earth is exposed, giving rise to an interesting free boundary problem
which we shall not treat.) We also multiply the first equation by g;, to lower
the index. This casts our equations in the form

(*+)

g,.p(avi/at + vfaju‘) + 3k3,k =0,
1kdo/ + (3k/9t + v/dk) = 0.

If our Riemannian manifold is S we let M = S X I where [ is the time
interval 0 < ¢ < T. Note that the tangent bundle TS over S pulls back to a
bundle which we also call TS over M, while R can be regarded as a trivial
bundle over S or M. We let B = T'S X R be the product bundle. A section of B
consists of a vector field v € TS and a function kK € R. The dual bundle
B* = T*S X R, and a section of B* consists of a 1-form w, € T*S and a
function/ € R.

Define an operator

P:C®(M, B) » C*(M, B*) X C*(S, B)
by letting
P(v', k) = (wp, 1,0, ko)
where vy = v’ | {t = 0} and k, = k| {t = 0} and
g,.p(av"/at + vfajvi) + 3kd,k = w,,
1kd, o) + (3k /0t + vigk) = 1.
We can compute the derivative of the operator P

DP(v', k)(5, k) = (w,, 1, 5, Ky );
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it is given by the equations

g,.,,( aa—‘; + 08,5 + 6fajo") - %kaplé - %Eapk =W,
(+++) 1 ok

k3,6’ + Ekajvf + (—87 + 0k +6/0k) =1

with & | {t = 0} = 6} and k| {r = 0} = k. Now we claim that DP(v', k) is a
linear symmetric system in (&', k). To check this we evaluate the symbol of DP
in the direction of a cotangent vector § by replacing d; by £ and 9 /97 by 7, and

dropping the zero-order terms. This gives

1
2

(7 + vit, )5, + 3kt K=,
kg o + (1 + o))k =1T
which shows the matrix of the symbol is

[7+ (v, £)]1 1k¢
1kt T+ (v, §)

which is symmetric. The function ¢ will be our weight function. The covector dt
has coordinates r = 1, § = 0 for which the symbol 6 DP(v, k)(1,0) = I is the
identity, so ¢ is a positive weight function. Moreover df is a normal covector
pointing inward on § X 0 and outward on S X 1. Thus the boundary is
nowhere characteristic and 9" M = § X 0 and 9~ M = S X 1. The theory of
symmetric systems shows that DP(v, k) is always invertible and has a smooth
tame inverse. Then the Nash-Moser inverse function theorem implies that P is
locally invertible in a neighborhood of any v and k.

To prove part (B) of the theorem, we use the inverse of P in a neighborhood
of v =0 and k = 2. When v is close to 0 and k, is close to 2, and w = 0 and
I = 0, we get a unique solution v and k of

P(v, k) =(0,0, vy, k)

which gives a solution of the shallow water equations for time 0 < ¢ < 7. Note
that v, and k, must get closer to 0 and 2 as T gets large.

To prove part (A) we use a clever device. The shallow water equations are
formally solvable at 1 = 0. This means that for given initial data v = v, and
k =k, at t = 0, we can solve for all the derivatives 3"v/d¢” and 9"k /d¢" at
t =0 by differentiating through the equation. We can then find smooth
functions © and k on M which have the right time derivatives at = 0. Let us
define w and / by letting

DP(v, k)(7,§) =

P(D, k)= (w,1,0v,, ko).

By our choice of © and E, the functions w and / and all their derivatives vanish
at ¢t = 0. Extend w and / to vanish for ¢ < 0. Then perform a small shift, so that

w(t)=w(t—¢) and I(t)=1(t—e).
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Then w and / vanish for 0 < ¢ < e. Since P is invertible in a neighborhood of
(v, k), we can solve the equation

P(v, k) = (w, 1,0y, k)
when € > 0 is sufficiently small. Then v and k will solve the shallow water

equations for a short time 0 < ¢ < . This completes the proof.
2.3. Submanifolds of fixed volume.

2.3.1. THEOREM. Let F be a tame space and P: U C F — V a smooth map of
an open set in F to a finite dimensional vector space. Suppose that for some
fo € U the derivative DP(f,) is surjective. Then the level set N = {f € U:
P(f)=P(}y)} is a smooth tame submanifold in a neighborhood of f, with
tangent space

T,N = Null DP(f).

PROOF. We may assume that f, = 0, that F = G X V and that the derivative
of P at 0 is the projection on V. Define a map Q on a neighborhood of zero in
G X Vtoitself by

0(g,u) = (g, P(g,u)).
Then Q is a smooth tame map since the first factor is the identity and the
second is finite dimensional. Moreover

DQO(g, u)(h,v) = (h, D,P(g,u)v) = (h,w)
has solution
vo(g, u)(h,w) = (h,v)
where
h=D,P(g, u)—lw.
Now D, P(0,0) is the identity, and D,P(g, u) is a matrix in L(V, V) whose
entries depend smoothly on g and u. Hence the same is true of the inverse
matrix. Thus 4 is a smooth tame function of g, ¥ and w (since any map to a
finite dimensional space is tame). By the Nash-Moser theorem, Q has a local
smooth tame inverse. Since Q™ (G X 0) = N we are done.
Let X be a finite dimensional Riemannian manifold. If S is a submanifold of
X, we can define on S the mean curvature vector
k(S) € C*(S,TX/TS)
with values in the normal bundle, the measure du(S), and the total measure

u(s) = [S dp(S).

Let S(X) be the smooth tame Fréchet manifold of all compact submanifolds
S, and let §,(X) be the closed subset of those with total measure r.

2.3.2. THEOREM. If S € S/ X) and k(S) is not identically zero, then S (X) is a
smooth tame submanifold of codimension 1 in a neighborhood of S, with tangent
space

T,5(X) = {h € C*(S,TX/TS): L(k(s), h) dp(S) = 0}.
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REMARK. If S is a geodesic curve in X of length r then §,(X) may not be a
submanifold of codimension 1 near S. For a minimal isolated geodesic is an
isolated point in §,( X).

ProOF. If S € §(X) and

h € T,8(X) = C>(S, TX/TS)

then by differential geometry
D($)h = [ (K(S), k) du(s).

Pick a reference S, in §(X) and choose a diffeomorphism of a tubular
neighborhood of the zero section in the normal bundle of S, into X. If fis a
section of the normal bundle, let S( f) be the corresponding submanifold. This
gives a local chart on §(X) near S,. Let k( f) be the appropriate pull-back of
the mean curvature k(S( f)) to S, under f. Then in our chart if u(f) = p(S(f))

Du( )= [ (k(f). k) du(So).

The mean curvature k( f) is given by a nonlinear differential operator in f of
degree 2, with k(0) = k(S,) not identically zero. Let F be the subspace of all
sections f of the normal bundle to S, which are orthogonal to £(0). Define a
map P of a neighborhood of zero in F X R into F X R by letting

P(f,s) = (f, p(f+ sk(0))).
Then P is a smooth tame map with derivative

DP(f,s)(h,t) = (h, Du(f+ sk(0))(h + tk(0)))
and we have

Du(f + sk(O))(h + k(0)) = [ (k(f+ sk(0)). h + k(0)) du(5y)
which we can solve for ¢, provided
/S (k(f+ sk(0)), k(0)) du(S,) # 0

which happens for all f in a C? neighborhood of zero. Therefore P gives a
smooth change of coordinate near S, making p into one of the coordinate
functions. This shows §(X) = p~!(r) is a smooth submanifold with tangent
space Null Dy.

2.4. Symplectic and contact structures. The following result is useful in
showing that a group acts transitively on a manifold. Let § be a tame Fréchet
Lie group acting tamely on a tame Fréchet manifold 9 with action

A:§ XM - M.
For any m € 9 there is a linear map
A4,:G->TM
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of the Lie algebra G = T,§ into the tangent space of M at m given by
A’ = Dy A(1, m), the partial derivative with respect to § of the action at the
identity.

2.4.1. THEOREM. Suppose I is connected, and for each m € N the map A,,:
G — T,OW is surjective with a tame linear right inverse. Then § acts transitively

on M.
ProOF. Consider the map
P:§ -9,  P(g)=A(g, m).

If L, denotes left multiplication by g on § and A, denotes multiplication by g
on G.)IL there is a commutative diagram

Ly
g - g
Pl Pl
Ay
M - M

which shows that
DA, - DP(1) = DP(g) - DL,.

We can define a smooth tame vector bundle map VP: TOU — T9 which is a
right inverse for DP by letting

VP(g) = DL, o VP(1) o DA,

where VP(1) is a tame linear right inverse for DP(1) = DgA(1, m), which exists
by hypothesis. Then it follows that P is locally surjective; hence § locally is
transitive. If 91 is connected it follows that § is transitive on all of 9.

2.4.2. ExaMPLE. Let X be a compact manifold of even dimension 2n. A
symplectic form on X is a closed differential 2-form w € Z%(X) C N\ X(X)
such that

W"=ONOAN - ANwF0

—
n times

or equivalently w = w;; -dx' A\ dx’ in local coordinate where w; ;; 18 an invertible
matrix. If such a form exists then H?(X) # 0. All Kahler manifolds admit
symplectic forms. A diffeomorphism of X takes a symplectic form into another
symplectic form in the same cohomology class. Locally this is the only
restriction, as the following result shows.

2.4.3. THEOREM. Let w be a symplectic form on a compact manifold. Then any
closed form near w in the same cohomology class is also symplectic and is
conjugate to w by a small diffeomorphism.

PROOF. A closed form close to a symplectic form is still symplectic. Let 4 be
the cohomology class of w in H?(X). Then h determines an affine subspace
B2(X) + h in the linear subspace Z%( X) of closed forms of all those differing
from w by an exact form in B%( X). The exterior derivative d: /\ '(X) - B*(X)
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is surjective and has a linear right inverse given by a Green’s operator G:
B%*(X) - A(X) from Hodge theory. Since this is derived from the Green’s
operator of the elliptic system A = dd* + d*d it is clear that G is a tame linear
map. We let our group be the diffeomorphism group D( X) of the manifold X,
and we let it act on the affine space B*(X) + h of closed 2-forms in the
cohomology class A. This is obtained by restricting the action on all of /\ %(X).
That action

A:D(X) X NA(X) - A2(X)

has partial derivative with respect to the first factor at the identity 1 € D( X)
in the direction of a tangent vector v € C®(TX) = T,D( X) given by
Ao =D A(l,w)v = L,w
where L w is the Lie derivative of w in the direction v given in local
coordinates by
dw

k k
ij dv dv
Lw,=—20of+ @, — + w,—.
oY xk 7 ax! dx’

When o is closed so that dw = 0 or
dw,,/0x* + 8w, /3x" + 3w, /3x/ =0
then we see that
Lw=d(vlw)
where v L w is the contraction
(v1w);=vw,;.

Note that the tangent space to the affine subspace B%(X) + & is just the linear
subspace B2(X). We must show that the partial derivative of the action with
respect to the first variable at the identity

A, C>(TX) - BX(X)

given by v » d(v 1 w) is surjective with a tame right inverse. When w is
symplectic the equation v L w = & for any 1-form a has a unique solution
=a L ! where

(aLw™ )Y =aqw W

and 'V is the matrix inverse to w;;. Then to solve d(v L w) = ¢ we take
v = Gy L w™! where G is the Green’s operator described before. It is easy to
see that this is a tame linear map. It now follows from the previous theorem
that the identity component of the diffeomorphism group acts transitively on
the component of the symplectic forms in the cohomology class /4 containing w.

2.4.4. EXAMPLE. Let X be a compact manifold of dimension n» + 1 and let B
be a subbundle of the tangent bundle of codimension 1. There is a natural

antisymmetric bilinear map
Ag:BXB->TX/B
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defined by letting
Ag(u,v) = [u,v]/B
where u, v € B C TX are vector fields and [u, v] is their Lie bracket.

2.4.5. LEMMA. The map A g is a bilinear vector bundle map, i.e. A g(u, v) does
not involve derivatives of u and v.

PrOOF. We compute in local coordinates x',...,x", y. Suppose that B is the
subbundle of TX where
dy = b,(x, y) dx’
for some functions b,(x, y) defined in a local coordinate chart. If  and v lie in
B then
u=ud/dx' +ubd/dy, v=109/dx"+ v'bd/dy.
We now evaluate the commutator at a point where b, = 0 and reduce mod B
by ignoring the 9 /0x’ components; this gives
ab; 9\ ., .
[u,0] = (—L — —'.)u’v’i mod B
ax'  ox’ ay
so that A(u, v) = A, ;u’v/3 /0y mod B where
A;; = 0b,/dx’ — 3b,/0x’.
A contact structure is a subbundle B of TX of codimension 1 for which the
map A is nondegenerate, so that A, is invertible. This can only happen if the
dimension of X is odd, so that n is even, since A g is antisymmetric. The group

of diffeomorphisms ¢D(X) acts on the Fréchet manifold % of all contact
structures B on X.

2.4.6. THEOREM. If B is a contact structure on a compact manifold X, then any
contact structure near B is conjugate to B by a diffeomorphism near the identity.
The identity component of °)( X) acts transitively on each component of B .

ProOOF. The manifold % of all contact structures is an open subset of the
Grassmannian manifold of all subbundles of TX of codimension 1. We can
identify its tangent space as

Tz% = C~(X, L(B,TX/B)),
the space of sections of the bundle of linear maps of B into TX/B. The action
A:D(X)XB->B
has derivative A3 = D, A(1, B) which is a linear map
Ay =C®(X,TX) - C~(X, L(B,TX/B)).

In general A% will be a differential operator of degree 1 from TX to
L(B, TX/B), but on the subbundle B C TX it has degree 0 and is given by A 5,
as the following lemma shows.
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2.4.7. LEMMA. If v € Band w € B then
[45(0)](w) = Ap(w, 0).
PROOF. If v € B then locally
v =09 /dx' + b,v'0/dy.
We regard v as infinitesimally small and consider the diffeomorphism
X=x'+d, y=y+bo.
Let B be the new bundle induced from B by this diffeomorphism. Then B is
given by dy = b, dx’ and B is given by dy = b, dx' where b, = b, + a; for some
infinitesimal change g, in b;. We proceed to expand the equation
dy = b(%, y) dx'

by replacing X' by x' + v', j by y + b,v’, and b, by b, + a;, and throwing away
quadratic terms in the infinitesimal quantities v’ and a,. This gives

_9b , 93 . 3 . 3 |
aj—ﬁv +-3—;vbj—5;70—$biv.

Evaluating at a point where b; = 0 and using our previous formula for A, ; gives
a; = A;;v’. Since A(v) = a we have

Ap(0)(w) = A, W'’ = Ny(w, v)

which proves the lemma.

Now it is easy to see that if B is a contact structure then A% is surjective, and
in fact the restriction of A% to sections of B is an isomorphism. For on C*(B)
the map A’ is just induced by the linear vector bundle map B —» L(B, TX/B)
given by Az, and when A is nondegenerate this is a vector bundle isomor-
phism. This proves the theorem.

2.5. Volume preserving diffeomorphisms. We can use the inverse function
theorem to give a characterization of principal bundles. Let § be a tame
Fréchet Lie group acting tamely on a tame Fréchet manifold 91, and let P:
IM — B be a smooth tame map onto another tame Fréchet manifold B. We
assume that § takes each fibre P~ !(b) for b € B into itself and acts transitively
and fixed-point free on the fibres. Let G be the Lie algebra of 8. Then for each
m € 9N the action 4 of § on 9N defines a map

A: X M- M
whose partial derivative defines a map
DgA(1,m): G=T,§ > T,9.

If G X 9N is the trivial vector bundle over 9N with fibre §, then DyA defines a
linear vector bundle map of § X 9N into TON. Likewise the derivative of P
defines a map

DP(m): T, - Tp(,\B
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which induces a linear vector bundle map of T9 into the pull-back bundle
P*T%. This gives a sequence of tame linear vector bundle maps over I

DgA P
0-GXM 5 TS P19 - 0.

2.5.1. THEOREM. Suppose the above sequence is exact, and admits a smooth
tame linear splitting over M

vP Vad
0->PTH>TM > GXM->0
such that
V;A-DgA=1, DP-VP=I,
Dsd-VagA+VP-DP=1.
Then W is a principal S-bundle over % with projection P and action A.

ProoF. Fix b € . In a neighborhood U of b we can define a smooth section
S:UCB-M

with PS = I, since DP is surjective with a tame right inverse VP. We define a
map

0:8X (UXB)->Mm, Q(g, b) = A(g, S(b)).

We claim (by making U smaller if necessary) that Q is a diffeomorphism. Since
Q gives a chart in which § acts by multiplication on the first factor and P acts
by projection on the second, this will complete the proof. Since § takes fibres
into themselves and acts transitively and fixed-point free on the fibres, we see
that Q is an invertible map of § X (U C %) onto P~(U) C 9. It remains to
show that Q is a diffeomorphism. Since § acts transitively on the fibres, it is
enough to prove this in a neighborhood of (1, b). 3

To do this we first compute the derivative of Q. Letting § be a tangent vector
toSatgandba tangent vector to B at b we have

DQ(g, b)(&, b) = DsA(g, S(b))g + D (g, S(5))DS(b)b.
Let i be a tangent vector to M at m = Q(g, b), and let us solve the equation
DQ(g,b)(2,b) = .
Since PA(g, m) = P(m) we have
DP-D3A=0, DP-DyA=DP.

Therefore applying DP to the equation and remembering that P oS =1 so
DP o DS = I we have

b = DP(m)m
which solves for b. Then for § we have the equation

D A(g, S(b))g = m — Doy A(g, S(b))DS(b)b.
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Since the term on the right lies in the null space of DP by our choice of b, and
the sequence is exact, there exists a unique solution which is given tamely in
terms of 1, g and b by taking

g = VgA(m)[m — Doy A(g, S(b))DS(b)8].

Since DQ is invertible with a tame inverse, so is Q in a neighborhood of (1, b).
This proves the theorem.

2.5.2. COROLLARY. Let § be a tame Fréchet Lie group and W a tame Fréchet
manifold on which § acts tamely and transitively. Suppose for some m € 9N the
subgroup JC of elements of § which fix m is a closed tame submanifold, and that
there is a short exact sequence of Fréchet spaces

0T, 5~ T8~ T,M—-0

which admits a tame linear splitting. Then § is a principal 3(-bundle over O with
projection P(g) = gm.

PROOF. Since § acts transitively on 9N, the fibres of P are all cosets of JC in
8, and ¥ acts transitively and fixed-point free on itself. If the sequence above
splits at the identity 1 € §, then it splits at every point in § using the group
action. Then the result follows from the previous theorem.

We consider an example of a subgroup of the diffeomorphism group. Let X
be a compact manifold. We say that a smooth positive measure p on X is one
which in local coordinates looks like g = m(x) dx where m(x) is a smooth
positive function and dx is Lebesgue measure. Its total measure is

p(X) =fxdu-

We let M (X) be the Fréchet manifold of smooth positive measures on X of
total measure 1. The smooth measures are sections of a vector bundle M over
X, those of total measure 1 are an affine subspace, and the positive ones are an
open subset. If p and » are smooth positive measures in 9N (X) then »/p is a
smooth positive function of average value 1 with respect to p. This provides a
useful (global) coordinate chart.

2.5.3. THEOREM. The diffeomorphism group D(X) acts transitively on the
space (X)) of smooth positive measures of total measure one. For each
B € I(X) the subgroup GD”( X)) of diffeomorphisms which preserve the measure
p is a closed tame Lie subgroup, and D(X) is a tame principal bundle over
(X)) with fibre D,( X) under the projection P$ = ¢p. Hence D(X)/D,(X) =
M(X).

ProOF. First note that 9N (X) is connected. For if p and » are smooth
positive measures of total measure one, sois (1 — #)p + ¢tv for 0 < ¢ < 1. Next
recall how to construct a coordinate chart near the identity 1 in D(X). We
choose a tubular neighborhood U of the zero section in the tangent bundle TX
and a diffeomorphism ® of U to a neighborhood V of the diagonal in X X X,
which takes the zero vector at x € X into the point (x, x) on the diagonal, and
which has for its derivative along the zero section in the vertical direction the
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inclusion of TX into the second factor of TX X TX. In a local coordinate chart
®(x,v) = (x, ¢(x, v))

where ¢(x,0) =x and D,$(x,0) = 1. We could construct @ globally by
patching such maps together with a partition of unity. Then ® defines a
diffeomorphism of a neighborhood U of zero in C*(X, TX) into a neighbor-
hood V of the identity in D( X) by letting ®(v) be the diffeomorphism whose
graph is the composition of ® and v. In local coordinates

®(v): x - ¢(x, v(x)).

Given a measure g € OM(X) and a diffeomorphism ¢ € D(X) we let ¢pp be
the pull-back measure. This defines a smooth tame action of 9D(X) on M (X),
as is clear from our estimates on compositions. We define a map

P:C®(X,TX) - C*(X)
by letting
P(v) = @(v)u/p.
2.5.4. LEMMA. The map P is a nonlinear partial differential operator of degree
1. Its derivative DP(v)w is a family of linear partial differential operators of

degree 1 in w with coefficients which are nonlinear differential operators of degree
linv.Atv =20

DP(0)w = v,w
is the divergence of the vector field w with respect to the measure p.

PRrROOF. We write out P(v) in local coordinates. The diffeomorphism

y = 8(x,0(x))
has for its derivative the matrix
9 0 d av
M(0) = 2% = 22 (x, 0(x)) + 52 (x, 0(x)) 52 (x)

which is a nonlinear differential operator of degree 1 in v. Then so is the
Jacobian J(v) = det M(v). Since p. = m(x)dx in local coordinates, we have

P(v) = J(v) - m(¢(x, v(x)))/m(x)

which is also a nonlinear differential operator of degree 1 in v. Hence P is a
smooth tame map of the type considered before. Its derivative may be
computed as follows. If M(v) is a matrix depending smoothly on v and J(v) is
its determinant then

DJ(v)w =J(v) - trace{M(v)_I - DM(v)w}

as can easily be seen by diagonalizing the matrix (or at least upper-triangulariz-
ing). Then we get the formula

DP(v)w = P(v)[trace{M(u)_1 - DM(v)w} + Q(v)w]
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where

DM(o)w = (5, o(x)w(x) + 22 x, o)) 22 (x)w()

+ 22 (x, 0(x)) 3 (x)

is a differential operator of degree 1 linear in w with coefficients depending
nonlinearly on v, and where

0(o)w = 2B (4, o(x))) 92 (x, o(x))w(x)

is an operator of degree zero linear in w and nonlinear in v. At v = 0 we have
9¢(x,0)/dv = I 50 3%¢p(x,0)/9xdw = 0. Then the formula simplifies to

_ dw  dlogm
DP(0)w = trace T e

which is the formula for the divergence of w with respect to the measure p. It is
the rate at which the measure expands or contracts under a flow in the
direction w. This proves the lemma.

Next we choose a Riemannian metric g = {g;,} on X with measure p, so that
m= ]/det 8;;- We can then take the gradient v, f of a function f on X with

respect to the measure g, defined by

VS = gdf/ox.
Note that v,v, f = A, fis the Laplacian of f with respect to the metric g. Let
us let CP(X) denote the closed subspace of C®(X) of functions of average
value zero with respect to the measure u. Also let ¥ denote the closed subspace
of C*(X, TX) of vector fields v on X which are divergence-free with respect to

I, so that v,0 = 0. We define a map on some neighborhood U of zero in the
product

w=vw,

Q:UCVXECI(X)->VXCI(X)
by letting
Q(v, /) = (v, P(v+ v, f) = 1).

We claim Q is invertible in a neighborhood of zero by the Nash-Moser inverse
function theorem. To see this we can compute its derivative

DQ(v, f)(w, h) = (w, DP(v + v,f)(w + V,h)).
To solve DQ(v, f X w, h) = (w, k) we need to find h with
DP(v+ Vv, f)V,h =k — DP(v+ Vv, f)w.

Now the operator DP(v + V,f)V,h is a linear differential operator of degree
2 in h with coefficients which are smooth nonlinear differential operators of
degree 1 in v and 2 in f. When v=0 and f= 0 the operator is just
V, Vg h = A, h. Since the Laplacian is elliptic, the operator remains elliptic for
small v and f. Moreover the operator always has the constant functions for its
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null space, and takes its range in the functions of average value zero with
respect to the measure u. Therefore the operator defines an invertible linear
map of CF(X) to itself. Moreover the family of inverses forms a smooth tame
family of linear maps by our argument for the Green’s operator of an elliptic
family. Hence DQ is always an invertible family with a smooth tame family of
inverses. Then we can apply the inverse function theorem.

Since Q is invertible, we obtain a coordinate chart on a neighborhood of the
identity in § by composing Q! with the chart ® introduced before. In this
chart with domain in ¥ X CF(X) the image of ¥ X 0 corresponds to the
subgroup %,( X). This shows that %),( X) is a closed tame submanifold near the
identity, and hence everywhere using the group operation. Moreover in our
chart the second factor describes the change in the measure p under the
diffeomorphism. Hence the action of SD( X) on 9N ( X) is locally transitive, and
then globally so since 9N (X) is connected. The rest of the theorem follows
from Corollary 2.5.2.

2.5.5. Problem. If X is a compact manifold with a symplectic form w, is the
subgroup of the diffeomorphism group ) (X) which preserves w a smooth
tame submanifold?

2.5.6. Problem. If X is a compact manifold with a contact structure B, is the
subgroup of the diffeomorphism group %Dz(X) which preserves the contact
structure B a smooth tame submanifold?

I1L.3. Generalizations.

3.1. The Nash-Moser theorem for exact sequences. Our first generalization is
useful in problems involving deformation of structures. Let F, G and H be
tame Fréchet spaces and let P and Q be two smooth tame maps between open
subsets U, V and W,

P Q
UCF->VCG-WCH

such that the composition QP = 0.

3.1.1. THEOREM. Suppose that for each f € F the image of DP( f) is the entire
null space of DQ(P(f)). Suppose moreover that we can find two smooth tame
maps

VP:(UCF)XG~F, VQ: (UCF)XH-G
with VP( f)g and VQ( f )h linear separately in g and h such that

DP(f)VP(f)g+ VO(f)DQ(P(f))g=g

forallf € UC F and all g € G. Then for any f, € U the image of a neighbor-
hood of f, fills out a neighborhood of g, = P( f,) in the subset of V C G where
Q(g) = 0. Moreover we can find a smooth tame map S: V' C G - U’ C F from
a neighborhood V' of g, to a neighborhood U’ of f, such that P(S(g)) =g
whenever g € V' and Q(g) = 0.

PrOOF. We refer the reader to our paper (4, §2.6].
We now give a version of the above theorem which is invariantly defined for
manifolds, where the condition Q(g) = 0 does not make much sense.
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3.1.2. THEOREM. Let ¥, § and JC be smooth tame Fréchet manifolds and let P,
Q and R be smooth tame maps

p_0Q
-6 3 I
R

such that Q(P(f)) = R(P(f)) for all f € F. Let TY be the tangent bundle to F,
TS the pull-back to F of the tangent bundle over § by the map P, and T the
pull-back to F of the tangent bundle to IC by the map Q o P = R o P. Then there
is a sequence of linear maps of vector bundles over §

DO—DR
752 16 25 1%

with (DQ — DR) o DP = 0. Suppose that this sequence is exact, and admits a
splitting by smooth tame linear maps V and W of the vector bundles

DP __DQ—-DR
T9=2TS = TX
v w

such that DP o V + W o (DQ — DR) = I (the identity). Then for every f, in G
the image of a neighborhood of f, fills up a neighborhood of g, = P( f,) in the
subset of § where Q(g) = R(g). Moreover we can find a smooth tame map S of a
neighborhood of g, in g to a neighborhood of fy in F such that P(S(g)) = g
whenever Q(g) = R(g).

ProOOF. Choose local coordinate charts and apply the previous result to P
and Q — R.

3.2. Embedding surfaces of negative curvature.

3.2.1. ExampLE. Consider a compact surface M with smooth boundary
embedded in R® with strictly negative curvature. In this case the second
fundamental form b;; has two characteristic directions in which it is zero. The
characteristic curves of M are the curves in the characteristic directions of b, .

3.2.2. DErFINITION. We say M is in proper position if dM has two compo-
nents and each characteristic curve starts in one boundary component and
ends in the other without being tangent to the boundary. Note that if M is in
proper position so is any nearby surface M. If y = f(x) is a positive convex
function on a < x < b and we revolve its graph around the x-axis the resulting
surface of revolution is in proper position. We will prove the following result.

3.2.3. THEOREM. Let M be a compact surface with boundary of strictly negative
curvature in proper position. Then (A) any small isometric motion of one
boundary curve extends uniquely to a small isometric motion of the whole surface,
and (B) any metric close to the given one also admits an isometric embedding
close to the given one, and (C) the embedding of the new metric is uniquely
determined by the embedding of one boundary component, which may be any
isometric embedding close to the given one.

PRrOOF. First observe that we can orient each characteristic curve so it goes
from one boundary component 3" M to the other one 9~ M. At each point
there is the curve going to the left and the one going to the right. By continuity
each curve is a left or right going curve at all its points. The left going curves
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give a diffeomorphism between M and 9+ M X I where I is an interval, and so
do the right going curves. Thus M is an annulus.

We can choose left and right unit vector fields y’ and z* on M tangent to the
left and right going characteristic curves. Then we have

gijyiyj =1, gijzizj =1,
byy’=0, b;z'2/ =0,
and if p,; is the measure tensor then
I"ijyizj >0.

3.2.4. LEMMA. We can find a weight function p on M such thatp =Qon 0™ M
andp = 1 0on 9~ M, and we have

y,p>0 and z'9,p>0
everywhere on M, so that p is strictly increasing along the characteristic curves.

PRrOOF. Given any point in M, follow forward along the left and right going
characteristic curves to 0~ M, and let s~ be the distance separating the
endpoints along 3~ M. (To make s~ continuous it may be necessary to count
the distance as though it were on the universal cover of M, in case we go
around 9~ M several times. Can this ever really happen?) Likewise follow back
along the characteristic curves and let s* be the separation on 9* M. Then put

2 st
p=_arctan —.

If we move in the forward direction along either a left or right going
characteristic curve, it is clear that s* will increase and s~ will decrease. Hence
p has the required properties. We do not actually need the part that p is
constant on the boundaries, but we include it anyway. Note that the converse
holds; if p is constant on the boundary components and strictly increasing
along the characteristic curves then M is in proper position. Note also that for
a surface of revolution around the x-axis we could use p = x.

We wish to transform our variational problem into a symmetric system. To
accomplish this we introduce the tensor ¢*/¥ which is completely symmetric in
all three indices given by

¢k = ylyiyk + zizizk,
We can then define a linear transformation L of the bundle L3(TM) of

symmetric bilinear forms into the bundle TM of tangent vectors by letting
L(h;,) = v' where v' = c'/*h .

3.2.5. LEMMA. The linear transformation L is surjective with kernel given by
the one dimensional subbundle B spanned by the second fundamental form b,;.
Hence L gives an isomorphism of the quotient bundle Q = L%(TM)/B onto TM.

PROOF. Since by, y/y* = 0 and b, z/z* = 0 we have ¢/*b;, = 0. Hence B is in
the kernel. Now a basis for L2(TM) is given by the bilinear forms
YiYis 2,2, YiZk + YiZ;
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where y, =gy’ and z; = gz’ are the dual basis, and by, is a multiple of
Y2k + yiz;. We shall show that L is injective on the subspace spanned by y; y,
and z;z,. Indeed

cryy=y' and Yz z, =z
Since y’ and z' are linearly independent, the lemma follows.

Let (M) be the Fréchet manifold of embeddings of M into R?, G(M) the
Fréchet space of symmetric bilinear forms on M and §(M) the open subset of
G(M) of Riemannian metrics. Similar definitions apply to $(3* M), G(3* M)
and (0" M). We define a complex of smooth tame maps P and Q

F(m) Zo(M) x §(3* M) 263+ M)

by letting P(f*) = (g;;, h*) and Q(h*) = k,; where f* is an embedding of M
into R3,
&i;j = gaﬁaifaajfﬂ

is the metric induced on M by the Euclidean metric g,z on R? via the
embedding /%, h* = f*| 3" M is the restriction of the embedding to 9 M, and

kij = 8ogdihdhP — g, |0+ M

is the difference between the metric induced on 9* M by the embedding 4#* of
d* M into R® and the metric obtained by restricting the metric g; ;on M to the
boundary component 3* M. Note that QP = 0. We want to show that P is
surjective and the image of P fills out the null space of Q in a neighborhood of
a proper embedding. This says that for any metric g;; on M near the given one
and for any embedding A% of 3* M near the given one which induces the same
metricon 3" M as g, ; there is a unique embedding /* near the given one which
induces the metric g;; on M and agrees with 4% on 3" M. Both assertions follow
from the following lemma by the Nash-Moser theorems for injective maps and
for exact sequences.

3.2.6. LEMMA. The linearized sequence DP and DQ is a short exact sequence
which admits a smooth tame splitting by maps VP and VQ so that
VP o DP =1, DPoVP+ VQoDQ =1, DQoVvQ=1

in the diagram

D
0- TGJ(M)L::;TQ(M) X TF(3* M) ’%TG(BJ“M) -0,
V.

PROOF. We let /%, &,;, h*, and £, ; denote tangent vectors at /%, g, , h, and k,;
respectively. Near 3* M we choose coordinates x! and x? so that M is given by
x'=0. Then x' is the coordinate function on 3* M and k, ; has only the
component k,,. Since the boundary is not characteristic, we know b,, # 0 in

such coordinates. The formulas for DP are

&= gaﬁaifaajfﬁ + gaﬁaifaajfﬁ’ h® :ia | ot M
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and the formula for DQ is
’;u = zgaﬁalhaal};ﬁ —&n|d" M.

We shall show that for all §;; and h* with k,, = 0 there is a unique f* which
solves the equations. 3
As before we decompose f* into its tangential and normal components.

Instead of the tangential vector components & we use the dual vectors
&, = g,,07 lowering indices. Thus we let

fe = g'5,9,f* + wn*
where ©, are the tangential part and w the normal part of f¢. Likewise we let

h* = g7, f* + sn®

where 7 is the tangential part and § the normal part of 4% Then as before the
equations for DP become

0,0, + 9,0, + 2b;w = §;; onM,
5|0"M=F and W|3*M=3
while the equations for DQ become

20,/ +2b,5— &, |0 M =k,,.

Given g, 7; and § solving the equations for DQ, we must show that there is a
unique solution for ¢, and w of the equations for DP. Our procedure is the
following. Given g;; and 7, we let §; be the solution of the equations

9,6, +96,=g, modb
610" M =7,

1

ij?

(=)

We will show this solution exists and is unique. We can then solve for w
algebraically with

0,0, + 9,6, + 2b;W = §,;.
We take the f* determined by this &, and W to be /* = VP(g,,, 7, §). Note it is

independent of §. If k;; =0 then we will automatically have w|9" M = 3.
More generally we can define the map

(&, %, 5) = VQ(ky)
by letting
§= En/an

and putting g;; = 0 and 7; = 0. It is easy to check that this gives a splitting.
We can transform the equations (*) into a symmetric system using the
transformation L defined before. Put

fk — ijkg
1" =g, .
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Then L(g;,;) = {* gives an isomorphism of the quotient bundle Q = L3(TM)/B
onto the tangent bundle 7M. The equations (*) are equivalent to the equations
{281"8,61- =/* onM,

610" M =7.

(x%)

The equations define a first order linear operator from ¢; € 7*M into the dual
bundle /¥ € TM. The matrix of the symbol at a cotangent vector ¢, is just
2¢'%¢,, as we see by replacing 9; by {;, and this is clearly symmetric in j and k
since c'/* is fully symmetric. Therefore we have a symmetric system as defined
before.

3.2.7. LEMMA. If p is a function with y'd,p >0 and z'd,p >0 then p is a
positive weight function for the symmetric system defined by

ik = yiyiyk 4 zizizk
provided y' and z' span the tangent space at each point.

PrOOF. We must check that ¢/%3, p = m’* is a positive-definite matrix. Let
x; be any nonzero covector. Then

R px;x, = Yo, pyIx; yix, + 28, pzix;z*x,.

Now y’0, p and z‘9, p are positive, and if y/ and z/ span the tangent space then
either y’x - or z/x; is not zero. It follows that ¢'/*9, px,x, > 0.

Finally we must check that if »; is an inward pointing normal covector at the
boundary then c¢/*v, is positive-definite on d3* M and negative-definite on
9~ M.On 3" M we know that y,»; > 0 and z'»; > 0, so as before if x; 7 0 then

cryx;x, = y'vyix y*x, + 2'v,20x,2%%, > 0

since y/ and z/ span the tangent space. The inequality reverses on 3~ M since
y'v,<0and z'»,<0.

It follows now by the theory of symmetric systems in §I1.3.4 that the
equations (**) have a unique solution ¢; which is a smooth tame function of i*
and the coefficients ¢'/*. Then the sphttmg maps VP and VQ are smooth tame
functions of the embedding /* and the data g, , h* for VP and Kk, ; for VQ. This
proves the theorem.

3.3. The implicit function theorem with quadratic error. Our other generaliza-
tion of the Nash-Moser theorem is an implicit function theorem with quadratic
remainder term of the sort introduced by Zehnder [24].

3.3.1. THEOREM. Let F, G and H be tame Fréchet spaces and let A be a smooth
tame map defined on an open set U in F X G to H,

A:UCFX G- H.

Suppose that whenever A(f, g) = 0 the partial derivative D;A(f, g) is surjec-
tive, and there is a smooth tame map V( f, g)h linear in h,

V:(UCFXG)XH-F,



212 R. S. HAMILTON

and a smooth tame map Q( f, g){h, k} bilinear in h and k,
Q:(UCFXG)XHXH-F,
such that for all (f, g) in U and all h € H we have
D A(f, g)V(f, 8)h=h+ Q(f, £){A(f, g), h)

so that V is an approximate right inverse for D;A with quadratic error Q. Then if
A( fy, 80) = O for some ( f, 8,) € U, we can find neighborhoods of f, and g, such
that for all g in the neighborhood of g, there exists an f in the neighborhood of
with A(f, g) = 0. Moreover the solution f = B(g) is defined by a smooth tame
map B.

PrOOF. We could prove this by a slight generalization of our argument for
the inverse function theorem, but to spare the reader the tedious details we
merely reduce it to an application of the theorem on near-projections in [4,
§2.1]. We may assume f, = 0 and g, = 0.

3.3.2. LEMMA. The map
P(f, g, h)=(f—V(f 8)A(f 8).8h—A(f. 8g))
is a near-projection in a neighborhood of (0, 0, 0).
PROOF. We let
Af=V(f,8)A(f, g), Ag=0, Ah=A(f, g).
Using the formula for the quadratic error it is easy to compute
DP(f,g, h)(Af, Ag, Ah) = (k,0,1)
where
k=V(f, g)Q(f, 8){Ah, Ak} — DV(f, g){Af, Ah},
1=0(f,g){Ah, Ah}

so that k and / are quadratic in A f, and Ah. This proves P is a near-projection.
It follows that the algorithm

fn+l =f;,+S,,V(f;,, g)A(f,,, g)5
gn+l=g’ hn+1=hn+SnA(f;19g)

induced by the near-projection with initial data f, =0, g, =g, and h, =0
converges as n — o0o0. The f, converge to a solution f of A(f, g) =0, and the
solution fis a smooth tame function of g.

If instead V(f, g) is an approximate left inverse for D;A(f, g) with a
quadratic error term, then the solution of A( f, g) = 0 for a given g may not
exist, but if it does it is unique. In particular we have the following result.

3.3.3. THEOREM. Let F, G and H be tame Fréchet spaces and
A:UCFXG-H
a smooth tame map with A( f,, 8,) = 0. Let
V:(UCFXG)XH->F and Q:(UCFXG)XHXH-F
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be smooth tame maps with V( f, g)h linear in h and Q( f, g){h, k} bilinear in h
and k, such that for all (f, g) € Uand all h

DA(f, g)V(f, g)h=h+ Q(f, g){A(f, g), h}.

Then we can find neighborhoods of f, and g, such that if f, and f, are in the
neighborhood of f, and g is in the neighborhood of g, with A(f,, 8) =0 and

A(f,, 8) =0 then f, = f,.

PrOOF. By Taylor’s theorem with integral remainder we can find a smooth
tame map

B(fi, fy, 8)(h, k) =fo‘(1 — )DRA((1 — 0)f, + thy, g) {h, k) dt

such that
A(fz, g) =A(fl’ g) + DfA(fl’ g)(fz —fl) +E

where

E= B(fl’ fz» 8){(]’2 '—fl)’(fz —fl)}‘

We can write
Lh—hHh= V(fl’g)DfA(fh g L= hH)+ e, g){A(fl’ g) h _fl}'
Now if A(f,, g) = 0 and A(f,, g) = 0 then
f—fH=-V(fi,8)E.

Then taking a suitable degree r and base b for our tame estimates we have

W= fill,<Clfy—fills+,
when f, and f, lie in a neighborhood of f;. By interpolation

1= fils, < CUA = fill o, fo = fill-

For any ¢ > 0 we have || f, — f,ll ,4», < € when f, and f, lie in a small enough
neighborhood of f,. This makes

M= fll,<Cell f, — fill,

with the constant C independent of ¢ > 0. Taking e < 1/C we get || f, — f,1l,
=0sof, = f.

There is an interesting global version of this theorem for manifolds and
vector bundles, in which the quadratic error comes from the choice of a
connection on the vector bundle.

. 3.3.4. THEOREM. Let % and § be smooth tame Fréchet manifolds and let “V be a
smooth tame vector bundle over F with a smooth tame connection T. Let P: § - §
be a smooth tame map of manifolds and let Q: § — “V'be a smooth tame section of
the vector bundle. Let TS be the tangent bundle to ¥ and let P*TS be the
pull-back of the tangent bundle to § by the map P. Then we have smooth tame
linear vector bundle maps of bundles over §

DP: TS - P*TS, DrQ: TG >V
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where DP is the derivative of P and DrQ is the covariant derivative of the section
Q with respect to the connection I'. Suppose that

DP X Dp.Q: TF - P*TS X ¥

is a smooth tame linear vector bundle isomorphism of bundles over ¥ with a
smooth tame inverse V. Suppose moreover that for some f, €% we have
P(fy) = 8o and Q(f,) = 0. Then we can find neighborhoods of f, and g, such
that for all g in the neighborhood of g, there exists a unique f in the neighborhood
of fo with P(f) = g and Q(f) = 0. Moreover the solution f = S(g) is defined by
a smooth tame map from a neighborhood of g, to a neighborhood of f, with
S(80) = fo-

If DP X DrQ is merely surjective with a smooth tame right inverse, then the
solution exists in the neighborhoods and is given by a smooth tame map S but
it may not be unique. On the other hand if DP X DQ is merely injective with
a smooth tame left inverse, then the solution may not exist, but if it does it is
unique in the neighborhoods.

PrROOF. We compute the local representatives. Locally ¥ is an open set Uin a
Fréchet space F and G is an open set U in a Fréchet space G, while Vis locally
a product U X H for some Fréchet space H. Locally P is given by a map

P.UCF-UCG
and Q is given by a map
Q:UCF-H.
The connection I' is given locally by a map
I'"(UCF)XFXH-H

where I'(f){(f’, h)} is bilinear in f’ and h. Locally DP(f)f’ is just the
derivative of P, while

DrQ(f)f = DR(f)f + T(N){f, (1)}

where D-Q is the covariant derivative of Q with respect to the connection I'
and DQ is the ordinary derivative of Q in our coordinate chart on V. We
define a map

A:UXUCFXG->HXH

by letting
A(f’ g) = (P(f) - & Q(f))
Then
D A(f, 8)f = (DP(f)f', DQ(f)f")
and hence

D/A(f, 8)f' = DP X DrQ(f)f — (0, T(f){f", 2(£)}).

If DP X DQ is invertible then its inverse provides an approximate inverse for
DA with a quadratic error term arising from the connection term
L) f', Q(f)}, since Q( f) is just the second term in A( f, g). If we have only



NASH-MOSER INVERSE FUNCTION THEOREM 215

a left or right inverse for DP X DpQ then we get only a left or right
approximate inverse for D,4 with a quadratic error. We can now apply our
previous results.

3.4. A free-boundary problem.

3.4.1. ExampLE. We consider a free boundary problem. (See Schaeffer [19]
and Acker [1], who proves this result by other techniques.) Let B be a closed
curve in the plane. We seek another closed curve C outside of B and a smooth
function f on the closed annular region A between B and C with

Af=20 onA,
() f=1 on B,
f=0 onC,

af/on+1=0 onC

where df/dn is the outward normal derivative. Note that since the outer
boundary C is free or undetermined we can impose an extra boundary
condition on C. We prove the following result.

3.4.2. THEOREM. For every smooth convex curve B in the plane there exists a
unique solution of the free boundary problem (x). The curve C is also smooth and
convex and the function f is smooth.

Note that if B is not convex the solution may fail to exist, as when B is a
horseshoe. We conjecture that the same result holds in R”. The inverse
function theorem part of the proof goes through there, but our a priori
estimates come from conformal mapping.

Our boundary value problem has the following interesting physical interpre-
tation. Imagine a perfect fluid flowing around an obstacle in the plane with
convex boundary B. We look for a flow which is at rest outside of an annulus
A with a jump discontinuity in the velocity on the outer boundary curve C
which is to be determined. Suppose the fluid has unit density. We can write the
velocity v in terms of a harmonic stream potential function f, so that v = curl f
and Af = 0 in A. Since v is tangent to the boundary curves B and C we must
have f constant on B and C. If the flow is stagnant outside C the pressure is
constant there. Then particles on the boundary curve C experience only a
normal force from the pressure, so the speed | v| is constant on C. Since f is
constant on C, |v|=|df/0n| where df/dn is the normal derivative. Thus
df/0n is constant on C also. The difference between f on B and C is the mass
flow rate across any curve cutting A from B to C, which we call the circulation.
By choosing our units of length and time we can make the velocity on C and
the circulation both equal to 1. This gives our equations (x) for the free
boundary problem. Thus there exists a unique flow around any convex
obstacle in the plane which is stagnant outside a compact set and has an
arbitrarily given outer velocity and circulation. Physically it is hard to realize
this solution for long due to viscosity.

PrOOF. We start by using the inverse function theorem to show that the set
of curves B for which we can solve the free boundary problem (x) is open. Let
@ be the Fréchet manifold of all annular domains in the plane with smooth
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boundary, and likewise let % and € be the Fréchet manifolds of all boundary
curves B and C. Then @ is the open subset of B X € consisting of all pairs
(B, C) with B inside C. This gives a smooth tame projection map P: @ - B.
Let C*(&) denote the Fréchet vector bundle over @ whose fibre over a region
A € @ is the Fréchet space ©*(A4) of smooth functions on 4. Likewise C*(B)
and C®(Q) are Fréchet vector bundles over % and C, or over @ by pull-back.
There is a linear vector bundle map

L:C®(R) » C®(R) X C®(B) X C=(C)
of vector bundles over @ defined by

Lf=(Af, f|B, f| C).

Since the Dirichlet problem is always elliptic and invertible, we see that L is a
smooth tame isomorphism. Taking f= L1(0,0,1) defines a smooth tame
section S of the vector bundle C*(&) over @, where for each 4 € @ the
function f = S(A) is the solutionof Af =0onA4,f=0onBandf=1o0nC.

Using S we can define a smooth tame section Q of the bundle C*(C) over
@, by letting Q(A4) = k where

k=9f/an+1 onC

and f = S(A4). Note that the free boundary problem (*) has a solution on 4
exactly when Q(A4) = 0.

3.4.3. LEMMA. If B is convex and the free boundary problem () has a solution
for B, then it also has a solution for all B near B. If A is an annulus with inner
boundary B and Q(A) = 0, then for every curve B near B there exists a unique
annulus A near A with B the inner boundary of A and Q(A) =

PrOOF. We use the Nash-Moser implicit function theorem. The bundles
C*(@) and C*(%) and () all acquire connections as explained previously.
Computing the covariant derivative of Q using the connection on C*(C), we
must show that

DP X DQ: TR - TH X C*(C)
is a smooth tame linear isomorphism of vector bundles over €. Now T@ = TH
X TC since @ is an open subset of B X C, while TH = C*(%) and TC =
C*(C) using the unit normal vector fields to trivialize the normal bundle.
Since P: @ — % is projection on the first factor, so is DP: T@ - T%. Hence it
suffices to invert the restriction of DQ to TC = C*(C).
We shall now compute

DQ: C*(C) - C=(C).
Let & € C°(C) denote an infinitesimal variation of the outer boundary C in
the direction of the outward normal and let f = DS(k,0) € C*(&) be the
induced variation on the function f, keeping the inner boundary B fixed. The

variation of f on C is the sum of two terms, one due to the variation of f and
one due to the variation of C, and in order to keep f = 1 on C we must have

f+ (3f/an)h = 0.
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Since 3f/dn + 1 = 0 on C we get f = h. Thus f s the solution of the Dirichlet
problem

Af=0 ond,
(1) f=0 onB,
f=h onC.

Since kK = df/0n + 1 on C, the variation k in k will be the variation in of/on.
This has three parts, one due to varying f, one due to varying the boundary,
and one due to varying the normal direction. We get
2
f=3 L Sy

an 32 vf- vk

since Vfis perpendicular to the boundary and v/ is taken along the boundary
we can drop the third term. For the second term we observe that when f = 0
and 3f/dn +1=0o0n C and Af = 0 in A then 3*f/9n? = m where m is the
curvature of C. (In higher dimensions m is the near curvature, the trace of the
second fundamental form.) Then

) k=293f/on+ mf

using /=4 on C to eliminate 4. The operator DQ(k) = K is obtained by
solving (1) for f and finding £ by (2). To invert DQ, we must solve the elliptic
boundary value problem

Af=0 onA,
(3) f=0 on B,

dffon+mf=k onC
and take A = f | C. The above problem differs by the lower order term mf from
Laplace’s equation with Dirichlet conditions on B and Neumann conditions on

C. Hence it has index zero, and it is invertible if and only if its null space is
zZero.

3.4.4. LEeMMA. If C is convex then the elliptic system (3) is invertible.

Proor. This follows from the followmg energy estimate when £ = 0, which
is obtained by integrating by parts in fA f.

ffAIVfIZ-Fme-z:O

If Cis convex then m = 0 and v/ =0, s0f = 0.
The proof of Lemma 3.4.3 will be complete as soon as we make the
following observation.

3.4.5. LEMMA. If the free boundary problem () admits a solution with a convex
inner boundary B then the outer boundary C is also convex.

PROOF. By the theory of conformal mapping the region 4 can be mapped
smoothly and conformally onto a standard annulus. Passing to the universal
cover we get a conformal map of the strip 0 < v < 1 in the uv-plane onto the
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annulus A4 in the xy-plane with v = 0 mapping onto C and v = 1 mapping
onto B and such that the map is periodic with some period p in u, such that
u — u + p corresponds to going once around the annulus. In two dimensions
Laplace’s equation A f = 0 is invariant under conformal transformations so we
see that v = f(x, y) is our solution function and u is the conjugate function.
The flat metric in the xy-plane pulls back to a periodic conformally flat metric
in the uv-plane

ds? = dx? + dy* = e 28(du’* + dv?*)

where g is a smooth function of u and v periodic in u with period p. Since
| v/|* =1 on C we must have g = 0 along v = 0. A basis of unit vectors in the
g-metric is given by

T = e%d/u, N = e%0/0v

where T is tangent and N normal to the level curves f = v = constant. Since N
is an inward pointing normal we have T - N = -mT where m is the curvature
of the level curve. It is easy to compute

m = e83g/dv.

If B is convex then m = 0 along v = 1 and hence dg/dv > 0 along v = 1. The
metric is conformally flat if and only if Ag = 0. It now follows from the
maximum principle that g = 0 and dg/dv = 0 on the whole strip. (Hint. The
function g has its maximum on the boundary, and it isn’t along v = 1 by the
inequality. Also A(dg/dv) =0 and (dg/dv)(dg/dv) = -3°g/du*> = 0 along
v = 0 so we can apply the same argument to dg/dv.) Therefore m = 0 in the
whole strip, so all the level curves of f are convex, including the outer boundary
C where f = 0. This completes the proof of Lemma 3.4.5 and our application
of the inverse function theorem.

To finish the proof we need a priori estimates on the solution f and its
derivatives, which we shall briefly sketch. Let M = max z m be the maximum
curvature of the given inner boundary B. We make estimates in terms of
constants C(M) depending only on M.

3.4.6. LEMMA. We have estimates
max g < C(M) and maxm< C(M).

PrOOF. We know Ag=0on0<v<1landg=0onv=0andesdg/dv =
m<M on v =1. Since g =0 we have dg/0v < M on v = 1 also. As before
d%g/9v?> =0 on v = 0 and A(dg/dv) = 0 on 0 <o < 1. Then by the maxi-
mum principle 3g/0v < M on all of 0 < v < 1. It is then easy to bound g and
m = e8dg/dv by constants C(M) depending on M. Note that the estimate
0 < g < C(M) gives estimates on the maximum and minimum width of the
annulus 4 in terms of the maximum curvature M of the inner boundary B,
while the estimate 0 < m < C(M) shows the outer boundary C is convex and
estimates its maximum curvature in terms of M.
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We can also estimate the period p. Note that p is just the perimeter of the
outer boundary C, so p is at least the perimeter of B, which in turn is at least
27 /M. On the other hand

area A =fp fl edudv=p
u=0"v=0
and we can estimate the area of 4 in terms of the diameter of B and the
maximum width of 4. Hence p can be estimated above and below by the
maximum curvature M of B and the diameter of B.
Now we can estimate higher derivatives. Let || f||,, denote the supremum
norm of f and its derivatives of order at most n. Likewise we define || B||, using
a coordinate chart on B in a neighborhood of some B.

3.4.77. LEMMA. We can make an estimate for n = 2,
i, <cal,)

where C(ll Bll,,) is a constant depending only on || Bl|,, and n, and the estimate
holds for all B in a neighborhood of B.

PROOF. Since n = 2, || B[, estimates the maximum curvature M of B, and its
diameter, so our previous estimates apply. If D is any partial derivative then
ADf = 0in A so Df attains its maximum on B or C. First we estimate on C in
our new coordinate system uv where f = v. Then estimating || f ||, reduces to
estimating || gll,_,. SinceAg=0on0<v<1,g=00nv =0,and g < C(M)
on 0 <v < 1, while the period p is bounded above and below, it is easy to
estimate || gll,, on v = 0 in the usual way.

The same estimate applies on 0 < v < 1 — ¢ for any ¢ > 0. We can choose
& > 0 smaller than our estimate for the minimum width of A. Then the curve
B; at distance  from B lies in 4, and in 0 < f < 1 — ¢ for ¢ > 0 small enough.
We know A f = 0 between B and B;, f = 1 on B and all the derivatives of f are
estimated on B;. Then it is easy to derive estimates for the derivatives of f on
B. One way to do this is to use a construction like our coordinate chart on & to
pull back each annulus 4;, which will be a smooth tame function of B. The
pull-back of f to A, satisfies the Laplace equation in the variable metric and we
can estimate the Dirichlet boundary data, so the tame estimates on the higher
derivatives of f we proved earlier will hold. To estimate the C" norm of f we
use the C"** norm for 0 < a < 1. This requires the C"2** norm of the
induced metric, which can be estimated by its C”~! norm. This in turn requires
the C” norm of the boundary curve B.

Next we derive estimates for the boundary curve C. Pick a point 0 inside B
and take it as the origin for polar coordinates r and 6. For all B in a
neighborhood of B the origin 0 lies inside B also. Write B as the graph of
r = b(0) and C as the graph of r = ¢(#). Since B and C are convex and
enclose the origin 0, the functions b(8) and c(8) are single-valued and smooth.
The norm || BI|, of the last lemma is equivalent to (|51l ,,.

3.4.8. LEMMA. We can estimate for alln = 2
liell, < C(libll,)
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where C(llbll,,) is a constant depending only on ||bll,, and the estimate holds for
all B in a neighborhood of B.

PROOF. We know that |Vf|— e 8 and g < C(M) < C(llbll,), so | vf|=
g(llbll,) > 0. Also the maximum and minimum values of ¢(6) are bounded in
terms of ||b[l, since the width of A is. It is now an easy consequence of the
implicit function theorem in finite dimensions to write an nth derivative of
¢(0) in terms of nth derivatives of f along C. Combining with the previous
lemma we get our estimate.

3.4.9. LEMMA. Let B, be a smooth path of convex curves in B parametrized by t
for 0 <t <1. Suppose for t =0 the free boundary problem has a solution f
which is smooth on an annulus Ay € @. Then we can find a unique smooth path
A, in @ and a path f, € C®(&,) of sections over A, which solve the free boundary
problem and such that A, has inner boundary B,.

ProoOF. The inverse function theorem supplies us with the smooth paths 4,
and f, for 0 <t <e. If we can’t continue it to ¢ = 1, there will be a maximal w
such that the smooth solution exists on 0 <¢ < w. We take B = B, in the
previous lemmas. Then for all 7 in w — § <t < w for some § > 0 we have
uniform estimates on || f,|l,, and llc,ll,, where B, and C, are the graphs of
r =b,(60) and r = c,(0) in polar coordinates about some point 0 inside B,.
Then for some sequence ¢; > w we will have G~ G and f, - f, on the
annulus 4, between B, and C,,, by Ascoli’s theorem (After the C _converge to
C,, we may use our coordmate chart on @ around A4, to pull the functions f,
on A back to 4, and the pull-backs f* still have umform bounds for || f*ll
on A JItis 1mmed1ate that £, solves the free boundary problem on 4, with
inner boundary B,,. By the implicit function theorem we get a smooth path f of
solutions on a smooth path 4, of domains which agrees with f, and 4, at
t = w, and is the unique solutlon in a neighborhood of f, in C*(&). Since the
f,, converge to £, in C*(®), the f, and f, must agree when j is large enough.

Hence f, =, for all ¢ near , and the solution extends past w. This gives a
contradiction if w is maximal.

3.4.10. LEMMA. When B is a circle there exists a unique smooth solution to the
free boundary problem.

PRrOOF. If B is the circle r = b in polar coordinates then C is the circle r = ¢
where c is the unique solution of the equation
ce /e =b

and fis the function

= log(c/r)/log(c/b).

(Note the function y = xe™'/* has y’ = (1 + 1/x)e”"/*>0 for 0 < x < o0
and y —» 0 when x — 0 whiley - o0 as x = 0.)

To see that the solution is unique, we look at the associated metric function
g introduced in Lemma 3.4.5. We know that g is periodic in the strip 0 < v <1
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and satisfies Ag = 0 on the strip, while g = 0 along the boundary v = 0. On
v = 1 we have

e8dg/dv =1/b
since the curvature of B is 1/b when B is a circle of radius b. [Note that in
general we do not know the curvature as a function of u on v = 1 because the
diffeomorphism attaching the line v = 1 to the inner boundary B is unknown,

but when B is a circle the curvature is constant and this doesn’t matter.] Then
we can differentiate with respect to u to get

A(%)zo on0<v<l,
du
g‘5=0 onv =0,

ou

9 _3£) 1dg _ _
egao(au +b8u— onv=1.

It now follows from the maximum principle that 0g/du = 0. [Note that 9g/du
has its maximum on the boundary, and it isn’t on v = 1 since there e® and
(d/dv)(dg/du) and dg/du would all be positive. One needs to throw in an e.]
Then g is a function only of v, and we have the ordinary differential equation

d%g/dv’ =0 on0<o<l,
g=0 onv =0,
eédg/dv=1/b onv=1

whose only solutions are of the form g = av. Since a e® = b we see that a is
uniquely determined. The strip with metric ds? = e~ 28(du® + dv?) must map
isometrically onto the annulus 4, and such a map is unique up to a rotation
which leaves f = v invariant. Hence the solution is unique when B is a circle.

It is now easy to complete the proof that the solution exists and is unique for
any convex B, using Lemmas 3.4.9 and 3.4.10. We can join any convex curve to
a circle through a path of convex curves. By Lemma 3.4.7 the solution for the
circle continues to a solution for B. If there were two distinct solutions for B,
we could continue them back along the path by Lemma 3.4.9 to two distinct
solutions for the circle, contradicting Lemma 3.4.8. This proves the theorem.
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