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INTRODUCTION 

The basic idea of this inverse function theorem was discovered by John Nash 
[14], who used it to prove his famous theorem on isometric embeddings of 
Riemannian manifolds. Jürgen Moser [13] fashioned it into an abstract theo­
rem in functional analysis of wide applicability. Sergeraert [20] stated the 
theorem in terms of a category of maps between Fréchet spaces. Generaliza­
tions to implicit function theorems have been given by Kuranishi [9], Zehnder 
[25], and the author [4]. Applications have been made by Nash [14] and 
Jacobowitz [8] to isometric embeddings, by Kuranishi [9] to deformation of CR 
structures, by Moser and Zehnder [24] to small divisor problems, by Hörmander 
[6] to problems in gravitation, by Beale [2] to water waves, by Schaeffer [18,19] 
to free boundary problems in electromagnetics, by Sergeraert [22] to catastrophe 
theory, and by the author [5] to foliations. These and many other examples 
show the power and versatility of the theorem. 

We define a category of " tame" Fréchet spaces and " tame" nonlinear maps, 
which is essentially that of Sergeraert. The spaces carry an extra structure of a 
"grading", a sequence of norms || \\n defining the topology. The tame condi­
tion on the Fréchet spaces guarantees that the norms satisfy some interpolation 



NASH-MOSER INVERSE FUNCTION THEOREM 67 

properties. The maps are required to satisfy linear growth estimates \\Pf \\ n < 
C|| ƒ ||w+r for a fixed r and all n. It is a surprising fact that this condition is 
satisfied by all nonlinear partial differential operators and by most of their 
inverses, including inverses of elliptic, parabolic, hyperboHc, and subelliptic 
operators. The Nash-Moser inverse function theorem says that if the deriva­
tives DP( f )h = k of an operator P in the category have solutions VP( f)k — h 
in the category, then the operator P has a local inverse in the category. 

We have spent a long time saying just what this means, hoping to guide the 
reader by many examples. We have tried to include enough material on the 
simple cases so that one may appeal directly to the theorem without the need 
to crank out extra estimates. But if these are needed, the examples included 
here may serve as a guide. There are by now many ways to prove the theorem, 
and we have chosen an algorithm that pleases us for the simplicity of its 
estimates and its similarity to Nash's original. Our applications in this paper 
are not chosen to be the most novel or the most famous, but to be instructive. 
Many can be proven without the Nash-Moser theorem; we hope they are easier 
with it. 

Finally we draw the reader's attention to the counterexamples we have 
included, particularly a brilliant one of Lojaciewicz and Zehnder [12], of which 
we give our own version. They show that all the extra hypotheses which are not 
needed in the simple Banach space case are really necessary in Fréchet spaces. 
Indeed if we weaken our hypothesis so little as to include maps satisfying 
\\Pf \\n < C|I ƒ II2„ we obtain a counterexample. Thus the Nash-Moser Theo­
rem deftly picks out from among the wide variety of maps on Fréchet space a 
very useful class which we can invert. 

PART I. CALCULUS ON FRÉCHET SPACES 

1.1. Fréchet spaces. 
1.1. Definition of a Fréchet space. A seminorm on a vector space F is a 

real-valued function 11 ||: F -> R such that 
(i) II ƒ II >0 for all vectors/; 
(ii) II ƒ + g II < II ƒ II + Il g II for all vectors ƒ and g; 
(iii) ||cf || =\c\ • || ƒ || for all scalars c and vectors ƒ. 

A collection of seminorms {Il ||n: n G N} defines a unique topology such that 
a sequence or net fj -» ƒ if and only if || fj: — ƒ II n -> 0 for all n G TV". 

A locally convex topological vector space is a vector space with a topology 
which arises from some collection of seminorms. The topology is Hausdorff if 
and only if ƒ = 0 when all II ƒ II „ = 0. The topology is metrizable if and only if 
it may be defined by a countable collection of seminorms {II 11 n). In this case 
we may always use sequences instead of nets. A sequence fj is Cauchy if 
II fj ~~ fk H n ~* 0 a s 7 anc* ^ ^ oo for all n. The space F is (sequentially) complete 
if every Cauchy sequence converges. 

1.1.1. DEFINITION. A Fréchet space is a complete Hausdorff metrizable 
locally convex topological vector space. 

1.1.2. EXAMPLE. Every Banach space is a Fréchet space. The collection of 
norms contains only one. 
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1.1.3. EXAMPLE. Let R°° be the vector space of all sequences {ay} of real 
numbers. Put 

W{aj}Wn= 2 \aj\ forn = 0 , l , 2 , . . . . 

Then R°° is a Fréchet space. 
1.1.4. EXAMPLE. Let Q°°[a, b] be the vector space of smooth functions on 

a < x < b. Put 

11/11.= 2 wp\D'f(x)\. 
j = Q X 

Then Q°°[a, b] is a Fréchet space. 
1.1.5. EXAMPLE. More generally, let Xbe a compact manifold and F a vector 

bundle over X. Let 6°°(X, V) be the vector space of smooth sections of the 
bundle over X. Choose Riemannian metrics and connections on the bundles 
TX and V and let Djf denote they'th covariant derivative of a section ƒ of V. 
Put 

11/11,= 2 sup|2>Y(x) | . 
7 = 0 x 

Then e°°( X, V) is a Fréchet space. 
1.1.6. EXAMPLE. Let Q(R) denote the vector space of all continuous func­

tions on the real line. Put 

| | / | | „ = sup{ | / (x) | : - « < * < * } . 

Then Q{R) is a Fréchet space. 
1.1.7. EXAMPLE. Let % denote the vector space of entire holomorphic 

functions. Put 

11/11. = s u p { | / ( z ) | : | z | < « } . 

Then % is a Fréchet space. 
1.1.8. COUNTEREXAMPLE. Let &0(R) denote the vector space of continuous 

functions on the real Une with compact support. For any positive function p let 

ll/ll„ = s u p p ( * ) | / ( x ) | . 
X 

Then Q0(R) is a complete locally convex Hausdorff topological vector space, 
but it is not a Fréchet space because it is not metrizable. For given any 
countable sequence of py we can find p so that 

p/pj -* oo as x -> ±oo for ally. 

1.2. Properties of Fréchet spaces. A seminoma is a norm if ƒ = 0 whenever 
11/11 = 0 . Some Fréchet spaces admit continuous norms and others admit 
none. If a Fréchet space admits one norm then all the seminorms in a 
collection defining the topology may be taken to be norms (by adding the one 
norm to them all). 

1.2.1. EXAMPLES. A Banach space, e°°[a, b\ e°°(X, V) for * compact and % 
all admit norms, while R°° and Q(R) do not. 
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A closed subspace of a Fréchet space is also a Fréchet space, as is a quotient 
of a Fréchet space by a closed subspace. The direct sum of two Fréchet spaces 
is a Fréchet space. A space G is a (topological) direct summand of F if there 
exists a third space H such that F is isomorphic to the direct sum G 0 H. If a 
Fréchet space admits a norm then so does any closed subspace, but a quotient 
by a closed subspace may not. 

1.2.2. EXAMPLE. Let G°°[0, 2TT] be the space of smooth functions on 0 ^ x < 
2 77-, and let G%v be the space of smooth functions on -oo < x < oo which are 
periodic with period 2TT. We can regard Qfv as a closed subspace of G°°[0,2m\ 
where the inclusion map i is given by restricting the function to the interval. A 
function on the interval comes from a periodic function if and only if all the 
derivatives match up at 0 and 2m. Define the projection mapp from G°°[0, 2TT] 
to R°° by letting 

aj = D'f(2ir)-D'f(0). 

Then there is a short exact sequence 

0 ^ e £ ^ e ° ° [ 0 , 2 i r ] ^ i r - > 0 

since a smooth function may have an arbitrary Taylor series. Thus R°° is a 
quotient of G°°[0,2m\ by a closed subspace. Since R°° does not admit a norm, 
it cannot be a direct summand. Hence the sequence does not split, and (2^ is a 
closed subspace of G°°[0,2ir\ which is not a direct summand either. 

The dual of a Banach space is again a Banach space. However, the dual of a 
Fréchet space which is not itself a Banach space is never à Fréchet space. 
Hence in general the space of linear maps of one Fréchet space to another will 
not form a third Fréchet space. For this reason we shall always avoid taking 
the space of linear maps. This causes some differences from the Banach space 
theory as it is usually presented. 

1.2.3. EXAMPLES. The dual of the space R™ of all sequences is the space R™ 
of sequences with only a finite number of nonzero terms. The dual of the space 
of continuous functions on R9 G(R), is the space 9H0(/*) °f measures with 
compact support. The dual of the space &°°(X) of smooth functions on a 
compact manifold is the space 6D00(A

r) of distributions. These are all complete 
locally convex topological vector spaces but none of these duals are Fréchet 
spaces. 

The Hahn-Banach theorem holds for Fréchet spaces. Thus if F is a Fréchet 
space and ƒ is a nonzero vector in F we can find a continuous linear functional 
/: F - R (or C) such that /( ƒ ) = 1. Hence if /( ƒ ) = /(g) for all continuous 
linear functionals then f—g. This is a very useful tool for reducing theorems 
to the real-valued case. Also the open mapping theorem holds. Thus if F and G 
are Fréchet spaces and if L: F -> G is continuous, linear and invertible then 
L _ 1 : G -> Fis also continuous. 

1.3. Families of linear maps. Let F9 G, and H denote Fréchet spaces. A linear 
map L: F -> G is naturally defined on all of F9 while a nonlinear map P: 
U Q F -» G is naturally defined only on an open subset of F. Frequently it 
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happens that we have a map L( ƒ, g) which is nonlinear in ƒ but linear 
separately in g. Thus 

L(f,gl+g2) = L(f,gl) + L(f,g2). 

We call this a family of linear maps. It will naturally be defined for some ƒ G F 
and all g G G with values in a third space //, so we write 

L: (UQF) X G^H. 

Since it is natural to think of L( ƒ ) as a linear operator taking G into if, we 
shall usually write L(f)g for L( ƒ, g), but it is important to emphasize that we 
want to consider L as a function from an open set of the product FX G into 
H, and «0/ as a map 

L: UCF-*L(G,H) 

into the space of linear maps L(G, H), which in general is not â Fréchet space. 
Even in the Banach space case there is a large difference in what it means for 

L: (U C F) X G -> H to be continuous, as opposed to L: U C F -> L(G, H). 
1.3.1. EXAMPLE. Let S27r be the space of continuous functions on -00 < x < 

00 which are periodic with period 2m. Define a family of linear maps L(t) f by 
translation, so that 

{L(t)f}(x)=f(x + t). 

Thus L(t) is the linear operator "translation by t". Then L: R X Q2w -» G27r is 
continuous (jointly in the product topology) but L: R ^> L(Q2m, S27r) is not 
continuous (in the topology of the Banach space of linear maps). It is easy to 
see why this should be so. For a given continuous periodic function we know 
by its uniform continuity that a small translation will produce a small variation 
in the function. But since the collection of all continuous functions is not 
equicontinuous, an arbitrarily small translation will produce an arbitrarily 
large variation in a function with a steep enough gradient. 

Let Q}llT denote the Banach space of continuously differentiable periodic 
functions with period 277, and let L be defined as before. Then the map L: 
R -> L(&lm, Qlm) is continuous, but L: R-* L(Q\m, S27r) is not. This simple 
example is the source of many difficulties in applying the Banach space theory 
to diffeomorphism groups and free boundary value problems. 

We shall also have to consider families of bilinear maps B( ƒ, g, h) which are 
nonlinear in ƒ and linear separately in g and h. We shall write this usually as 
B{ ƒ ){g, h) to indicate the bilinearity, and regard B as being continuous if it is 
continuous as a function on the product 

B:(UCF)XGXH^K 

and not as a map into the space of bilinear maps 

B: UQF-^L^GXH.K). 

1.2. The Riemann integral. 
2.1. The definite integral Let f(t) be a continuous function on a < / < b with 

values in the Fréchet space F. We wish to define the definite integral j£ f(t)dt 
as an element of F. 
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2.1.1. THEOREM. There exists a unique element f% f(t)dt G F such that 
(i)for every continuous linear functional l: F -> R 

i[jhj(t)dt)=jbj{f{t))dt. 

In addition 
iii) for every continuous seminorm II 11 : F -> R, 

\\(bf(t)dt\Ufb\\f(t)\\dt. 
\\Ja II J a 

(m) sa m dt + sim dt=sc
a m dt. 

(iv) ƒ„*[ƒ(/) + g(t)] dt = Sb
a fit) dt + Sb

a git) dt. 
iv)fa

bcfit)dt = cfa
bfit)dt. 

PROOF. Let 6([a, b], F) be the Fréchet space of all continuous functions on 
a < / < b with values in F with the seminorms 

l l / l l , = sup y /(/)ll„. 

We say a function f(t) is linear if f(t) = *ƒ, + /2 for some ƒ, and f2 G F, and we 
say f(t) is piecewise linear if it is continuous and there exists a partition 
a — t0 < tx < • • • < ̂  = b such that ƒ(/) is linear on each piece ti_l < f < ff-
for 1 < / < k. The vector space PL([a, b], F) of piecewise linear functions on 
[a, b] with values in F is a dense linear subspace of 6([a, b], F). For a 
piecewise linear function we may define the integral by the trapezoidal rule 

fbf(t)dt= ^ [ / ( U + t t - ^ i ) . 

We may easily verify properties (i)-(v) for piecewise linear functions directly 
from the formula. Since the integral defines a continuous linear functional on 
the dense subspace PL([a, b]9 R), it extends by continuity to a continuous 
linear functional on all of &([a9 b], R\ where it will still satisfy (i)-(v). The 
uniqueness assertion follows from the Hahn-Banach theorem. 

2.1.2. EXAMPLE. Let F= R2 and write a vector 

A U o r \LbMt)dtf-
Hence the integral of a vector function may be obtained by ordinary integra­
tion component by component. 

Then a path 

and 
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2.1.3. EXAMPLE. Let F = G27r be the Banach space of continuous functions 
periodic with period 2ir. Then a continuous pa th / (0 G 627r on a < f < b is a 
continuous function ƒ(*, x) on [A, b] X (-00, 00) periodic in x, setting f(t)(x) 
= ƒ(/, x). The integral of the path is given by 

[fa
bf(t)dt}{x)=f*f(t,x)dt. 

We have the usual formula for a change of variables. 

2.1.4 THEOREM. Let u — y{t) be a C1 monotone increasing function on 
a^t^b and let f(u) be a Cl parametrized curve on y {a) < u < y(b) with 
values in a Fréchet space. Then 

(y(b)f(u)du=jbf(y(t))-y>(t)dt. 

PROOF. Apply an arbitrary linear functional to each side. Equality holds by 
the usual result for real-valued functions. Then appeal to the Hahn-Banach 
theorem. 

2.1.5. THEOREM. Let X be a topological space and F a Fréchet space. Let f: 
X X [a, b] -> R be a continuous map. Define a map g: X -> R by 

g(x) = [bf(x,t)dt. 

Then g is also continuous. 

PROOF. Pick x0 E X. Since x0 X [a, b] is compact, given any continuous 
seminorm || II on F and any e > 0 we can find a neighborhood U of x0 in X 
such that, for all x e U and all / in [a, *], || f(x91) - f(x0, t)\\ < e. Then 

Wg(x) ~ g(x0)W < ('Ui*, 0 -ƒ(*<» O" dt < e(b - a). 

This shows g is continuous. 
2.2. Parametrized curves. Let f(t) be a continuous path in a Fréchet space. 

We can define its derivative in the usual way. 
2.2.1. DEFINITION. For a parametrized curve 

f'(t) = Um[f(t + h)-f(t)]/h. 

If f(t) is the position at time t then ƒ ' (0 is the velocity. If the limit exists and is 
continuous we say ƒ is continuously differentiable or C1. We can now state the 
two fundamental theorems of calculus. 

2.2.2. THEOREM. If f(t) is a CX curve on a< t < b with values in a Fréchet 
space then 

f{b)-f(a)=fbf'(t)dt. 
Ja 

2.2.3. THEOREM. Iff(t) is a C° curve on a^t^b and if g(t) = Ja' f(0) dO 
then g(t) is Cl and g'(t) = f(t). 
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PROOF. If / is a continuous linear functional and ƒ is C1 then / o ƒ is C1 and 
(/ o ƒ y = / o ( ƒ'). By the standard result for F = R 

l(f(b)-f(a)) = l(fy>(t)dt). 

Then Theorem 2.2.2 follows from the Hahn-Banach theorem. To prove the 
other result we need a lemma. 

2.2.4 LEMMA. 

r*hf{O)d0 = h(lf(t + hu)du. 
Jt Jo 

PROOF. If ƒ(#) is real-valued this follows from the substitution 0 = t + hu. 
The general case comes by applying a linear functional and using the Hahn-
Banach theorem. 

Using the lemma, we see that 

àl±Rzjiîl=^fit + hu)du. 

Then if ƒ is continuous we may appeal to Theorem 2.1.5 to take the limit as 
/ i ^ O o n the right by setting h = 0, so that g is differentiable and g '(0 = / (0 -
Since ƒ is C° we see g is C1. 

2.2.5. COROLLARY. If f (a) - g(a) and if f and g are C1 with f(t) = g\t)for 
a ^ / < b then f(b) = g(b). 

2.2.6. COROLLARY. Iff is C1 ona^t^b and if || f\t)\\ < K then \\ f(b) -
f(a)\\ < K(b - a). 

We say that the path/(r) is 6°° if all of its derivatives ƒ (n\t) exist and are 
continuous. 

2.2.7. EXAMPLE. A smooth path f(t) in Cfm for a<t<b is a smooth 
function ƒ(ƒ, JC) periodic in x9 setting f(t)(x) = ƒ(/, JC). We have f'(t)(x) = 
Dtf(t9 x). 

1.3. The directional derivative. 
3.1. Definition of the directional derivative. Let F and G be Fréchet spaces, £/ 

an open subset of i% and P: U C F -» G a continuous nonlinear map. 
3.1.1. DEFINITION. The derivative of P at the point f E U in the direction 

h E Fis defined by 

DP{f)h = lim£il±J!iLiIifl_ 

We say P is differentiable at ƒ in the direction h if the limit exists. We say P is 
continuously differentiable (or C1) on U if the limit exists for all ƒ E U and all 
h E F and if DP: (U C F) X F -» G is continuous (jointly as a function on a 
subset of the product). 

Note well that this definition of a C1 map does not agree with the usual 
definition for a Banach space. The derivative will of course be the same map, 
but our continuity requirement is weaker. 
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3.1.2. EXAMPLE. Let/: (a, b) Q R -* F be a parametrized curve. The simple 
vector space R contains the distinguished vector 1 which spans the space, and 
f'(t) = Df(t)\. Thus our two motions of differentiability coincide. 

3.1.3. EXAMPLE. Let L be a continuous linear map. Then L is C1 and 
DL(f)h = Lh. 

PROOF. By linearity L(f+th) = L(f) + tL(h). Then by the definition 

DL(f)h = l im[L(ƒ + rt) - L(f)]/t = L(h). 

3.1.4. EXAMPLE. Let P: U Q R2 -* R2 and write 

(;)='(?)• 
Then 

and the directional derivative is given by the matrix of partial derivatives. 
3.1.5. EXAMPLES. Consider the following maps P: C°°([a, b]) -* C°°([a9 b]) 

and their derivatives: 

(a) 
(b) 
(c) 
(d) 
(e) 

(f) 

P(f)=f\ 
P(f)=f3, 
P{f) = ef, 

P(f)=ff', 
P(f)=ff"+f'\ 
P(f) = Jl+f'2, 

DP(f)h = 2fh, 
DP(f)h = 3f2h, 
DP(f)h = e'h, 
DP(f)h=fh'+f'h, 
DP(f)h=fh" + 2f'h'+f"h, 

DP(f)h=f'h'/Jl+f'2. 

3.1.6. EXAMPLE. Let U be a relatively open subset of [a, b] X R and let 
p(x, y) be a smooth function on U. Let {ƒ be the open subset of the Fréchet 
space C°°([a9 b]) consisting of all functions of whose graph >> = f(x) lies in U. 
Define a nonlinear map P: Ü C C°°[a, b] -> C°°[Û, 6] by setting 

*(ƒ)(*) =/K*. ƒ(*))• 
Then the map P is C1 (and indeed C00) and 

3.1.7. EXAMPLE. Let A" be a compact manifold and let V and W be vector 
bundles over X. We form the Fréchet spaces C°°(X, V) and C°°(X,W) of 
smooth sections of V and W over X Let U be an open subset of V and let Ü be 
the open subset of all sections in C°°(X, V) whose image lies in U. Let p: 
U Q V -> Wbe a smooth map which takes points in the fibre of Kover a point 
x into points in the fibre of W over the same point x (so that if ITV and 7rw are 
the bundle projection maps then tnv— p ° irw). Define a nonlinear operator P: 
Ü c C°°(X, V) -> C°°(X9 W) by 

P(f)=P°f. 
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We call such a map P a vector bundle operator. Choose local coordinates x on 
X and Y in the fibre of V and z in the fibre of W. Then p is given locally by 
z ~ p(x, y). A section ƒ of the bundle V is given locally by y — f(x). The 
operator P is given locally by 

[Hf)](x)=p(x,f(x)). 

Except for a fancier setting the situation is the same as before. The derivative is 
given locally by 

[DP(f)h](x)=Dyp(x,f(x))h(x) 

where Dyp is interpreted as the matrix of partial derivatives with respect to the 
y variable, and is applied to the vector h. It is easy to see that P is C°. For a 
proof that P is C1, see Example 3.3.3, and for a proof that P is C00, see 
Example 3.6.6. 

3.1.8. EXAMPLE. If Fis a vector bundle over a compact manifold X, the r-jet 
bundle jrV may be defined intrinsically; but if we introduce connections and 
covariant derivatives then 

ff=(f,Df,D2f,...,Dj). 

Let p be a smooth map of an open set U injrV into another bundle W taking 
fibres into fibres over the same point, and let Ü be the open set of all 
ƒ G C°°(X, V) with the image of jrf in U. A nonlinear differential operator P 
from V into W of degree r is a map P: Ü c C°°(*, V) -> C°°( *, JP) given by 
Pf = po jrf. The operator P is the composition of the continuous linear map yr 

with a vector bundle operator of the type before, and hence is also smooth. 
3.1.9. EXAMPLE. TWO circular rings of radius r are held parallel in space and 

a soap bubble is blown connecting one to the other. It will form in a surface of 
revolution having the least possible area. If the rings are positioned at x = ±/ 
perpendicular to the jc-axis and if the surface is obtained by revolving the 
graph of y = f(x) around the x-axis, the surface will have area 

A(f)=f_27Tf^+f2dx. 

We can regard A as a nonlinear map 

A: C°°([-/,/]) ->R 

on the Fréchet space of smooth functions with real values. It is differentiable, 
and its derivative is given by 

DA{ f )h = f' 2TT\ —E=h' + i\ +/ ,2/ii dx 
J-< U\+r2 J 

using the familiar rules for the variation of a product and a square root and a 
square. If h vanishes at the endpoints x = ±1, we may integrate by parts to get 

DA(f)h = f' 2 J ] +f'2 ~f£' \h dx. 
J-i l ( l+ / ' 2 ) 3 / 2 J 
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If the surface area A is to be a minimum over all ƒ with f(±l) = r9 then the 
derivative DA(f) — 0 for all variations h with h(±l) = 0. Clearly this happens 
if and only if ƒ satisfies the differential equation 

ff"=f'2+l 
whose symmetrical solutions are given by 

f(x) = (coshsx)/s 

for various values of the constant s. To satisfy the boundary conditions s must 
be chosen so that cosh si = sr. Since the problem is invariant under a change 
of scale, the solution depends only on the ratio r/l. Fixing attention on the 
case / = 1, we must solve 

r — (cosh s ) / ? . 

The minimum value m of this function occurs where the secant line from the 
origin to the graph of cosh s becomes tangent, which happens when s tanh 5 = 1 . 
This equation has a solution s « 1.2 which gives m » 1.5 for the critical value. 
If r/l > m there are two solutions, while if r/l < m there are none. We shall 
see later that only one of the two solutions is stable in Example 3.5.12. 

3.2. Properties of the derivative. We begin with an integral version of the 
fundamental theorem of calculus. 

3.2.1. LEMMA. IfP is C1 and f and h are given then P( ƒ + th) is a C1 path in t 
and 

P(f+ th)' = DP(f+ th)h. 

PROOF. We have 

/>( ƒ + th)f = lim [P( ƒ + th + uh) - P( ƒ + th)]/u = DP( ƒ + th)h. 

3.2.2. THEOREM. If P: U Ç F -* G is a Cl map between Fréchet spaces and if 
the path from ttot-\-h lies in U then 

P( f -f h) - P(f) = flDP( ƒ + th)h dt. 

PROOF. By the previous lemma, P(f+th)f = DP(f+ th)h. We need only 
apply Theorem 2.2.2. 

Next we wish to show that if P is C1 then DP(f)h is always linear in h. We 
begin with scalar multiplication. 

3.2.3. LEMMA. If c is a scalar and P is Cl then 

DP(f)ch = cDP(f)h. 

PROOF. We apply the definition and then substitute u — ch. 

DP(f)ch = lim[P(ƒ + cth) - P(f)]/t 

= clim[P(f+cth)-P(f)]/ct 

= clim [P( ƒ + ufc) - P{f)]/u = cDP{f)h. 
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3.2.4. LEMMA. If P: U C F -* G is C\f G U and h E F, and t is small, then 

[/>(ƒ + th) - P(f)]/t = f lDP( f + uth)h du. 

PROOF. We apply Theorem 3.2.2 replacing h by th and t by w, so that 

P( ƒ + th) - P(f) = (XDP{ f + t///z)//i </w. 
'o 

Then we use Lemma 3.2.3 to factor t out of the derivative and Theorem 
2.1.1(v) to factor it out of the integral. 

3.2.5. THEOREM. IfP: U C F -* GisC\fG Uandhx,h2 e F then 

DP(f)(hx + h2) = DP(f)hx + DP(f)h2. 

PROOF. First write 

p{f+t(hx + h2))-p(f) 

= [pU+thx + th2)-PU+thx)}+[p{f+thx)-p{f)]. 

Using the previous lemma 

[P(f + th}) - P(f)]/t = flDP(f+ uth^du, 

[P(ƒ + thx + th2) - P(f+ thx)]/t = (lDP(f+ thx + uth2)h2du; 

therefore 

[ P ( / + / ( * , + * 2 ) ) ~P(f)]/t 

= (lDP(f+uthx)hxdu+ flDP(f+thx + uth2)h2du. 

We let t -> 0 on the left. We can just put / = 0 on the right by Theorem 2.1.5. 
Then 

DP{f){hx + h2) = DP( f )A, + i)P( ƒ )A2 

as desired. 
3.3. The chain rule. We begin with a useful characterization of C1 functions. 

3.3.1. LEMMA. Le/ P: U C F-» G be a continuous map and suppose for 
simplicity that U is convex. Then P is continuously differentiable if and only if 
there exists a continuous map L: (U C F) X (U C F) X F -> G with L(f0, fx)h 
linear in the last variable h such that for allf0 andfx in U 

P(A)-P(fo) = L(f0,fx)(fx-f0). 

In this case we always have 

DP(f)h = L(f,f)h. 

PROOF. Let ft = (1 - t)f0 + tfx = f0 + t(fx -f0). Then by Theorem 3.2.5 if 
.Pis C1 we can put 

L(f0,fl)h=fDP(f,)hdt 
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and this gives us the desired map L. Clearly L is continuous and linear in h, 
and ƒ>(ƒ,) - P(f0) = L(f09 fx){fx ~ /o). 

Conversely, if such a map L exists, then 

[P( ƒ + th) - P( ƒ ) ] / / = L( ƒ, ƒ + rt)A 

using the linearity in A to pull out the scalar t. It follows letting / -> 0 that P is 
differentiable and DP(f)h = L(f, f)h. Since L is C°, P is C1. 

3.3.2. EXAMPLE. Let P: P -> P be defined by P( ƒ ) = ƒ2. Then 

* ( / i ) " *(/o) = /i2 " / o 2 = ( ƒ, + /o)( / i - / o ) 
so we must take 

i ( / o . / i ) * = ( / i + / o ) * . 
I f P ( / ) = / 3 t h e n 

^ ( / . ) ~ P(/o) = A3 - / o 3 = (/i2 + / . /o +/o2)(7, - / o ) 

so we must take 

i ( / o . / 1 ) ^ = ( / i 2 + / , / o + / o 2 ) ^ -

In one dimension L is unique, but in higher dimensions it is not. 
3.3.3. EXAMPLE. Let P: ÜQ C°°(X,V) -• C°°(X,^) be a vector bundle 

operator as described in Example 3.1.7. We can use Lemma 3.3.1 to prove that 
P is C1. Suppose P is induced locally by the function p(x, y). Since p is 
smooth, we can find a function l(x, j>0, y,)z linear in the vector z so that 

P(x, y\) -p(x, Jo) = l(*> Jo* J'iXj'i " Jo ) -

We can patch these together using a partition of unity in x since X is compact. 
We do not need a partition of unity in y if we restrict our attention to a small 
enough neighborhood U of the graph of a given section. This gives us an 
operator 

L.ÜXÜX C°°(X, V) - C°°(Z, W) 

given locally by 

i ( / o . / i ) * = /(*. /o(*) . / i (*))A(*) 
such that 

P(fi)-P(fo) = L(fo,fM-fo)-
Since L is clearly continuous and linear in /Ï, it follows that P is C1. 

Now we can prove the chain rule. 

3.3.4. THEOREM. If P and Q are Cl so is their composition Q°P and 

D[Q°P](f)h = DQ(P(f))DP(f)h. 

PROOF. Since the theorem is a local result we can always take P and Q to be 
defined on convex neighborhoods of given points and apply the previous 
lemma. Then we can find continuous functions L(/0 , fx)h and M(g0, gx)k 
linear in h and k such that 

P{h) - P(fo) = L(f0, ƒ,)(ƒ, - ƒ„), g (g , ) - Q(g0) = M(g0, g , ) ( g l - g0). 
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Define a function N(/0, fx)h by 

N{f0, fx)h = M(P(/0), P{fx))L{f0, ƒ,)*. 

Then JV is continuous and linear in A, and letting g0 = P(f0) and gj — P{fx) 
we have 

e(^(/i)) - e(*(/0)) - M /o, /i)( /i - /o). 
Then by the converse side of the previous lemma, Ö © P is C1. Since L( ƒ, ƒ )h 
= DP(f)h and Af(g, g)k = DQ(g)k9 we have 

D[Q o P](f)h = tf( ƒ, ƒ)A = M ( P ( ƒ ) , P (ƒ ) )L(ƒ , ƒ ) * 

= Z)fi(/>(/))2)P(/)A 

as claimed. 

3.3.5. COROLLARY. Iff(t) is a parametrized C1 cwrt>e awd P W a C1 ma/? then 
P(f(t)) is also a parametrized C1 curve and 

P(f(t))' = DP(f(t))f(t). 

From this we see that a curve passing through the point ƒ with velocity h is 
mapped by P into a curve passing through the point P(f) with velocity 
DP(f)h. This provides a good intuitive interpretation of the directional 
derivative. 

3.4. Partial derivatives. Given a function P(f9g) of two or more variables 
we can take a partial derivative with respect to just one or the other. 

3.4.1. DEFINITION. 

DfP(f, g)h = lim [/>(ƒ+ /A, g) - P( ƒ, g)]/t, 

DgP(f9 g)k = lim [ƒ>(ƒ, * + / * ) - P( ƒ, g)] A 

By repeating the proof of Lemma 3.3.1 we can easily establish the following 
result. 

3.4.2. LEMMA. The partial derivative DfP(f9 g)h exists and is continuous if 
and only if there exists a continuous function L(f0, fX9 g)h linear in h with 

P(A, g) ~ /»(/o, g) = L{fo, fv g)(A "/o)-

In this case DfP(f, g)h = L(f, f, g)h. 

3.4.3. THEOREM. The partial derivatives DfP and DgP exist and are continuous 
if and only if the total derivative DP exists and is continuous. In that case 

DP(f, g)(h, k) = DfP(f, g)h + DgP(f, g)k. 

PROOF. By definition 

DP(f, g)(h, k) = l im[P(ƒ + th, g + tk)- P(f, g)]/t. 
f-»0 

If DP exists and is continuous, then putting k = 0 so does DfP(f, g)h = 
DP(f> £ ) ( M ) , and putting h = 0 so does DgP{ ƒ, g)k = DP( ƒ, g)(/i, k\ and 
by linearity the formula is valid. 
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Conversely if DfP and DgP both exist and are continuous, we can find 
continuous functions L(/0 , fx, g)h and M( ƒ, g0, g,)/t linear in /* and k with 

* ( / i , g) " P(/o> * ) = i ( / o . /i> * ) ( / i "/o)> 

*(ƒ , *i) - ^ ( A go) = M(f, g0, g l ) (g , - go)-
Then 

P(fi> gi) ~ P(/o> go) = ^(/o> / „ gi)(/i " / o ) + M(fo> go, gi)(gi - go)-
Put 

N(fo> go, /i> gi)(h, k) = L(/o, ƒ,, g,)A 4- M(/ 0 , g0, g,)*. 

Then N is continuous and linear in (h, k) and 

Hf\>g\) -^( /o>go) =N(fo>go> f\>g\)(f\ -fo>g\ "go) 
so by Lemma 3.3.1 we have P( ƒ, g) is C1. 

If a function L(f,g) is linear in g then it is only necessary to differentiate it 
in ƒ, as the following theorem shows. 

3.4.4. COROLLARY. If L( ƒ, g) is jointly continuous, C1 separately in f and 
linear separately in g, then it is Cl jointly in f and g, a«d 

DL(f, g)(h9 k) = DfL(f, g)h + L(ƒ, * ) . 

PROOF, /)ƒ£ exists and is continuous by hypothesis, while DgL{f, g)k = 
L(f, k) exists and is continuous by linearity. 

For this reason we adopt the following convention. If L(f)h is linear in h, 
we regard its derivative as the partial derivative with respect to ƒ. If we 
differentiate with respect to ƒ in the direction k, we obtain 

DL(f){h9 k) = lim [L( ƒ + tk)h - L(f)h]/t. 

3.4.5. THEOREM. If L(f)h is C1 and linear in h then DL(f){h, k) is bilinear, 
i.e. linear separately in h and k. 

PROOF. Since the total derivative is linear, so is the partial derivative with 
respect to / . Thus 

DL(f){h, kx + k2} = DL(f){h9 kx) + DL(f){h9 k2). 

To see the linearity in h, we appeal to the definition of the derivative. 

DL{ ƒ){/, , + h2, k) = lim[L( ƒ + **)(*, + h2) - L(f){hx + h2)]/t 
f-»0 

= lim [L( ƒ + tk)hx - L(f)hx]/t + lim [L( ƒ + tk)h2 - L(f)h2]/t 
*-o *-»o 

= DL{f){h„k)+DL{f){h2,k). 

3.5. Second derivatives. The second derivative is the derivative of the first 
derivative. Following the previous convention, we differentiate DP(f)h with 
respect to ƒ only, in the direction k. This gives the following definition. 

3.5.1. DEFINITION. 

D2P(f){h, k) = lim[DP( ƒ + tk)h - DP(f)h]/t. 
t-*Q 
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We say P is C2 if DP is C1, which happens if and only if D2P exists and is 
continuous. If P: U C F -» G we require D2P to be continuous jointly on the 
product as a map 

D2P: (UCF)XFXF^G. 

From Theorem 3.4.5. we immediately get the following result. 

3.5.2. THEOREM. If P is C2 then D2P(f){h,k} is bilinear, i.e. linear 
separately in h and k. 

We have the following interesting characterization of the second derivative 
as a limit of a second difference. 

3.5.3. THEOREM. If P is C2 then 

D2P(f){h,k) 

= lim [P( f + th + uk) - P( ƒ + th) - P( f + uk) + P( f)]/tu. 
f,w-»0 

PROOF. By Lemma 3.2.4 we have 

[P(f+th)-P(f)]/t= Ç DP(f+0th)hd0, 
Je=o 

[P(f+th + uk) -P(f+uk)]/t= fl DP(f+0th + uk)hd6, 
Je=o 

[DP(f + Oth + uk)h - DP(f+ 6th)h]/u 

= fl D2P(f+6th + riuk){h,k}dri. 

It follows that 

[P(ƒ + th + uk) - P(ƒ + th) - P(ƒ + uk) + P(f)]/tu 

= fl fX D2P(f+eth + r}uk){h,k}drjdO. 

Taking the limit as / and u -> 0 gives the desired result. 

3.5.4. COROLLARY. If P is C2 then the second derivative is symmetric, so that 

D2P(f){h9k}=D2P(f){k,h}. 

PROOF. The second difference is symmetric and the second derivative is its 
limit. 

3.5.5. THEOREM. If P and Q are C2 so is their composition Q° P and 

D2[Q ° P](f){h, k) - D2Q(P(f)){DP(f)h, DP(f)k) 

+DQ(P(f))D2P(f){h,k}. 

PROOF. This follows from applying the chain rule 

D[QoP](f)h = DQ(P(f))DP(f)h 

to itself. 
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We shall need to use Taylor's formula with integral remainder for the second 
derivative in estimating a certain quadratic error term. 

3.5.6. THEOREM. If P: U CF -* Gis C2 and if the path connecting f and f + h 
lies in U then 

P(f+h) = P(ƒ) + DP(ƒ)h + (\l - t)D2P(f+ th){h, h] dt. 
' 0 

PROOF. The trick is to integrate by parts. 

DP(f+ th)h = (1 - t)D2P(f + th){h9 h) - {(1 - t)DP{f+ th)h}'. 

Integrating this over 0 < t < 1 and using Theorem 3.2.2 and Theorem 2.2.2 

P(f+h) - P(f) = pDP(f+ th)h dt 

' 0 
: f\\ - t)D2P(f+ th){h, h) dt + DP( f)h 

which proves the theorem. 
3.5.7. EXAMPLE. If/: {a, b) C R -> Fis a parametrized curve then 

/" (0 = D2/(OO,I}. 
3.5.8. EXAMPLE. If L is a continuous linear map then 

D2L(f){h,k}=0. 

3.5.9. EXAMPLE. UP: U CR2 ^ Ris smooth function z = P(x
y) then 

Hence D2P is the quadratic form associated with the matrix of second partial 
derivatives 

d2/dx2 d2z/dxdy 

d2z/dxdy d2z/dy2 

If the function P has a local minimum at ƒ then D2P( ƒ ){h, h] > 0 for all h, 
which happens if and only if the matrix of second partials is positive. 

3.5.10. EXAMPLES. Here are the second derivatives of the operators in 
Examples 3.1.5. 

(a) D2P( f){h, k) = 2hk, 
(b)D2P(f){h?k}=6fhki 

(c)D2P(f){h,k) =e'hk, 
(d) D2P(f){h9 k) = h'k + hk\ 
(e) D2P(f){h9 k) = h"k + 2h'k' + hk'\ 
(f)D2P(f){h9 k) = h'k'/{\ +f'2)3/2. 
3.5.11. EXAMPLE. If we consider the operator 

Pf(x) = p(x9 f(x)) 
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of Example 3.1.6 or 3.1.7, its derivative is 

[DP(f)h](x) = Dyp(x,f(x))-h(x) 

and its second derivative is 

[Z>2P( f){h, k)](x) = D?p(x, f(x)) • h(x) • k(x). 

For Example 3.1.6 this is ordinary multiplication, while for Example 3.1.7 we 
regard D2p as a bilinear form applied to the pair of vectors h and k. 

3.5.12. EXAMPLE. We return to the soap bubble problem of Example 3.1.9. 
We can compute the second derivative of A, and after simplifying we get 

D2A(f){h, k) = fl 2 J ^ — 7 7 7 ^ ' + £—:(hk)\ dx. 
J-i l(i+/'2)3/2 O+/02 J 

If we consider only variations h and k which vanish at the endpoints x = ±/, 
we can integrate by parts to obtain 

D>A(f){H,k}=f'2*fi'k'-{"£*. 
J~l (1 + / , 2 ) V 

Since all the solutions are similar under a change of scale, we focus our 
attention on the solution/(JC) = cosh x. Then 

D2(coshx){h, h) = f' 2<?rsech2x[h'2 - h2] dx. 
J-i 

This quadratic form will be positive definite for all h vanishing at the 
endpoints only when / is small enough. The critical value of / occurs when there 
is a null eigenvector of the quadratic form, which happens for a given ƒ when 
there exists an h such that for all k we have D2A(f){h, k} — 0. Integrating by 
parts for h and k vanishing at the endpoints we have 

D2(coshx){h9 k) = -f 277-sech2jc{/*" - 2 • tanhx • h' + h}kdx 
J-i 

which vanishes for all k when h satisfies the differential equation 

h" - 2 t anh j c -A ' + A = 0. 
If the equation has a solution vanishing at both endpoints it will have a 
symmetric solution, which is found to be 

h(x) — xsinh^: — coshx. 

Significantly, h(x) is the derivative of the general solution/(JC) = (coshsx)/s 
with respect to s9 evaluated at s = 1. For h(x) to vanish at the endpoints we 
must have /tanh 1=1. This occurs at the value / » 1.2 where (cosh / ) / / = m » 
1.5 attains its minimum. Since r = cosh/ when f(x) = coshx, the second 
derivative first fails to be positive definite at the critical value r/l = m. It now 
follows that when r/l > m only one of the two solutions s of the equation 
cosh si = sr produces a stable solution /(JC) = (cosh sx)/s9 namely the one 
with the smaller value of s which stays further from the axis, while the other 
solution which comes nearer the axis is unstable. If we start with a stable soap 
bubble for r/l>m and slowly increase / by moving the two rings apart, the 
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bubble will suddenly collapse when r/l reaches the critical value m « 1.5. Note 
that the neck of the bubble does not shrink to zero as we approach the critical 
position. Let n denote the radius of the neck. The critical position for the 
standard solution y = coshjc occurs at / ^ 1.2 where (cosh/ ) / /= m « 1.5. 
Here r = cosh / « 1.8. The neck occurs at x = 0 and the radius of the neck 
n = 1. Since the ratios are invariant in all solutions, we find that the critical 
position is reached when l/r « 0.6 and at that point n/r ^ 0.5. If / is increased 
beyond this point the neck of the bubble will suddenly collapse. The reader is 
invited to try the experiment. 

3.6. Higher derivatives. The third derivative is the derivative of the second 
derivative. Since D2P(f){h> k) is linear separately in h and k, we take only its 
partial derivative with respect to ƒ in the direction /. 

3.6.1. DEFINITION. If P: U ç F -> G then 

D3P{f){h, k, 1} = \im[D2P(f+ tl){h9 k) - D2P(f){h, k)]/t. 

Similar definitions apply to the higher derivatives. The nth derivative 

D'P(f){huh2,...,h„} 

will be regarded as a map 

DnP: (£/ Ç F ) X F X • • • XF -> G. 

We say P is of class Cn if DnP exists and is continuous (jointly as a function on 
the product space). 

3.6.2. THEOREM. If P is Cn then DnP(f){hl9 h2,...,hn} is completely sym­
metric and linear separately in hx, h29...9hn. 

PROOF. It is linear in hl9...,hn_x as the derivative of Dn~xP, which is 
already linear in these variables. It is linear in hn as a derivative in that 
direction. It is symmetric 'mhn_x and hn as the second derivative of Dn~2P. It 
is symmetric in hl and hj for j , j < n as the derivative of Dn~xP, which already 
has this symmetry. These transpositions generate the full symmetric group. 

Sometimes it is more convenient to use the tangent functor. 
3.6.3. DEFINITION. If P: UCF-^VCGisa. map between open subsets of 

Fréchet spaces, we define its tangent TP: (U C F) X F -* (V c G) X G by 

TP(f9h) = (P(f),DP(f)h). 

Notice that TP is defined and continuous if and only if DP is defined and 
continuous. We let T2P = T(TP) and TnP = T{Tn~xP). Then TnP is defined 
and continuous if and only if DnP is defined and continuous (i.e. P is Cn). 

3.6.4. THEOREM. If P and Q are C"9 so is their composition Q° F, and 

Tn{Qo P) = (TnQ)o (TnP). 

PROOF. When n = 1, we have T(Q o p) = TQ o TP from the chain rule. The 
higher cases follow from induction on n. 

We say a map is C°° if it is Cn for all n. 
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3.6.5. EXAMPLE. Let P: Ü c e°°(X9 V) -> e°°(*, V) be a vector bundle 
operator as described in Example 3.1.7. Then P is C00. This follows im­
mediately from the fact that P is C1 and TP is again a vector bundle operator. 
If V® V denotes the Whitney sum of V with itself, there is a natural 
isomorphism 

e°°(x9 v) x e°°(x, v) « e°°(x9v® v). 
Suppose P is induced by a map p: U C V -* W of the vector bundles taking 
fibres into fibres over the same point. Locally/? has the form 

p: (x,y) -*(x,p(x,y)). 

There is an intrinsically defined vertical tangent map 

Tvp: ue vc v® v-* we w 
given locally by 

Tvp: (x, y9 z) -» (x, p(x, y), Dyp(x, y)z) 

which induces a vector bundle operator which may be identified with the 
tangent map 

TP-. ü x e°°(*, v) c e°°(x9 v) x e°°(z, v) -• e°°(x, w) x e°°(jr, w). 
3.6.6. EXAMPLE. Let P: Ü c G^X, V) -» e°°(*, ^ ) be a differential opera­

tor of degree r as described in Example 3.1.8. Then P is 600. This follows 
immediately from the observation that a differential operator is a composition 
of a vector bundle operator (which is 600) with the r-jet extension map j r , 
which is a continuous linear map (and hence also G00). 

1.4. Fréchet manifolds. 
4.1. Manifolds. The usual definition of a manifold generalizes directly to 

Fréchet space calculus. 
4.1.1. DEFINITION. A Fréchet manifold is a Hausdorff topological space with 

an atlas of coordinate charts taking their value in Fréchet spaces, such that the 
coordinate transition functions are all smooth maps between Fréchet spaces. 

4.1.2. EXAMPLE. Let X be a compact finite dimensional manifold. A bundle 
over X is another finite dimensional manifold B with a smooth projection map 
IT: B -> X whose derivative is everywhere surjective. A section of the bundle is 
a smooth map ƒ: X -> B such that irf — 1 is the identity. The space of all 
sections of the bundle £°°(X, B) is a Fréchet manifold (at least if it isn't 
empty). Associated to each section ƒ is a vector bundle over X called the 
vertical tangent bundle to B at ƒ, which we denote by TvB(f). Its fibre at a 
point XELX consists of all the tangent vectors of B at f(x) which lie in the null 
space of the derivative of m. 

It is easy to construct a diffeomorphism from a neighborhood of the zero 
section of the vector bundle TvB(f) to a neighborhood of the image of ƒ in B 
which takes fibres into fibres over the same point. This provides a one-to-one 
correspondence between sections near zero in the Fréchet space Q°°(X9TvB(f)) 
and sections near ƒ in the manifoldd G°°(X, B), and these maps serve as our 
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coordinate charts. The coordinate transition functions are clearly vector bundle 
maps in the sense of Example 3.1.7. Hence (2°°( X, B) is a Fréchet manifold. 

4.1.3. EXAMPLE. Let X and Y be manifolds with X compact. The space of all 
smooth maps of X into Y forms a Fréchet manifold 9IL(Z, Y). This is a special 
case of the preceding example, as a map of X into Y is a section of the product 
bundle XX Y over X. 

4.1.4. EXAMPLE. AS a special case, consider the manifold ty\L(S\ Sl) of maps 
of the circle to itself. It has an infinite number of components indexed by the 
degree k which may be any positive or negative integer. We let Z denote the set 
of all integers. Passing to the universal cover, a map of Sl to Sl lifts to a map 
of Rl to R\ which is just a real-valued function on the real line. If the map has 
degree zero its lift will be periodic, giving rise to an element of the Fréchet 
space Q™n. The lift is not unique, but may vary by lirn where n E Z is an 
integer. Hence the component (31t0(S

l, Sx) of maps of degree zero is diffeo-
morphic to the quotient Q™v/2irZ. This provides a global chart. More generally 
a map of degree k lifts to a function/: Rx -» R} satisfying 

/(jC + 277) = ƒ ( * ) + 27TÀ: 

which we call ^-periodic. If we let f(x) — f(x) — kx then ƒ is periodic so 
ƒ E 6 ^ . Hence the set of functions which are ^-periodic is not a vector space 
but corresponds to the vector space S ^ by this affine shift. Again the lift is 
only unique up to a constant function 2irn. The component ^ l t^S 1 , Sl) of 
maps of degree k is also diffeomorphic to 6 ^ / 2 7rZ, and the above construc­
tion provides a global coordinate chart. Then the whole space 

V\l(S\ S1) ~ Z X (e?w/2irZ). 

4.1.5. EXAMPLE. Let A" be a compact manifold and F a vector bundle over X. 
The space of all connections on F forms a Fréchet manifold §(V). The 
difference of two connections is a tensor in the bundle L2(TX X F, F) of 
bilinear maps of TX and F into F. For any fixed connection we obtain a 
one-to-one correspondence between §(V) and the Fréchet space 

e°°(X9 L2(TXX F ,F ) ) 

by subtracting the reference connection from the variable one. The coordinate 
transition functions are just translations. 

4.1.6. EXAMPLE. If F is a vector space, the Grassmann space Gp(V) of all 
/7-planes in Fis a manifold. If Fis a vector bundle over X then Gp(V) becomes 
a fibre bundle over X. When F = TX is the tangent bundle, a section of 
Gp(TX) is a field of tangent/?-planes. The space e°°(X, Gp(TX)) of all tangent 
/7-plane fields is a Fréchet manifold by Example 4.1.2. 

4.1.7. EXAMPLE. Let A" be a finite dimensional manifold and let S( X) denote 
the space of all compact smooth submanifolds of X. Then %{X) is a Fréchet 
manifold. Let 5 6 S ( I ) be a given submanifold, and let NS be its normal 
vector bundle, defined invariantly, as the quotient of the restriction of TX to S 
by TS. We can find a diffeomorphism between a neighborhood of the zero 
section in NS and a tubular neighborhood of S in X. This establishes a 
one-to-one correspondence between a neighborhood of 0 in the Fréchet space 
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Q°°(S, NS) and a neighborhood of S in §(X)9 and these maps serve as our 
coordinate charts. We shall show later in Example 4.4.7 that the coordinate 
transition functions are C00. Note that all the submanifolds S in a connected 
component of S(X) are necessarily diffeomorphic, but there may be many 
components. Diffeomorphic submanifolds may lie in separate components 
also, as in the case of knotted circles in three space. 

4.1.8. EXAMPLE. Let X be a finite dimensional manifold and let $l(X) 
denote the set of all compact regions in X with smooth boundaries. Then 
^Sl(X) is a Fréchet manifold. When X is not compact, a region is uniquely 
identified by its boundary, so ̂ i(X) is identified with the components of S(X) 
corresponding to compact submanifolds of codimension 1 which bound a 
compact region. When X is compact, each boundary determines two regions, so 
<Sl(X) is a double cover of the boundary components of S(X). This double 
cover may be not just two copies. For if we consider regions diffeomorphic to a 
ball Bn in the sphere Sn, the complement is another ball Bn, and the first may 
be continuously rotated into the second. 

4.2. Submanifolds. Let 911 be a Fréchet manifold and 91 a closed subset. 
4.2.1. DEFINITION. 91 is a submanifold of 911 if every point of 91 Hes in the 

domain of a coordinate chart on 9H with range in a product of Fréchet spaces 
FX G such that a point in the domain of the chart lies in the subset 91 if and 
only if its image under the chart lies in the subset FXO. 

4.2.2. EXAMPLE. Let B be a bundle over a compact manifold X. A subbundle 
of B is a submanifold A of B such that the derivative of the projection map IT 
for B is still surjective on A. Then A is itself a bundle over X, and the Fréchet 
manifold <2°°(X, A) of sections of the subbundle A is a Fréchet submanifold of 
the Fréchet manifold Q°°(X9 B) of sections of the bundle B. Indeed, given any 
section ƒ of A, we can find a tubular neighborhood of its image in the bundle B 
which is diffeomorphic to a tubular neighborhood of the zero section in a 
bundle V © W by a map taking fibres into fibres over the same point, such 
that the points in the neighborhood in B which lie in the subbundle A 
correspond to points in the Whitney sum F © W which lie in the vector 
subbundle F © 0. Then we have a chart on Q°°(X, B) with values in 

e°°( x, v® w) « e°°(x, v) x e°°(x, w) 
such that the sections in 6°°(X, A) correspond under the chart to 6°°(X9 V) X 
0. 

4.2.3. EXAMPLE. Let X be a compact manifold and Y a submanifold of Z. 
Then the Fréchet manifold 9H(X, Y) of smooth maps of X into 7 is a smooth 
Fréchet submanifold of the Fréchet manifold of smooth maps of X into Z. 
Indeed, the maps of X into Y are the sections of the product bundle XX Y 
over X, and A' X y is a subbundle of X X Z. 

4.2.4. EXAMPLE. Let B be a bundle over a compact manifold X. Then the 
Fréchet manifold Q°°(X9 B) of sections of B is a submanifold of the Fréchet 
manifold 91t(Ar, B) of all smooth maps of X into B. Since it is sufficient to 
verify this locally, we may as well assume that B is an open subset of a vector 
bundle V over X, and consider a neighborhood of the zero section of V. The 
tangent bundle to V along the zero section is naturally isomorphic to F © TX9 
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so we can choose a diffeomorphism between a neighborhood of the zero 
section in F © TX and a neighborhood of the zero section in the product 
bundle XXV such that the subbundle F © 0 in V@TX corresponds to the 
subset of A" X F which lies over the diagonal i n l X I Then we get a chart on 
the manifold 91t( X, V) with values in the Frêchet space 

e°°(x,v®Tx) ^e^ix.v) xe°°(x,Tx) 
such that the submanifold of true sections S°°( X, V) corresponds to the subset 
where the component in Q°°( X, TX) is zero. 

4.2.5. EXAMPLE. The manifold &(X, Y) of embeddings of a compact mani­
fold A'into a manifold Y is an open submanifold of the manifold 9IL(Z, Y) of 
all maps of X into Y. Likewise the manifold 6D( X) of all diffeomorphisms of a 
compact manifold to itself is an open submanifold of the manifold ty\L(X, X) 
of all maps of X to itself. 

4.2.6. EXAMPLE. We study in particular the manifold ty(Sl) of diffeomor­
phisms of the circle. It has two components, those which preserve and reverse 
orientation, which we write as <ï>+ (S1) and <$>" (S1). Elements of ty+ (S1) have 
degree +1 and lift to functions/(x) satisfying f(x + 2TT) = f(x) + 2m. Then 
f\x + 2TT) = f\x) so the derivative f'(x) is periodic. For a diffeomorphism 
we must have ƒ'(*) > 0- To satisfy the condition on ƒ we also need 

f2*f'(x)dx=f(27r)-f(0) = 27T. 

Let H denote the subset of the Fréchet space Q%v of functions which are 
strictly positive and have integral 2TT. It is an open convex subset of a closed 
affine subspace of codimension 1, and hence a manifold. Then f'(x) can be 
any element in H. It determines f(x) up to the constant /(O) G R\ which is 
itself indeterminate up to a constant 2mn G 2mZ, so f'(x) determines the 
diffeomorphism up to an element of Sx = RX/2TTZ, namely the image of 0. 
This shows that tf)+ (Sl) ** Sl X H. Moreover H is clearly contractible, so 
^D+ (Sl) has the homotopy type of Sl. The other component tf)~ (Sl) looks the 
same. 

4.2.7. EXAMPLE. Let A" be a submanifold of Y. Then the Fréchet manifold 
S( X) of compact submanifolds of A" is a submanifold of the Fréchet manifold 
S(T) of compact submanifolds of Y. 

4.3. Vector bundles. It is natural to define Fréchet vector bundles over 
Fréchet manifolds in the usual way. Let 9tt be a Fréchet manifold, T another 
Fréchet manifold, and IT: T-» 9H a projection map such that each fibre m~xf 
for ƒ G 9H has the structure of a vector space. 

4.3.1. DEFINITION. We say that T i s a Fréchet vector bundle over 9H with 
projection IT if each point in 911 lies in the domain of a coordinate chart with 
values in an open subset U of a Fréchet space F and we can find a coordinate 
chart on T whose domain is the inverse image of the domain of the chart on 9ît 
with values in the open set (U Q F) X G in a product F X G for another 
Fréchet space G, so that the projection TT of T on 9H corresponds to the 
projection of U X G on U and the vector space structure on each fibre is that 
induced by the vector space structure on G. 
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Note that for two such coordinate charts on °Y the coordinate transition 
function 

(UCF) X G->(ÜCF) X G 

will always be linear from G to G. Conversely if we have an atlas on T of 
charts on products whose coordinate transitions have the form (ƒ, g) -» ( ƒ, g) 
where ƒ = P( ƒ) and g — L( ƒ)g is linear in g, then Twill become a vector 
bundle. 

4.3.2. EXAMPLE. Let 9H be a Fréchet manifold. Then its tangent bundle T9t 
is a Fréchet vector bundle over 91L. The coordinate transition functions for 
r?JIL are just the tangents TP of the coordinate transition functions P for 9lt. 
If /(f) is a parametrized curve in 9H then ƒ'(f) is a tangent vector to 9ït at f(t). 
This sometimes provides an easy way to identify T?KL. 

4.3.3. EXAMPLE. A path/: (a, b) -* 9IL(Z, 7 ) is given by a map/: (a, b) X 
* -> 7. Thus for each x E X the path/(f) in 91t(Z, Y) gives a path/(f)(x) in 
y. Its f-derivative f\t)(x) is a tangent vector to Y at/(f)(x). Hence ƒ'(f) is a 
section of the pull-back to X of the vector bundle TY under the map ƒ. This 
gives the identification of the tangent space to 9It( X, Y ) at a map ƒ as 

7}9H(*, y) = e°°(x, /*ry). 

4.3.4. EXAMPLE. Let %(X) be the Fréchet manifold of compact smooth 
submanifolds of a finite dimensional manifold X. Its tangent bundle T%(X) 
has for its fibre at a submanifold S E S( JQ the Fréchet space of sections 
e°°(5, MS) of the normal bundle. Likewise the tangent bundle T*H(X) to the 
Fréchet manifold of compact domains in X with smooth boundary has for its 
fibre at a domain A E <3l(X) the Fréchet space G°°((L4, NdA) of sections over 
the boundary of the normal bundle. Since the normal bundle is always trivial 
(although not in a canonical way) we have 

m(x)A~e°°(dA). 
4.3.5. EXAMPLE. Let I be a finite dimensional manifold and S(X) the 

Fréchet manifold of all compact smooth submanifolds of X. Let 600S(Ar) 
denote the space of all smooth functions on all submanifolds S E S(Z). Then 
e°°S(X) is a Fréchet vector bundle over S(X). The fibre over S E S(Z) is the 
Fréchet space 600(S'). A typical chart on S(X) at S has values in the Fréchet 
space G (S, NS) of sections of the normal bundle. Its choice provides a choice 
of a diffeomorphism between S and any nearby surface S. We can use this 
diffeomorphism to identify functions on S with functions on S. Hence we get a 
chart on e°°S(X) with values in the product e°°(S, NS) X e°°(S) of the type 
required to make C°°S(X) a Fréchet vector bundle. 

4.3.6. EXAMPLE. Let X be a finite dimensional manifold and $l(X) the 
Fréchet manifold of all compact regions in X with smooth boundary. Then 
there is a Fréchet vector bundle 6°°^l(X) of all smooth functions on all 
regions. It is the bundle over tfl(X) whose fibre over any region A E <3l(X) is 
the Fréchet space Q°°(A) of smooth functions on the region A. The description 
of the coordinate transition functions involves the choice of a diffeomorphism 
from A to any nearby region A which is not very canonical. The manifold 



90 R. S. HAMILTON 

^(X) has a chart at A with values in the Fréchet space 6°°(dA) obtained as 
follows. Choose a tubular neighborhood N of dA diffeomorphic to dA X [-1,1]. 
Let y Ed A and r E [-1,1] be local coordinates so that the part of N in A is 
given by r> 0. Then a nearby domain A has its boundary given by r — b( y ) 
where b E Q°°(dA) is a small function. This provides our coordinate chart on 
91 (X) near ^4. We define a diffeomorphism of N n A to TV D A by the map 
(y>r) ->(y, J) with 

j = r + * ( r )*O0 

where <J> is a smooth function on [-1,1] with <f>(r) = 1 for r < 0 and <f>(r) = 0 
for r > ^. We extend the diffeomorphism to be the identity outside of N and 
inside A. A function g E Q°°(Â) corresponds to a function ƒ E 6°°(^4) by 
pulling back by this diffeomorphism, so tha t / ( j , r) — g(y9 s) on A H N and 
ƒ(•*) — £(•*) o n t n e r e s t °f ^- This provides a coordinate chart on the vector 
bundle e°°&(*) with values in the product space e°°(3^) X e°°(^). 

4.4. Mû/?5 of manifolds. Let 911 and 91 be Fréchet manifolds. 
4.4.1. DEFINITION. A map P: 9H -» 91 is a smooth map of Fréchet manifolds 

if we can find charts around any point in 911 and its image in 91 such that the 
local representative of P in these charts is a smooth map of Fréchet spaces. 

4.4.2. EXAMPLE. The inclusion of a submanifold is a smooth map. 
4.4.3. EXAMPLE. The projection of a Fréchet vector bundle is a smooth map. 
A smooth map P: 911 -> 91 of Fréchet manifolds induces a tangent map TP: 

T9H -> T9l of their tangent bundles which takes the fibre over ƒ E 9H into the 
fibre over P( ƒ ) E 91 and is linear on each fibre. The local representatives for 
the tangent map TP are just the tangents of the local representatives for P. The 
derivative of P at ƒ is the linear map 

DP{fy.Tm,f^TVLnn 

induced by TP on the tangent space. When the manifolds are Fréchet spaces 
this agrees with the previous definition. 

4.4.4. EXAMPLE. Let 9tl be the Fréchet manifold of all compact connected 
one dimensional submanifolds of R2, a component of the manifold S(#2) . 
Each manifold S E 9tt is diffeomorphic to the circle. Using the Euclidean 
metric on R2 we can define two smooth real valued functions on 911 

L : 9 ï t - * # and A'.^-^R 

where L(S) is the length of S and A(S) is the area enclosed by S. 
The tangent space to 9tl at S can be identified as the sections over S of its 

normal bundle, which may be trivialized canonically using the metric, so that 
T9H5 ^ e°°(S). Letting ƒ E e°°(S) we can compute the derivatives of L and 
A. If the curvature of S is given by k E G°°(S) and if ds is the arc length then 
we have the formulas 

DL(S)f= fkfds, DA(S)f= ffds. 

If the length is to be a minimum for all curves enclosing a given area, then 
we must have DL(S)f= 0 for all ƒ with DA(S)f= 0. This clearly happens if 
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and only if the curvature k is constant, which happens when the curve is a 
circle. 

4.4.5. EXAMPLE. Let X9 Y9 and Z be finite dimensional manifolds with X and 
Y compact. Fix a map g: X -> Y and define a map 

c:9H(y, z)-*6yi(x9 z) 
by composition with g, so that C{f)—f(g). Then C is smooth and its 
derivative is given by the formula 

DC(f)h = h(g). 

Note that if 

h G T9l(Y, Z)f=e°°(Y, f*TZ) 

then 

h(g) e rm,(x9 z)Ag) = e°°(x, g*frz). 
Alternatively we can fix a map/: 7 -> Z and define a map 

C:V\L(X9 Y)->Vl(X, Z) 

by composition with/, so that C(g) = /(g) . Then C is again smooth and its 
derivative is given by the formula 

DC(g)k = Df(g)k. 

Note that if 

k G T?H(X9 7 ) g = e°°(Z, g*7T) 

then since Df : 7T -> TZ we have 

D/(g)fc G rD1t(X, Z) / ( g ) = e°°(X, g*f*TZ). 

Finally we can do both at the same time. Define a map on the product 
manifold 

C: 9lL(y, Z) X <Vl(X, Y) -» 9IL( JT, Z) 

by composition, so that C(f9g)=f(g). Then its derivative is the sum of the 
two partial derivatives, which gives the formula 

DC(f9g)(h9k) = h(g) + Df(g)k. 

It is important to notice that serious problems arise if we attempt to repeat 
this construction in Banach spaces. The space 5Hr( X9 Y) of maps of class Cr is 
a Banach manifold. However, the composition map 

C: 9Hr(7, Z) X ?flr(X9 Y) -> 91tr(Z, Z) 

is C° but not C\ since the formula for DC involves Df. The composition 

C: 9ILr+1(y, Z) X m/(X9 Y) - 9H r(Z, Z) 

is C1 but not C2. In Fréchet spaces everything can be made C°° and no 
problems of differentiability arise. Indeed the formula for DC and hence the 
tangent TC involves nothing more complicated than compositions and deriva­
tives, so the existence of the higher tangents T2C9...9T

mC follows from the 
chain rule by induction. 
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4.4.6. EXAMPLE. Let tf)(X) be the Fréchet manifold of diffeomorphisms of a 
compact manifold X of finite dimension, introduced in Example 4.2.5. There is 
a natural map 

V:^(X)-*^)(X) 

which takes each diffeomorphism to its inverse, so that V{ ƒ ) = fl. The map 
Fis smooth. Its derivative is given by the formula 

DV(f)h = -[Df(rl)]~lh(rl). 
Note that if 

h e T%X)f=eco(X9 f*TX) 

and/)/: TX-* TXthen 

Dv(f)h G T^)(x)ri = e°°(x,(rxYTx). 
Again there are serious differentiability problems in Banach spaces, since Df 
occurs in the formula. If tyr{X) denotes the Banach manifold of diffeomor­
phisms of class C , then V: tyr(X) -* tyr(X) is C° but not C\ while V: 
<%r+l(X) -> tyr(X) is C1 but not C2. In Fréchet spaces the map F is C00. 
Indeed we see that DV and hence !TK involves nothing more complicated than 
derivatives, compositions and inverses, so by the chain rule the higher tangents 
T2V9...9T"Vall exist. Hence Fis C°°. 

More generally, if X and Y are two distinct manifolds which are diffeomor-
phic, we can form the Fréchet manifold fy(X, Y) of diffeomorphisms of X to 
y, and form the inverse map 

V:SÙ(X9Y)-*^)(Y9X) 

as above. 
4.4.7. EXAMPLE. We are now prepared to argue that the coordinate transition 

functions for the Fréchet manifold S( X) of smooth compact submanifolds of a 
finite dimensional manifold X are smooth, as we claimed in Example 4.1.7. 
Suppose we take coordinate charts of the type described there centered at two 
submanifolds Sx and S29 and that they overlap at a submanifold S. Then we 
can find a neighborhood U of S which is represented simultaneously as 
bundles over S{ and S2 using projections irx\ U -» Sx and TT2: U -* S2. The 
coordinate charts for S(X) at 5j and S2 are the same we used for the Fréchet 
manifolds of sections 6°°(Sl9 U) and 6°°(52, U) of these bundles. Now these 
are submanifolds of the Fréchet manifolds of all maps ^ ( S ^ , U) and 9IL(S2, U) 
by Example 4.2.4. By composition with TT2 we get a map 

e°°(Si, U) Q 9H(5„ t/) -> 911(5,, S2) 

which is smooth by Example 4.4.5. The projections ITX and m2 induce diffeomor­
phisms S -* Sx and S -> 52, and the map in 9IL(S'1, 52) is just their composi­
tion (7T2 |5 ')o(7r1 |5)_1 which is also a diffeomorphism. Hence the image of 
the above map lies in the open subset of diffeomorphisms tf)(Sl9 S2). On this 
subset the inverse map V: 6D(5'1, S2) -> tf)(S29 Sx) is smooth by Example 4.4.6. 
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Composing the inverse map with the original section gives rise to a map 

e~(Sl9U) - ty(S2, S{) X 911(5,,U) -> 9H(S2,U) D e°°(S29U) 

which is smooth by Example 4.4.5. The image we get always Hes in the 
submanifold 6°°(S2,U) of sections of U. This gives us our coordinate transi­
tion function, which is a composition of smooth maps and hence smooth. 

4.4.8. DEFINITION. Let P: 911 -> 91 be a smooth map between Fréchet 
manifolds. We say P is an immersion if for any ƒ E 9H we can choose 
coordinate charts around ƒ E 911 and P( ƒ ) E 9t such that the local representa­
tive of P is the inclusion of a factor in a direct sum. We say P is a submersion if 
we can choose the local charts so that the representatives of P is the projection 
onto a factor in a direct sum. 

4.4.9. EXAMPLES. The inclusion of a submanifold is an immersion. The 
projection map of a vector bundle is a submersion. 

Let 911,, 9lt2 and 91 be Fréchet manifolds and let 

i V ^ l t , -»9l , P2 :91t2-*9l 

be smooth maps. We define the fibre product 

911, X a <D1L2 = {( ƒ„ f2) G 9H, X <31L2: P,( ƒ,) = i>2(/2)}. 

4.4.10. THEOREM. If Px and P2 are submersions then 911 j X ^ 91L2 ^ a closed 
submanifold of ^\ix X 91t2. 

PROOF. Let A be the diagonal in 91X 91. Then 911! X ^ 91t2 = (Px X P2)_1A 
is closed. If ( ƒ„ /2) E 9IL, X ^ 9H2 then Px(fx) = P2(/2). We can find coordi­
nate charts Ux X Vx -> 9H1 and K, -> 91 such that î ! is the projection on K1? 

and we can find coordinate charts U2X V2-> 9tl2 and V2 -» 91 such that P2 is 
the projection on K2. Without loss of generality we can take Vx — V2— V. 
Then UXX VX U2X F gives a chart on 9H, X 9H2 in which the fibre product 
corresponds to points over the diagonal A in F X V. Thus the fibre product is 
a submanifold. 

4.5. Connections. Let T b e a Fréchet vector bundle over a Fréchet manifold 
91L with projection m. The null space of DIT is the subspace of vertical tanget 
vectors to % and it is naturally isomorphic at each point of T to the fibre of V 
passing through that point. It is natural to wish to pick a complementary 
subspace of horizontal tangent vectors. 

4.5.1. DEFINITION. A connection on Tis a rule which assigns to each point in 
T a complementary subspace of horizontal vectors, such that in terms of any 
coordinate chart on the bundle with values in (U C F) X G the subspace of 
horizontal vectors consists of all (h, k) E FX G with 

k = T(f){g,h} 

where the local representative T of the connection is a smooth map 

T: (UQF) XGXF^G 

which is bilinear in g and h. 
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One easy way to visualize a connection is with parametrized curves. Given a 
path v(t) E T we can form its covariant derivative v\t) E T using the 
connection. In local coordinates if 

v(t) = {f{t),g(t)) 
then 

v'(t) = (h(t),k(t)) 

where 

h(t) =f'{t), k{t) = g'{t) - T(f(t)){g(t), h(t)}. 

The path v(t) is horizontal if v\t) = 0. The path v(t) E T covers the path 
f(t) E 9IL. In Banach spaces, given the path ƒ(/) E 9R, for Û < / ^ b and the 
initial value v(a) there is a uniquely determined horizontal lifting v(t) covering 
f(t) with v'(t) = 0. In Fréchet spaces the horizontal lift may not exist, and if it 
does it may not be unique. This is because the usual existence and uniqueness 
theorems for ordinary differential equations fail in Fréchet spaces. 

A connection on a manifold 9H is defined to be a connection on its tangent 
bundle TfyL. If f(t) is a path in 511 giving the position as a function of time, 
then its velocity ƒ ' (0 is a path in r91t. The connection allows us to define the 
acceleration f"(t) also as a path in T9H. We say f(t) is a geodesic if its 
acceleration is zero. We say a connection on T9H is symmetric if its local 
representative T( ƒ){/*, k) is symmetric in h and k. 

4.5.2. DEFINITION. The curvature of a connection on a vector bundle Tis the 
trilinear map 

given locally by 

* ( ƒ ) { * , A, *} = DT(f){g, h, k) - DT(f){g, k, h) 

- r ( ƒ ){r( ƒ ){g, *},*} + r( ƒ ){r( ƒ ){g, *} , *} 
where T( ƒ ){g, /*} is the local representative of the connection. The curvature 
is independent of the choice of a chart. 

4.5.3. EXAMPLE. Let X and Y be finite dimensional manifolds with X 
compact and let 9It( X, Y) be the Fréchet manifold of smooth maps of X into 
Y. A path ƒ(/) E 91t( A", 7 ) can be evaluated at any point x E Jf to give a path 
ƒ(*, x) E Y. Suppose Y has a connection given in a local chart by T(y){z, w}. 
Then C3H( A", y ) has a connection given in local coordinates by 

[r( ƒ ){h, k}]{x) = r(/(*)){*(*), *(*)}> 
where for each x 6 l w e have/(x) E 7 and h(x), k(x) E ?!ƒ(*). A path f(t) 
is a geodesic in 9H if and only if the path ƒ(/, x) for any x E X is a geodesic in 
7. In this case each path will have a unique lift obtained by lifting point by 
point in X. The curvature of the connection on 9lt(X, y ) is given in terms of 
the curvature of the connection on Y by 

[R(f)(g, h, *}](*) = * ( / ( * ) ) { g ( x ) , * (* ) . *(*)} 

that is, evaluating point by point. 
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4.5.4. EXAMPLE. Let $l(X) be the Fréchet manifold of all compact domains 
with smooth boundary in a finite dimensional manifold X, and let 6°°5l(X) be 
the Fréchet vector bundle whose fibre over a domain A G <3l(X) is the Fréchet 
space 6°°(A) of all smooth functions on A. There is a natural connection on 
QCO(3l( X) of great importance in free boundary value problems. Fix a function 
ƒ G e°°(X) and choose a path of domains ,4(0 in <&(X). Then ƒ(*) = ƒ | ,4(0 
defines a path in Q°°^l(X) by restricting the fixed function to the variable 
domain. The natural connection on 6°°9l(Z) is the one which makes all of 
these paths horizontal. 

To see that this does indeed give a connection, we shall evaluate its local 
representative in the coordinate charet of Example 4.3.6. There a function 
b G G°°(&4) corresponds to a domain Â with r > b(y), and a function 
ƒ G G°°(,4) corresponds to a function g G G°°(,4) by the rule f(y, r) = g(y, s) 
where 

s = r + *(r)b(y). 

Then a path ,4(0 in $l(x) will correspond to a path Z?(x, 0 m G°°(3,4) and a 
path/(x, 0 in 6°°(^) will correspond to a path g(x, 0 in 6°°(A(t)) by the rule 

f(y> r, t) = g(>>, 5, 0 , * = r + *(r)b(y, t). 

Differentiating in t we see that 

3/ 3r 3/ 3 / ' dt dt dr dt * dt ' 

For the path g to be horizontal in our connection we want 3g/3/ = 0 when 
ds/dt = 0. Solving, we get 

Tt'*YrH/ 
3r 

Now at the domain Â(t) given by 6(0 the vector h = 36/3/ represents the 
tangent vector to the path. Therefore the local representative of the connection 
is given by 

T: (U c e°°(3)) X e°°(A) X e°°(3,4) -» e°°(,4) 

where 

r(ft){ ƒ, A) - <J>(3//3r) • h/ [1 + 634>/3r] 

on JV n A, and outside of TV we have <t> = 0 so T = 0. Since T is smooth and 
bilinear in ƒ and /* it defines a connection locally. The invariance under a 
change of coordinates follows immediately from its invariant description. 

Any smooth function on a compact region A with smooth boundary extends 
to a smooth function on X, but not uniquely. It follows that any path in <3l(x) 
can be lifted to 6°°^il(x) with given initial value, and the lift will be unique for 
a path of shrinking domains but not for a path of expanding domains. By way 
of contrast, we note that there is another interesting bundle Q™$l(x) whose 
fibre over a domain A G tfl(x) is the Fréchet space Q™(A) of smooth func­
tions on X which vanish identically outside of A. The previous formula defines 
a connection T on this subbundle also, for when ƒ vanishes outside A so does 
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df/dr. For this bundle the horizontal lift over a path of expanding domains 
exists and is unique, but the lift over a path of shrinking domains may not 
exist. 

Finally we note that the connection T (for either bundle) has curvature zero. 
This can be shown by an explicit calculation. Differentiating T(b){ ƒ, h) with 
respect to b in the direction k gives 

DT(b){f,h,k)=^frhk/ 
or 

which is symmetric in h and k. Moreover since b, h, and k are functions of y 
alone they are independent of r, so dh/dr = 0 and 

T(b){T(b){ f, h),k}= <t>j-r[T(b){f, h}] • k/[\ + * U 

*a7 or 

is also symmetric in h and k. Therefore the curvature is zero. Of course it is 
obvious that 6°°<3l(Z) must have curvature zero since there exists a horizontal 
section passing through every point ƒ E Q°°^Sl( X\ even though the horizontal 
section is not unique. 

4.5.5. EXAMPLE. Let X be a Riemannian manifold, §>(X) the Fréchet 
manifold of all compact smooth submanifolds of X, and G°°S(X) the Fréchet 
vector bundle over S( X) of all smooth functions on compact smooth submani­
folds, so that the fibre over S G S(X) is the Fréchet vector space S°°(S). For 
each S G S (A") we can form the tangent bundle TS and the normal bundle 
NS = TM/TS over S. Likewise for each fee°°(S) we can define vector 
bundles Tf and Nf over S by letting Tf be the graph of /)ƒ, 

Tf= {(v9y)ETMXR:vETS 3indy = Df(v)} 

and 

Nf= TMXR/Tf. 

THEOREM. There are natural isomorphisms 

TSS(X) = e°°(5, Ns)9 Tfe°°§>(x) = e°°(5, N/). 

PROOF. We can identify the tangent space to a manifold by identifying the 
tangent vectors to paths. Let S+ = {£,} be a smooth path in §>(X) for 
-e < t < e with 50 = S. Then S+ is itself a compact smooth submanifold of 
M X (-e, e) transversal to each slice / = constant. If ƒ* = {ƒ,} is a smooth 
path in Q°°S(X) for-e<t<e with f0 = ƒ and covering the path S* — {St} in 
S(X)9 then each ft G S°°(5r) and ƒ„, is a smooth function on S^. 

The path S* defines an affine subbundle of TM over S by 

^ = { t ) 6 TM: (Ü, 1) G 7S* at / = o} 
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since TS+ Ç TM X R when S+CMX (-e, e). Similarly the path ƒ* defines an 
affine subbundle of TM X R over S by 

Tf= {(v,y) (ETMXR:(v,\) 6 ^ at / = 0 andj> = Df*(v, 1)}. 

It is easy to check that TS is a translate of TS in TM, and hence determines 
a section over S of the quotient bundle NS = TM/TS. This identifies the 
tangent to the path S* as an element of G°°(»S, MS). Similarly we can check 
that Tf is a translate of 7/in TM X #, and hence determines a section over £ 
of the quotient bundle Nf=TMX R/Tf. This identifies the tangent to the 
path ƒ # as an element of S°°(iS, Nf) and proves the theorem 

There is an obvious short exact sequence of vector bundles over S, 0 -> i? -> 
M/ -> MS -> 0, which arises from the commutative diagram 

0 
i 

R 
i 
R 
I 
0 

—» 

—» 

—» 

0 
1 
Tf 
Ï 

TMXR 
i 

Nf 
i 
0 

-> 

-» 

-* 

0 
1 

rs 
i 

TM 
1 

MS 
1 
0 

where the vector bundle isomorphism Tf -» TS is obtained by forgetting the 
second factor in TM X R. This induces a short exact sequence of Fréchet 
vector spaces 0 -> e°°(S) -> e°°(S, A/) -* e°°(S, M5) -> 0 which by the previ­
ous theorem becomes 

0 - e°°(5) -* Tfe°°§>(X) -+ TS%(X) -> 0. 

The second map is clearly TIT where TT is the projection of the vector bundle. 
Hence the first factor S°°(5) is the subbundle of vertical tangent vectors to the 
bundle 6°°S( X) at ƒ E 6°°(5). These are of course just the variations where we 
fix the submanifold S and vary only the function ƒ on *S. They are intrinsically 
defined. Unlike the case of $l(X) there is now no intrinsic way to fix the 
function ƒ and vary the domain S. To do this requires the choice of a 
connection T on G°°S(X), for which we need some additional data. 

Suppose that X is endowed with a Riemannian metric g. Then there is a 
natural way to define a connection T on 6°°S(X) in terms of g. The geometric 
idea is that to vary the domain S while keeping the function ƒ fixed we should 
keep ƒ constant along the normal direction. It is the choice of the normal 
direction that requires a metric. The connection T may be described in the 
following way. We can identify the normal bundle NS with the subbundle of 
the bundle TM over S of vectors perpendicular to TS in the metric g. Then 
NS X R is a subspace of TM X R complementary to Tf, so we can identify 
Nf=TMX R/Tf with NS XR.UNf=NSXR we take Hf=NSX {0} as 
the horizontal subspace complementary to the vertical subspace {0} X R. 
Then Q°°(S, Hf) will be the horizontal subspace for the connection T of 
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Q°°(S, Nf) - Tfe°°^(X) complementary to the vertical subspace e°°(S) and 
projecting isomorphically onto 600(5', NS) — Tf%(X) since 

Hf=NSX {0} ^NS. 

It is interesting to compute the curvature of this connection. The metric g on 
X induces metrics on the tangent bundle TS and the normal bundle NS and 
covariant derivatives on sections of these bundles. If ƒ G Q°°(S) and h, k E 
G°°(S9 NS) we can form the covariant derivatives Vf and vh. Then using the 
etric on T*S we can form the dot product v / • Vh in NS, and using the metric 
in NS we can form another dot product V/ • Vh - k. The curvature at 
S E.S)(X) is the trilinear map 

R(S): e^(x)s x THX)S x TS(X)S -> e°°s(x), 
which in terms of our previous identifications is a map 

<3L(S): e°°(S) X e°°(5, NS) X e°°(S, # S ) -> e°°(5) 

given by 

R(S){f9 h,k} = Vf'Vh-k-vf-Vk-h, 

We leave it as an exercise for the reader to check the formula. It is interesting 
to note that the curvature of this natural connection on G°°c>(X) is not zero, 
even when X is flat, and even when S is a flat submanifold of X (such as a 
circle in a flat torus). 

4.6. Lie groups. 
4.6.1. DEFINITION. A Fréchet Lie group is a Fréchet manifold % with a group 

structure such that the multiplication map C and the inverse map K, 

C : § X § - S , C(g,h)=gh, 
F : § - § , v(g) = g-\ 

are smooth. 
4.6.2. EXAMPLE. Let X be a compact manifold. Then the diffeomorphism 

group fy(X) is a Fréchet Lie group. 
The Lie algebra of § is the tangent space G— Tx§ at the identity 1. Each 

element in G determines a left-invariant vector field on 8. The Lie bracket of 
two left-invariant vector fields is again left-invariant. This defines the Lie 
algebra structure of §. There is a unique connection on § such that the 
left-invariant vector fields are horizontal. For this connection the curvature is 
zero and the torsion is given by the Lie bracket. 

4.6.3. EXAMPLE. For the diffeomorphism group ty(X) the Lie algebra 
TfiiX) is the space e°°(X, TX) of vector fields on X. The Lie algebra of the 
group is given by the Lie bracket of the vector fields. 

4.6.4. DEFINITION. We say the Lie group § acts on a Fréchet manifold 9H if 
there is a smooth map 

.4: SX 911-+911, A(g9h) = gh 

such that \h — h and (g\g2)h = £i(g2^)-
4.6.5. DEFINITION. Let § be a Fréchet Lie group. A principal Fréchet §-bundle 

consists of a Fréchet manifold 9H (called the total space), an action a of S on 
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9IL, and a submersion P of 9H onto another Fréchet manifold $ (called the 
base), such that for each b G <35 we can find a neighborhood V oî b and a 
diffeomorphism P of g X F onto i>~ \V)C?H such that: 

(1) The action A of § on 9lt corresponds to the action on ê X F on the first 
factor, and 

(2) the projection P onto % corresponds to the projection of § X F onto the 
second factor. 

4.6.6. EXAMPLE. Let X and Y be finite dimensional manifolds with X 
compact. Let fy(X) be the diffeomorphism group of X, let &{X, Y) be the 
Fréchet manifold of all embeddings of X into Y, and let S>X(Y) be the 
component of the Fréchet manifold of all submanifolds of Y consisting of 
those which are diffeomorphic to X. Then S( X, Y) is a principal ÓD( X) bundle 
over §^(7). The action of fy(X) on &(X, Y) is given by composition of the 
embedding and the diffeomorphism. The projection of ë(X, Y) onto SX(Y) 
assigns to each embedding its image. The argument in Example 4.4.7 shows 
how to construct the coordinate charts required. 

1.5. The inverse function theorem. 
5.1. Estimates. Let L: H -* K be a continuous linear map between Fréchet 

spaces. Then for every seminorm || \\KonK there exists a seminorm || || H on H 
such that || Lh \\ K < C II h 11H. More generally we have the following result. 

5.1.1. THEOREM. Let L: (U C F) X H -» K be a family of linear maps on 
Fréchet spaces. If L is continuous, then for every f0 E U and every seminorm 
|| || K on K we can find a neighborhood Ü off0 and a seminorm 11 \\Hon H and a 
constant C such that for all f E Ü and h G H 

\\L(f)h\\K<C\\h\\H. 

PROOF. The seminorms define the topology. Since L is continuous and 
L( /0)0 = 0, we can find a neighborhood Ü of f0 and a neighborhood of 0 of 
the form | | / i | | #<e on which \\L(f)h\\K^ 1. Given any h G H we put 
h = eh/\\h\\ff. Then \\h\\H^e and if ƒ G Ü we have \\L(f)h\\K< \. It 
follows by linearity in h that ||L( ƒ)h\ \K<C\\h\ \H with C = 1/e. 

5.1.2. THEOREM. Lef£: (U Q F) X H X K ^ L be a family of bilinear maps 
on Fréchet spaces, so that B(f){h,k} is linear separately in h and k. If B is 
continuous, then for every f0 G U and every seminorm II \\ L on L we can find 
seminorms 11 IIH and 11 IIK on H and K and a constant C such that for all f E Ü 
and all h E H and k EK 

\\B(f){h,k}\\L^C\\h\\H\\k\\K. 

PROOF. The demonstration is the same as for the preceding result. 

5.1.3. THEOREM. Let P: U C F -> G be a smooth map of Fréchet spaces. Then 
for every f0 E U and every seminorm II \\G on G we can find a seminorm 11 \\Fon 
F, an e> 0, and a constant C such that if || fx — f0 IIF < e and || f2 — f0 IIF < e 
then 

l l ^ ( / . ) - - P ( / 2 ) H C < C | | / 1 - / 2 | | J P . 
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PROOF. The derivative DP(f)h is continuous and linear in h. Given f0 and 
II || G we can find a neighborhood Ü of f0 and a II IIF with || DP( ƒ )A II ^ < C II A || F 

if ƒ G Ü. The neighborhood Ü will contain a neighborhood of the form 
II ƒ ~~ /o II F ̂  c f°r s o m e INI F a nd some e < 0. If this norm is different from the 
preceding, we can pick a third norm || \\F stronger than both (for example, 
their sum). By the fundamental theorem of calculus 

P(fi) ~ P(f2) = flDP(tfl + (1 - 0 / 2 ) ( / i ~ h ) d t . 

If fx and f2 belong to the set II ƒ — f0 IIF < e so does the line segment joining 
them, so 

\\DP{tfx + (1 - 0/2)(ƒ, -f2)\\c< C\\fY -f2\\F. 

Then \\P(fO ~ P(f2)\\c< C\\fx -f2\\F. 
Next we prove a more specialized result. 

5.1.4. THEOREM. Let Q: U C F -» G be a smooth map between Fréchet spaces. 
Suppose that 0(0) = 0 and DQ(0)h = 0 for all h G F. Then for every seminorm 
II || G on G we can find a seminorm 11 \\Fon F, and e > 0, and a constant C such 
that if || ƒ, || F < e and || f2 \\ F < e then 

iie^-eaïiic^cdi/j^+ii^ii^ii/t-Aii^ 
PROOF. The second derivative D2Q(f){h, k) is a smooth family of bilinear 

maps. By Theorem 5.1.2. for any || ||G on G we can find a neighborhood of 
zero Ü C F and a II II F on F such that if ƒ G £/ 

I I ^ 2 Ô ( / ) { ^ ^ } I I G < ^ I ^ H F I I ^ I I F 

and as before we may as well take Ü of the form {ƒ: II ƒ | | F < e} for some 
e > 0. By the fundamental theorem of calculus 

DQ(f)h=flD2Q(tf){f9h}dt 

since DQ(0)h = 0. Then if II ƒ IIF < £, 

H ^ Ô ( / M I I C 7 ^ ^ I I / I I F I ^ I I F -

We can also write 

P(fx) - P{f2)=fDP(tfx + (1 - 0 / 2 ) ( / , - / 2 ) * 
•'o 

as before. If ƒ, and /2 belong to the ball Ü so does the line segment joining 
them. Then 

\\DP{tfx + (1 - t)f2){fx ~h)\\G< C(\\ f]\\F+ ll/2ll,)ll/, - / 2 I I F 

and the norm of the integral is bounded by the integral of the norm. This 
proves the estimate. 

5.2. The inverse function theorem for Banach spaces. Let A"be a metric space 
and P: X -> X a map of X into itself. We say P is a contraction if there exists a 
p < 1 such that 

d(Px9Py)*pd(x9y). 
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5.2.1. THEOREM. IfXis a complete metric space and P: X -* X is a contraction 
then P has a unique fixed point x with P(x) = x. 

PROOF. Recall that this well-known result is proved by the following trick. 
Start with any x0 E X and define a sequence xn E X by xn — P(xn_x). Then 
d(xn+l, xn) < pnd(xl9 x0). Since the geometric series 2pw converges for p < 1, 
it follows that the sequence xn is Cauchy, and if X is complete then xn 

converges to an element x with P(x) = x. This shows the fixed point exists. If 
xx and x2 are two fixed points then 

d(xl9x2) = d(P(xx)9 P(x2)) < pd(xX9x2) 

and if p < 1 this forces d(xl9 x2) = 0. Hence the fixed point is unique. 

5.2.2. COROLLARY. Let X and Y be metric spaces with X complete and let P: 
XX Y -> Xbe a continuous map with 

d(P(x]9y)9P(x29y))^pd(xX9x2) 

for some p < 1. Then for every y EL Y there exists a unique x E X with 
P(x9 y) — x. If we let x — S(y) then the map S: Y -» X is continuous. 

PROOF. We already know all but the continuity of S. Pick x0 E X and let 
xn+x = P(xn9 y). Then xn = Sn(y) is a continuous map Sn: Y-» X9 and 
Sn(y) -> S(y) as n -> oo. Since 

d(Sn+x(y)9Sn(y))^C(y)P» 

where C(y) = d(Sx(y)9 S0(y)) is a continuous function of y9 it follows that the 
sequence Sn(y) converges to S(y) uniformly on a neighborhood of any y0 E Y. 
Therefore S(y) is continuous. 

We can now prove the inverse function theorem for Banach spaces. 

5.2.3. THEOREM. Let P: UcF^VQGbea smooth map between Banach 
spaces. Suppose that for some f§ E U the derivative DP^f^y. F —* G is an 
invert ible linear map. Then we can find neighborhoods Ü of f0 and V of 
g0 = P(f0) such that the map P gives a one-to-one map of Ü onto V9 and the 
inverse map P~l: VCG^ÜCFis continuous. (We shall show later in 
Corollary 5.3.4. that P~l is smooth.) 

PROOF. By replacing fbyf = f-f0 and g by g = g - g0 we may assume 
that f0 = 0 and g0 = 0. Since DP(0) is an isomorphism between F and G, we 
may use it to identify F and G9 and assume that DP(Q) is the identity. 

l*tQ(f)=f-P(f). Then g(0) = 0 and DQ(0)h = h- DP(0)h = 0, so 
we may apply Theorem 5.1.4. Since F is a Banach space all norms are 
equivalent, and we pick one || ||. Then 

ne(/i) - Ö(/2)II < coi/.II + ii A ion h -hw 
if II ƒ, Il < e and II ƒ, | | < e. 

Putting ƒ, = ƒ and ƒ2 = 0 we also have 

llô(/)H <<:!!ƒ ii2 
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when II ƒ II < e. We put 

R(f,g)=f-P(f) + g = Q(f) + g 
and let 

X={f: 11/11 <e} and Y = {g: \\g\\ « 8}. 

Then A" is a complete metric space. If ƒ G X and g G T then 

l l / ? ( / , g ) l l < C | | / | | 2 + | | g | | « C e 2 + ô. 

If e *s 1/2C and 8 < e/2 then Ce2 + 8 < e, so /?(ƒ, g) G X Thus i? defines a 
m a p / J : I x y - X Moreover R(ƒ„ g) - tf(/2, g) = g(ƒ,) - Ô(h) so if 
/ „ / 2 G Zand g G y 

l l * ( / i , g ) - - R ( / 2 . g ) H < 2 C e | | / 1 - / 2 | | . 

When e is small then p = 2 Ce < 1 and # is a contradiction. To make 
everything work we first choose e small compared to C, and then choose 8 
small compared to e. Then it follows that from Corollary 5.2.2 for each g G Y 
there is a unique f E X with /£( ƒ, g) = ƒ, which means P(f) = g. Moreover 
the map P - 1 : Y ^> X is continuous. To finish the proof we take any open 
neighborhood of zero V C Y and let Ü — P~\V). Since P~x is continuous Ü 
is open. 

5.3. Inverses of linear maps. If L: F -> G is a continuous linear map between 
Fréchet spaces and if L is invertible then L - 1 : G -> F is continuous by the 
open mapping theorem. IfL: (U C F) X / f -^A ' i sa family of linear maps, so 
that L(f)h — k is linear in h G H for each ƒ G U Q F, and if each L( ƒ ): 
i / -> # is invertible, then putting V(f) = L(f)~l we obtain the family of 
inverses V: (U C F) X K ^> H where V(f)k = h is the unique solution of the 
equation L{f)h — k. 

5.3.1. THEOREM. Let L: (U C F) X H -> K be a family of invertible linear 
maps of Fréchet spaces and let V: (U C F) X K -> H be the family of inverses. If 
L is smooth and V is continuous then V is smooth and 

DV(f){k, g) = -V{f)DL{f){V{f)k, g). 

PROOF. Recall that DV(f){k, g} is obtained by differentiating V(f)k with 
respect to ƒ in the direction g. Now the difference quotient 

[V(f+tg)k-V(f)k]/t 

= -Hf+ tg)[L{f+ tg)V{f)k - L{f)V(f)k]/t. 
As*-»0 

[L( ƒ + tg)V(f)k - L(f)V(f)k]/t - DL( f ){V{ ƒ )k, g) 

since Lis CKU Vis C° then by its joint continuity 

V(f+ tg)[L(f+ tg)V(f)k - L(f)V(f)k]/t - V( f)DL{ f){V(f), g). 

It follows that the difference quotient for V converges to the given limit. We 
see from the formula for D V that V is C1. It now follows by the chain rule and 
induction that if V is Cr and L is Cr+l then V is C r + 1 . If L is C°° then V is 
C00. 
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For Banach spaces there is an easy criterion for inverting a family of linear 
maps, since the set of invertible linear maps of H to K is open in the Banach 
space L(H9 K). We prove it in a different way. 

5.3.2. THEOREM. Let F, H and K be Banach spaces. Let L: (U C F) X H -> K 
be a smooth family of linear maps L(f)h = k linear in h. Suppose that f or some 
f0 G U the map L(f0): H -> K is invertible. Then there is a neighborhood Ü of f0 

such that L(f): H -> K is invertible for all f G Ü, and the family of inverses V: 
(UCF)XK-* H is smooth. 

PROOF. We can assume fQ = 0 by replacing ƒ by ƒ = ƒ — f0. We can also 
assume L( f0) is the identity by identifying K with H under the isomorphism 
L( /o) - 1- Then we have a map L(f)h = k with L(Q)h = h. Consider the map 

P: (UQF) XH^FXH 

defined by 

P(f,h) = (f,L(f)h). 

Then 

DP(f, h){f, h) = ( ƒ, DL(f){h, ƒ} + L(f)h) 

and DP(090)(f9 h) = ( ƒ, h) is the identity. It follows that on a neighborhood 
Ü X W of (0,0) the map P is invertible, and L{f)h — k has a unique solution 
for all ƒ G Ü and k G W, which we write as V(f)k — h. But since L(f)h = A: 
is linear in /Ï, it follows that F( ƒ )/: — /* is defined and continuous for ƒ G £/ 
and all k G K. That Kis smooth follows from Theorem 5.4.1. 

5.3.3. COUNTEREXAMPLE. Let G£, be the Fréchet space of functions f(x) 
which are smooth and periodic with period 277. Define a smooth family of 
linear maps 

L:uxe2»-e?, 
by setting 

[L(t)f](x)=\fx
X+'f(u)du 

so that the value of L(t)f at x is the average value of ƒ over the interval starting 
at x of length t. If we make the change of variables u = x + tv we get the 
alternative formula 

[L(t)f](x)=ff(x + tv)dv. 

Clearly L(0) is the identity and hence invertible. But if n is an integer 

L(27r/«)sin nx = 0. 

Indeed L(f) acts term by term on the Fourier series of f(x) and when 
t — 2*n/n it kills the terms sin nx and cos nx. Thus L{2ir/n) is not invertible. 
Since 2ir/n -* 0 as « -> oo we have a counterexample to Theorem 5.3.2 and 
also Theorem 5.2.4 when the critical space is not a Banach space. 
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The reader may wonder why the same counterexample doesn't work on the 
Banach space S ^ of continuous periodic functions. Note that L: RX Q2n -> Q® 
is continuous but that L: R -> L(Q%n9 &2rr) is not! Hence the linear maps L(t) 
do not converge to L(0) = / as t -> 0. Moreover consider the derivative of 
L(t)f with respect to f, which we write as L'(t)f. Clearly 

[L'(t)f](x) = /" V ( * + to) * 
•'o 

involves ƒ'. Thus L: RX fi£ -> £ £ is 6°° but L: i* X 6 ^ -> 6 ^ is not even 
differentiable. The difference between S° and Q°° is striking. 

5.3.4. COROLLARY. The inverse function P~\g) in Theorem 5.2.3 is smooth 
for all g in a neighborhood V of g0. Moreover the derivative DP(f)h = k is 
invertible for all ƒ in a neighborhood Ü of f0 and the family of inverses 
VP(f)k = h is smooth, and we have 

DP-\g)k=VP{p-\g))k. 

PROOF. That the family of linear maps is invertible and that VP is smooth 
follows from Theorems 5.4.2 and 5.4.1. 

By Lemma 3.3.1 we can find a smooth family of linear maps 

L(fl9 f2)h=fDP((l - 0 / i + tf2)hdt Jo 

with P(f2) - ƒ>(ƒ,) = L(/„ f2)( f2 - ƒ,), and with L( ƒ, f)h = DP(f)h. Since 
L(/0, /0) = DP(f0) is invertible, it follows that L(fl9 f2) is invertible for all fl9 

f2 in a neighborhood Üoff0, and the family of inverses K(/„ f2)k = h solving 
L(fl9 f2)h = kis also smooth. Then 

f2-fl = V(fl,f2)[P(f2)-P{fl)]. 

Now let ƒ, = P'Xgi) and f2 = i>~'(g2).Then 

P~\gi) ~ P-\8Ù = V{p-\gy), P-\Sl)){g2 ~ * , ) . 

Let us define 

M(gug2)k=V(P~i(g]),p-i(g2))k. 

Since F is smooth and P~x is continuous, we see that M is continuous and 
linear in k. Since 

P-\Si) - P~l(gi) = M(g], g2)(g2 - gl) 

it follows from the reverse side of Lemma 3.3.1 that P _ 1 is C1 and we have 
DP-l(g)k = M(g,g)k.tiow 

M(g, g) = V(p-l(g), P- ' (g)) = L(p-\g), P-\g))-1 

= DP(P'\g))'X = VP{p-\g)) 

so we have 

DP-\g)k = VP(p-\g))k. 

If P~ ' is Cr and VP is C00 then P~' is Cr+ ' by the chain rule. Thus P~' is C00. 
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5.3.5. EXAMPLE. Let Qfw be the Fréchet space of all smooth functions f(t) 
periodic with period 27r, and let t/be the open subset of all functions f(t) with 

c(f) = (2'f(t)dt*0. 
J0 

Define a family of linear maps 

by letting L(f)h = k where 

k = dh/dt+fh. 

Then the equation has a unique solution V(f)k — h, and V is smooth as a 
map 

K:(i/ee£)xe£-e?w. 
To see this is true, we recall the standard method for solving a first order, 

linear ordinary differential equation. We begin by letting 

F(t)=ff(0)dO 

so that F = ƒ. Note that F(0) = 0 and F(2TT) = c(f)¥=0by hypothesis. Then 
the solution is given by 

k(t) = e-F^lfeF^h(0) dO + C( ƒ, h) 

where C is an arbitrary constant. We wish to choose C so that k(t) is periodic. 
This happens when k(0) = k(2ir). Thus we need 

c^h^^hCeF(0)mde 

which is possible if c( ƒ ) ¥^ 0. Note that C(f,h) depends smoothly on ƒ and h 
and is linear in h. It is easy to check that if ƒ G C r and k E Cr then the 
solution h E Cr+X for 0 < r < oo. It is clear from the formulas that V is 
continuous, and then it is smooth by Theorem 5.3.1. 

5.4. Examples in Banach spaces. We present a few of the classical examples 
of the inverse function theorem in finite dimensions and in Banach spaces to 
give the reader a feeling of how the theorem works. 

5.4.1. EXAMPLE. Let ƒ: U C Rl -> R* be a real function of a real variable. 
Then 

Df(x)u = f'(x)u 

and the linear operator Df(x): Rl -» i^1 is multiplication by ƒ'(*)• This 
operator is invertible if and only if f'(x)¥= 0. If ƒ'(*) > 0 the function is 
increasing, while if f'(x)<0 the function is decreasing. In either case it is 
locally invertible. 

5.4.2. EXAMPLE. The function y — x2 has two inverses x = ± y[y for y > 0 
and none for y < 0. The derivative dy/dx = 2x is nonzero except at x = 0, 
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where the function has a turning point and the map is not invertible. Since 

dy = 1 = 1 
dx ±2& 2x 

we see that the derivative of the inverse is the inverse of the derivative. 
5.4.3. EXAMPLE. Let>> = x3. Then the function has a unique solution defined 

everywhere given by x — Jy. The derivative dy/dx — 3x2 is not zero except at 
x = 0. Since dx/dy = \/3y2/3, we see that at y = 0 the inverse function is 
continuous but not differentiable. 

5.4.4. EXAMPLE. Let y = 4x3 — 3x be the third Chebychev polynomial. We 
have y' — \2x2 — 3 = 0 at x = ± i- A table of values is 

X 

y 

- 0 0 

- 0 0 

-1 

-1 

1 
~2 

1 

0 

0 

1 
2 

-1 

1 

1 

0 0 

0 0 

so y covers the interval [-1,1] three times while x covers it once. In this region 
we can make the substitution x = cos 0 and use the identity 

cos 30 = 4 cos30 — 3 cos 0 

to obtain the three solutions 

x — cos j arccos y. 

In the region x > 1 we can make the substitution x — cosh t and use the 
identity 

cosh 3/ = 4 cosh3/ — 3 cosh / 
to obtain the single solution 

x — cosh y arccosh y. 

Interestingly enough this latter solution is algebraic; it can also be written as 

x=((y + v y - l ) ' / 3 + (y- v y - l ) ) ' / 3 / 2 

using the identity 

arccosh y = log( y ± yy2 — 1 j . 

Alternatively we can find the algebraic solution by substituting 

u1 + 1 _ 1 / , 1\ 
x — 

which has two reciprocal solutions 

u — x ± y ̂  

We then get 

1 . 

t / 6 + 1 1 / 3 . M 
y = -^3- = 2\u3 + 73) 
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which has two reciprocal solutions 
.1/3 

« = (y±b2- i ) • 

Knowing x as a function of u and u as a function of j gives x as a function of 

The inverse function theorem tells us that there exists a single smooth 
inverse function in a neighborhood of y = 1 which has its values near x = 1. 
This solution is given by the algebraic formula for y > 1 and by the trigono­
metric formula for y < 1. That these two formulas patch together to form a 
single smooth (and even real analytic) function is far from obvious. 

5.4.5. EXAMPLE. Let ƒ: U Q R2 -> R2 be given by (ZJ = f(x
y). Then its 

derivative 

r>Ax\lu\ = I dz/dx dz/dy\(u\ VJ\y)\v) \dw/dx dw/dv U / dw/dx dw/dy J 

is given as a linear map by the matrix of partial derivatives. This is invertible if 
and only if the Jacobian determinant 

\ aw/ox ow/oy J 

is not zero. Geometrically / is the factor by which ƒ expands areas infinitesi-
mally. When J ¥= 0 the map ƒ is locally invertible. If / > 0 the map preserves 
orientation, and if / < 0 it reverses orientation. 

5.4.6. EXAMPLE. AS a special case, consider the map/: R2 -> R2 given by 

(z = x+y | 
\w = xy J ' 

This has an interesting interpretation. If a 2 X 2 matrix has eigenvalues x and 
y, then it has trace z and determinant w. We would like to recover the two 
eigenvalues from the trace and the determinant. The Jacobian is 

J = à«(l l)=x 

so / = 0 along the axis of symmetry x = y. When x > y the map preserves 
orientation, while when x < y it reverses orientation. Therefore it folds along 
the Une x — y. Its image is the parabola z2 — 4w. Since 

Z
2 - 4W= (X-yf^0 

we see that the region 4w < z2 outside the parabola is covered twice, with the 
two solutions being obtained by interchanging x and y, while the region 
4w > z2 inside the parabola is not covered at all. The branch of the inverse 
function with x > y is given by 

x = (z + y ^ 2 - 4 w ) / 2 , y=(z- / z 2 - 4 w ) / 2 . 

When the eigenvalues are distinct they are smooth functions of the trace and 
determinant, but where the eigenvalues are equal they are not. 
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5.4.7. EXAMPLE. Consider the function/: C -* C mapping the complex plane 
to itself given by w = z2. The derivative w' — 2z is zero only at the origin 
z = 0. Elsewhere the map is locally invertible, with two inverses given by the 
two branches of z = y/w. In cartesian coordinates z — x + iy and w = u + iv 
the map/: R2 -> R2 is given by 

2 2 

w = JCZ — yz 

y = 2jçy 

We can solve these simultaneous equations by observing that 

U2 + V2=(x2+y2)2 

from which it follows that 
,1/2 

x= ±((v /
M

2 + t;2 + t/)/2) , 

^ = ± ( ( / w
2 + t;2 - w ) / 2 ) 

1/2 

where the signs of x and j> are the same when v > 0 and opposite when t; < 0. 
When v ¥= 0 the solution is obviously smooth. By the inverse function theorem 
it is still smooth at v — 0 if u =£ 0. For the Jacobian determinant 

'-*•(£ t"H*2+>2> 
is never zero except at the origin. In polar coordinates z = re10 and w = se1* 
we see that 

U = 2«j 
so the map squares the radius and doubles the angle. Then the inverse map 

f ' " * } 
[fl = */2j 

takes the square root of the radius and halves the angle (which can be done in 
two ways mod 277 ). 

5.4.8. EXAMPLE. Consider the map/: R2 -> R2 given by w — 2z + z2 or 
u = 2x + x2 — y2 

v = 2y — 2xy 

The Jacobian determinant is 

'H20X%r-,,H'-*'-'>> 
so / vanishes on the unit circle x2 + y2 = 1. Inside the map preserves 
orientation, and outside it reverses. The map is locally invertible except on the 
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unit circle. If we parametrize the circle by x — cos 6 and y — sin 0 we see that 
its image is 

(u = 2cos0 + cos20 ] 
It) = 2 s i n 0 - sin20 J 

which is the standard parametrization for the hypocycloid of three cusps 
generated by a point on a circle of radius 1 rolling around the inside of a circle 
of radius 3. The map folds along the circle except at the three cube roots of 
unity, where it makes cusps. For points (") inside the hypocycloid there are 
four smooth solutions (*), while for points outside the hypocycloid there are 
only two solutions. For example, if e is a primitive cube root of unity then the 
points which map to the origin w = 0 are z — 0, -2, -2e, -21. Corresponding 
to these there will be four smooth local inverses defined in a neighborhood of 
the origin. 

There is an important result in the theory of singularities that any map of 
the plane to the plane is arbitrarily close to one having only folds and cusps. 
The map w — z2 of Example 5.4.7 has no folds or cusps, just a double twist. 
But the map w = z2 + ez looks like the map of Example 5.4.8, folding along a 
circle with its image being a hypocycloid of three cusps. As e -» 0 the three 
cusps collapse into the double twist. 

5.4.9. EXAMPLE. Let B be a Banach space and let L(B9 B) be the Banach 
space of continuous linear maps of B to itself. Define a map P: L(B9 B) -> 
L(B,B) by 

P(L) = L2. 

Then P is smooth and we have 

DP(L)M = LM + ML. 

When L = I is the identity 

DP(I)M=2M 

so DP {I) is invertible with inverse 

VP(I)N = N/2. 

It follows that P is locally invertible in a neighborhood of the identity, and the 
inverse map P~\L) = y[L is smooth. We could also define the function {L 
for L near the identity using the power series expansion 

il + A=I + \A- \A2 + ^ 3 - ?tsA
4 + • • • 

whose general term is 

(-1)" 1 - 3 - 3 - - - ( 2 * - 3 ) 
2n 1 • 2 • 3 •••n 

which converges absolutely for || A \\ < 1 by the ratio test. This shows P~l(L) = 
}/L is actually defined and smooth on all of the set (L: 11L — I \\ < 1}. 

5.4.10. EXAMPLE. The inverse function theorem can be used to prove 
existence of solutions for ordinary differential equations. 
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THEOREM. Let y = p(x) be a smooth monotone increasing function mapping 
the open interval a < x < b onto the open interval c <y < d with p' > 0. For 
every smooth periodic function g of period 2TT with values in (c, d) there exists a 
unique smooth periodic function f of period lm with values in (a, b) solving 

df/dt+P(f) = g. 

PROOF. Let C2\ be the Banach space of functions of class Cr periodic with 
period 2*n. Let Ü be the open subset of C2\ of functions with range in 
(a, b) — U and let V be the open subset of C2\ of functions with range in 
(c, d) — V. Define a map 

by letting 

p{f) = df/dt+P{f). 

Then P is smooth and its derivative is 

DP(f)h = dh/dt+p'(f)h. 

Since p'(f) > 0 we know from Example 5.3.5 that the equation DP{f)h = k 
always has a unique solution VP(f)k = h, and if ƒ E C2\ and k E C2m then 
h E C2\. It follows from the inverse function theorem that P is locally 
invertible, and the image of P is open. 

Next we observe that at the maximum or minimum of ƒ we have df/dt — 0 
and p(f) = g. Hence p maps the range of ƒ into the range of g. Suppose 
moreover that we have two solutions of the equation, so that 

P( fx) = dfx/dt+pUx) = g, pUi) = dfi/dt+p(f2) = *• 
Then take the difference 

d(fi-fi)/dt+[p(fx)-p(f2)]=0. 

It follows that wherever ƒ, — f2 is a maximum its derivative is zero and 
P(f\) — P(fi)> Since p is one-to-one, fx — f2 and the maximum of fx — f2 is 0. 
Its minimum is also zero, so fx = f2. Hence our solutions are unique and P: 
£ƒ-> Fis one-to-one. 

It remains to show that P is onto. Let P(Ü) be the image of Ü under P in V. 
We know P(Ü) is open and not empty. If we can show that P(Ü) is relatively 
closed in F, then since Fis connected we must have P(Û) = K To see this, let 
jÇ; E Î7 be a sequence such that P(fj) — gj converges to some g E V. Since g is 
continuous and periodic its image is compact. Therefore we can find a compact 
subinterval [y, ô] C (c, d) such that g and all the gj have their ranges in [y, 8]. 
Let [a, /?] = p~\[y, 8]). Then by our previous remark all the f} have their 
ranges in the compact interval [a, /?]. Since 

we have a uniform bound on the derivatives dfj/dt. Then by Ascolis' theorem a 
subsequence of the fj will converge uniformly to a continuous function ƒ with 
range in [a, /?] Ç (a, 6). By the above equation we also have dfj/dt -> <#/(# 
uniformly. Hence y| -» ƒ in C2V. Since P(fj) ^ P(f) and P(fj) = gj -> g we 
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have P(f) = g. This shows that the limit g belongs to P(Ü) also. It follows 
that P: U -* Fis globally invertible and the inverse is smooth. 

5.4.11. EXAMPLE. We can use the inverse function theorem to solve partial 
differential equations on manifolds. Let X be a compact Riemannian manifold 
with metric 

ds2 = gjjdx1 dxJ. 

Let dfx = [i(x) dx be the associated measure where 

M= i/det gtj 

and let glJ be the inverse matrix. There is an intrinsically defined second order 
linear operator on functions called the Laplacian, defined by 

If X — Sl X Sx is the flat torus, we can regard a function on X as a function 
f(x, y) doubly periodic in x and y, and 

A / = 8 2 / / a * 2 + a2//8j>2 

in the flat metric ds2 = dx2 + dy2. By contrast if X = S2 is the sphere 
parametrized by longitude 0 and latitude /̂, then 

ds2 — cos2;// d02 + dxp2, ju, = cos \p9 

A / = s e c 2 ^ + ^ - t a n * | f 
3ö2 a^2 3^ 

The operator A on S2 is invariant under all rotations. Any linear second order 
operator on S2 invariant under rotations is a linear combination of / and A. 

As before, let p be a smooth increasing function taking the open interval 
(ö, b) onto the open interval (c, d) with/?' > 0. We prove the following result. 

THEOREM. For any smooth function g E Q°°(X) with c < g < d there exists a 
unique smooth function ƒ G 6°°( X) with a<f<b solving the equation 

PROOF. After we prove the Nash-Moser theorem we could work in S00(Ar). 
Until then, we introduce the Banach spaces Qn+a(X) of functions which (in 
local coordinates) have «th derivatives which satisfy a Holder condition of 
exponent a for some a in 0 < a < 1, 

\f(x) ~f{y)\< C\x- y |«. 
Let Ü C Q2+a and V Q Qa be the open subsets of functions ƒ and g with values 
in U and V respectively. 

Define a map 

P: Uçe2+a(X)-+ Vçea(X) 

by letting P( ƒ ) = / ? ( ƒ ) - A/. Then P is smooth and 

DP(f)h=p'(f)h-M = k. 
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We claim that this linear elliptic equation always has a unique solution 
h E C2+a forfGÜQ C2+a and k E C". Since/?'( ƒ ) E C 2 + a we have all the 
regularity we need for the coefficients. Since A is selfadjoint, the operator 
DP(f) has index zero, and it is one-to-one if and only if it is onto by the 
Fredholm alternative. To see that it is one-to-one, we observe that if A/* = 
p'(f)h then integrating by parts 

f{\Ah\2+p'(f)h2}dn = 0 

and since/?' > 0 we must have h — 0. Then the inverse function theorem shows 
that P is locally invertible everywhere, and its image P(Ü) is open. 

As before we wish to show that P(Ü) is relatively closed in V. First we 
observe that 

p(range/) C range g. 

For where ƒ has its maximum A / < 0 and where ƒ has its minimum A/ > 0. 
Now let gj -> g in K Since g is continuous and X is compact, the range of g 
and all the g} will lie in a compact subset [y, 8] of (c, d). Then if P( fj) — gj9 

all the fj will he in a compact subset [a, /?] of (a, 6). On this compact subset/? 
is bounded, so we have an estimate 

\\p(fj)\\<*<c-
Let Lq(X) denote the Banach space of functions on X which (in local 
coordinates) have n (distributional) derivatives in Lq with 1 < q < oo. If we 
pick q>dimX then by Sobolev's embedding Ln

qQCn~x. Moreover by 
Gârding's inequality 

l l / l l L j < C ( | | A / | | ^ + | | / | | t f ) . 

Since AjÇ = p(fj) — gj and p(fj) and gy are bounded in C° C Lq, the fj are 
bounded in L2

q Q C1. Since the inclusion C1 C Ca is compact, by passing to a 
subsequence we may assume the fj converge in Ca. Since Afj = /?( j£) — gy, and 
p(fj) and g7 converge in Ca, we have AjÇ converging in Ca. Then by Gârding's 
inequality the fj converge in C2+a to a function ƒ E (ƒ. Clearly P{f) — g. This 
shows P(/7) is relatively closed in K Since Fis connected, P(Ü) = V. 

It is also clear that P is one-to-one. For if fx and/2 are two solutions of 

P(fx)-*fi=g> H / 2 ) - A / 2 = g 
then taking the difference 

A ( / , - / 2 ) =ƒ>(ƒ,)- iK/2)-
Integrating by parts 

/ { | A ( / , - / 2 ) 2 + [ / 1 - / 2 ] [ M / , ) - J p ( / 2 ) ] } r f M = 0. 

Since/? is increasing, the expression 

[/,-/2][/K/,)-/>(/2)]>0 
and vanishes only when ƒ, = f2. Thus P is one-to-one. 
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Hence for every g E Ca with c < g < d there exists a unique ƒ E C2+a with 
p(f) - A/ = g. Since A/ = />(ƒ) - g, if g E Cw+a then ƒ E C + 2 + a by in­
duction. If g E C00 then ƒ E C00. 

5.4.12. EXAMPLE. We can study geodesies on a Riemannian manifold using 
the inverse function theorem. For simplicity we shall take the manifold X to be 
an open subset of Rm\ the general case can be handled with Banach manifolds 
of maps. In local coordinates x = {V} the metric has the form ds2 = gtj dx* dxJ, 
and Tjk are the Chris tof f el symbols. A geodesic is a curve x' = f'(t) satisfying 
the equation 

U) dt2 JkU) dt dt °* 

Every curve of shortest length parametrized proportionally to the arc length is 
a geodesic. Also the constant curve ƒ = a is a geodesic. We would like to find a 
geodesic with given endpoints a and b\ this means we impose boundary 
conditions ƒ''(0) = a1 and ƒ ''(1) = b\ 

Let C[0,1] denote the space of functions of class C" on the interval 
0 < t < 1 and let Cw[0, l ]m denote the m-fold product of the space with itself. 
Our curve f(t) will belong to the space C2[0, l ]w , with f\t) E C2[0,1] for 
1 <: i < m. The operator P defines a smooth map 

P : C 2 [ 0 , l ] m ^ C ° [ 0 , l ] m . 

To impose boundary conditions, let B be the map 

B: C2[0, \]m - C°[0, \]m x r x R™, B(f) = (P( ƒ ), /(O), / ( l ) ) . 

Then its derivative is given by 

DB(f)h = (DP(f)h,h(0)9h(l)) 

where the derivative of P may be computed as 

{DP(f)h} - — + 2Tjk{f)df dt + 9x, dt dth. 

This equation looks better if we introduce the covariant derivative along the 
curve 

Then the equations become 

DP(f)h = d2h + R{d,f9 h)dtf 

where R is the curvature tensor. 
To invert the operator DB(f) we must solve the second order linear system 

of ordinary differential equations for DP(f)h with given boundary values h(0) 
and h(\). By the Fredholm alternative this is possible if and only if there are no 
nontrivial solutions to the homogeneous equations with zero boundary values. 
The solutions of DP(f)h = 0 are known as Jacobi fields along/. There will be 
a solution with h(0) = 0 and dh(0)/dt equal to any vector in Rn. If we 
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normalize \dh(0)/dt\= 1, then by a compactness argument there will be at 
least a finite time T > 0 such that the Jacobi field h cannot vanish again before 
t = T. The first point where some Jacobi field vanishes again is called the first 
conjugate point. 

If ƒ is a geodesic and its endpoints a = f(0) and b — f{\) are sufficiently 
close, the derivative DB(f) has zero null space and hence is invertible. By the 
inverse function theorem B is locally invertible near ƒ. Since ƒ is a geodesic, 
B(f) = 0 and B(f) = (0, a, b). If a is close to a and b is close to 6, then 
ƒ = 2?_1(0, a, b) will be a geodesic, since P(f) — 0, and have endpoints a and 
b. If 0 and 6 are conjugate points along a geodesic ƒ then 5 fails to be locally 
invertible near ƒ, as can be seen for diametrically opposite points on a sphere. 
When the curvature is negative there cannot be any nonzero Jacobi fields 
vanishing at the endpoints, as can be seen by integrating by parts to get 

f{\dlh\2-(R(dlf,h)dlf,h)}dt = o. 

If (R(u, v)u, v)<0 then h = 0. 
5.4.13. EXAMPLE. The classical Plateau problem calls for finding the surface 

of least area with a given boundary. We shall look at a special case where the 
surface is the graph of a function. Let D be a closed domain in the (*)-plane 
with a smooth boundary dD, and let ƒ(*) be a function defined on D. The 
graph of z = ƒ(*) is a surface bounding the curve which is the graph of ƒ over 
dD. If this surface has least area among all with the same boundary then ƒ will 
satisfy the nonlinear partial differential equation 

PU) = (l + / / ) / « - VJyhy + (1 +fX
2)fyy = 0 

which says geometrically that the mean curvature is zero. 
Let Cn+a(D) denote the Banach space of functions on D which have nth 

derivatives which are Holder continuous of exponent a (0 < a < 1), and let 
Cn+a(dD) be the same for functions on the boundary. Define a map 

B: C2+a(D) -* Ca(D) X C2+a(3Z>), B(f) = (ƒ>(ƒ), ƒ | a/)). 

For a given function 6 on the boundary we would like to solve the boundary 
value problem P( ƒ) = 0 and f\ dD = b, which says B(f) = (0, b). The graph 
of ƒ will be the surface with least area bounded by the curve which is the graph 
of 6. 

The derivative of B is given by 

DB(f)h = (DP(f)h,h\dD) 

and DP{f)h can be computed explicitly: 

DP(f)h = (l +ƒƒ)*« - VJyhxy + (1 +fx
2)hyy 

+ 2(fJyy -fyfXy)hx + 2(fyfxx-fJXy)hy. 

Observe that DP(f)h is a second order linear partial differential operator in h 
for each given ƒ, which we shall show is always elliptic, and that DB(f)h 
imposes Dirichlet boundary conditions on h as well. 
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To see that the equation is elliptic we replace d/dx and d/dy by £ and TJ in 
the highest order derivatives and compute the symbol 

a(É,i,) = (l +fy
2)e - 2fJyèv + (1 +fx

2W-

Then it is easy to see that 

ott,v) = e + v2 + (fyè-fxvf 
so a(£, TJ) = 0 <* £ = 0 and TJ = 0. Since the equation may be deformed to the 
Laplacian its index is zero and the Fredholm alternative holds. The homotopy 
is accomplished by 

o,U, v) = e + y\2 + Kfyt-fa)2, o<t<i. 
Note that there is no zero order term in DP(f)h. By the maximum principle 

we conclude that there are no nonzero solutions of the homogeneous equation 
with zero boundary data. Then by the Fredholm alternative we see that DB( ƒ ) 
is invertible for any ƒ. Hence B is always locally invertible everywhere. As 
before, we can also prove that B is one-to-one and has closed range by making 
some a priori estimates. 

We will indicate how to obtain the required a priori estimates on solutions of 
the Plateau equation P{ ƒ ) = 0. First we observe if ƒ and g are two solutions of 
the equation over D, and if ƒ < g on 3D, then ƒ ̂  g on D. This follows from 
applying the maximum principle to the difference h — f— g, which satisfies a 
second order elliptic equation with no constant term. Now any affine function 
g satisfies the Plateau equation. Thus if P( f ) = 0 then ƒ assumes its maximum 
(and minimum) on the boundary. 

We can also bound the first derivatives of ƒ in D using only the second 
derivatives of ƒ | 3D. To start we observe that the function 

W = | V / | 2 =fx
2+fy

2 

satisfies a second order elliptic inequality 

(l +f2)wxx - 2fJywxy + (l +f2)wyy + 2(fxx+fyy)(fxwx+fywy) 

= (l +f2+fy
2)(f2

x + 2f2
y+fy

2
y) + {w2 + w2) > 0 

and hence w assumes its maximum on the boundary. The tangential derivative 
of ƒ is of course known from ƒ | 32), so we must estimate the normal derivative 
at a point on the boundary. By a rigid motion we can assume our point is at 
the origin and the boundary is tangent to the x-axis. Suppose ƒ has a Taylor 
series 

ƒ( X
y ) = a + bx + cy + dx2 + • • • . 

We must estimate the normal derivative c. We can find a constant C, 
depending only on the derivatives of degree at most 2 of ƒ | 3D, such that on 
3D 

f(X
y)-a-bx^C(y + x2). 
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If dD is strictly convex, then y > ex2 for some e > 0. If we let g be the affine 
function 

then ƒ < g on dD and hence on all of D. Then c < C(l +7) . The same trick 
estimates c from below also. 

Finally we must estimate the Holder norm of fx and fy. Since ƒ satisfies a 
quasi-linear equation in divergence form 

\ 1/1 +ƒ„'+ƒ,' I Wi+A'+z,2/ 

it follows that the derivative g=fx(orfy) satisfies a linear elliptic equation in 
divergence form with coefficients depending only on fx and/J,, namely 

l(l+fy2)gx-fXfygy\ , I ~fxfygx+ (l + fx
2)gy\ ^Q 

\ (i+f>+f*r )x \ ( i+ / , a +/ / r / / ' 
Note that the matrix of the equation 

1 h+fy 'fjy \ 

is strictly positive-definite. Since fx and fy are uniformly bounded, we can 
appeal to standard results on linear elliptic equations in divergence form (see 
Ladyzenskaja and Ural'ceva [10, Theorem 14.1]) to estimate the Ca norm of 
g — fx (a l s o fy)- It is m e n easY t o estimate the C2+a norm of ƒ on D directly 
from the equation P( ƒ ) = 0 in terms of the C2+a norm of ƒ | dD. 

It follows that the operator P is globally invertible. Hence for any function b 
on dD we can solve for a function ƒ with P( ƒ ) = 0 on D and ƒ = b on 92). 

5.4.14. EXAMPLE. We consider the classical problem of a round object rolling 
back and forth in an oscillatory motion in a smooth convex trough of general 
shape without friction. We shall prove the following result. 

THEOREM. For small values of the energy, there exist smooth oscillatory 
solutions for the equations of motion which are uniquely determined as smooth 
functions of their two real Fourier coefficients of order one. Moreover the period 
of oscillation T is a smooth function of the total energy E for E ^ 0. 

PROOF. Suppose the object has mass m, radius r, and radis of gyration f. Let 
e = r/r be the gyration ratio. We have the following table for the simplest 
cases: 

e2 — 1 for a hollow cylinder, 

e2 = 1/2 for a solid cylinder, 

e2 = 2/3 for a hollow sphere, 

e2 = 2/5 for a solid sphere. 
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We parametrize the motion using the distance s travelled by the center of mass 
from its place of rest at s = 0. Let h(s) be the height of the center of mass 
above its level of rest as a function of s and let g be the gravitational constant. 
The total energy £ is a constant, and it is the sum of the kinetic translational 
and rotational energies and the potential energy. This gives the équation 

I«(l+e2)(f)2 + mg*(,)=£. 

If we differentiate with respect to t and divide by the linear momentum mds/dt 
we get the equation 

(1 + e2)d2s/dt2 + gh'(s) = 0. 

It is convenient to normalize the parameters of the problem. Let c be the 
curvature of the trough at its lowest point. Then the curve traversed by the 
center of mass has curvature c given by 

c — c/ ( 1 — cr). 

(Note that if cr > 1 the object won't fit in the trough!) Then h(s) will have a 
power series expansion (which may not converge) 

h(s) =±cs2 + 

Let k(s) — h\s). Then k(s) has a power series expansion 

k(s) — cs + • • • . 

Let T be the period of the oscillation and v — 2m/T its angular frequency. We 
introduce dimensionless variables by the substitutions 

a — cs, 8 — vt. 

Then the motion can be described by a smooth function a = f(0) periodic with 
period 2 IT satisfying the equation 

(*) d2f/d02 + (\+z)k(f) = 0 

where A: is a smooth function with a power series 

k(o) = o + k2o
2 + k3o

3 + ••• 

and 

z = — £ 1 
(l+e2)v2 

is a dimensionless parameter that depends on the constants c, r, and e, and is a 
smooth function of the angular frequency v — 2IT/T. 

We always have the rest solution ƒ = 0 for any value of the frequency. At 
z — 0 we encounter resonance, and another branch of solutions bifurcates off, 
giving rise to the oscillatory motions. Note that at z = 0 the period of 
oscillation is given by 

r = 2 , , / < l +''>"-"•' 
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in terms of the radius r of the object, the curvature c of the trough, and the 
gyration ratio e. For the simple case k(a) — a we have simple harmonic 
motion, and the solutions of our equation (*) are given by 

f(0) = xcos0+j>sin0 

for any values of x and y, with z — 0. For a more general function k(a) it is 
not so easy to solve, and the solution f(0) will contain other harmonics. Both 
f(6) and the frequency parameter z will depend smoothly on the Fourier 
coefficients x and y. 

To see this, we wish to apply the inverse function theorem. The linearization 
of the nonhnear operator (*) at ƒ = 0 and z = 0 is the operator d2f/dx2 + ƒ 
which of course is not invertible. Indeed this is why the solutions bifurcate. 
The null space of the operator contains the functions cos 6 and sin 0, while the 
image lacks them. Therefore we invent an operator we can invert. 

Let U C R be an open set on which k(o) is defined. Let C{m be the Banach 
space of functions f(0) of class Cr periodic in 0 with period 2m. Let Ü C C2„ 
be the open subset of functions with range in U. Define a map 

P:(UCC2„)xR3^C?„XR3 

by letting P( ƒ, w, u, H>) = (g, x, y9 z) where 

g = d2f/d02 + (1 + w)k(f) - MCOS0-üsintf, 

x = I (2"f(e)cosOd09 y = - (27rf(O)sm0dO9 
7T J0 IT J0 

Z = W. 

Let us use a twiddle to denote a variation in a number or function. Then the 
derivative of P9 

DP(f9u9v9w)(f,u,v,w) = (g, x, y9 f ) , 

is given by 

g = d2f/d02 + (1 + w)k'(f)f+ wk(f) - wcostf - t5sin0, 

* = ~ f2nf(0)cos6d$9 y = - (2>nf{0)uned09 
IT J0 IT J0 

Z = W. 

If we take the standard solution ƒ = 0, u — 0, v = 0, and w = 0 the first 
equation simplifies to 

de2 

Now we claim that for each g, jc, ƒ, z there is a unique ƒ, û, v, w solving these 
equations. This is immediately clear from considering the Fourier series of 
f(0). The operator 

Lf=d2f/d62+f 

kills the terms sin 6 and cos 0 but is invertible on the others. We can choose ü 
and v to match the coefficients of g. Then we can solve for/, and the solution 

g = —^ + ƒ — w cos 6 — v sin 6. 
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can be changed up to the same sort of terms, which allows us to satisfy the 
equations for x and y. Of course we take w = z. It is a little harder to see that 
ƒ E C2. Since Lf E C° we have its wth Fourier series coefficients ^bounded. 
Then the coefficients for ƒ are an — cn/{\ — n2), so the series for ƒ converges 
absolutely and ƒ E C°. Then using the equation d2f/d$2 E C° and ƒ E C2. 

Since ZXP(0,0,0,0) is invertible, it follows from the inverse function theorem 
that for g = 0 and all x, y and z sufficiently small we can find a function f(0) 
and numbers u and v depending smoothly on x, y9 and z solving the equation 

(**) d2f/d02 + (1 + z)k(f) = ucos0 + vsm$. 

This will be a solution of (*) if and only if u = v = 0. To see what happens, 
consider the special case k(o) — o of harmonic motion. Then we can compute 

u — xz9 v—yz. 

The set u = v = 0 is the union of the line x — y — 0 (corresponding to the rest 
solutions) and the plane z = 0 (corresponding to the oscillatory solutions). The 
reason this doesn't look like one of Thorn's standard catastrophes is that the 
motion is special due to the conservation of energy, and the resulting set of 
solutions are all periodic and hence invariant under the rotation group S\ We 
can exploit this symmetry. 

Returning to the general case, let ƒ(#), w, v be a solution of (**) for some 
values of x, y9 z. If we make the phase change $ -* 0 + a then f(6 + a) will 
also be a solution of (**) where the vectors (") and (J) have been rotated 
through an angle a. It follows that their inner product 

' = ( Ï ) - ( S ) = - + ^ 
is a smooth function of x, y, z which is invariant under rotation in the 
xy-plane. If r2 = x2 + y2 then / is a smooth function of r and z. Moreover it is 
symmetric in r, so / is a smooth function of r2 and z. Moreover / vanishes at 
r2 — 0, so / = r2m for a smooth function m oir2 and z. Thus 

xu + yv — {x2 + y2)m(x2 + y2, z) . 

If we perform integration by parts on (**) using the expression that shows the 
energy is conserved in (*), we get 

uy — vx — f f[usin0 — t;cos0] dd — f -f^[wcos0 + t;sin0] 
J0 JQ au 

•i 

dd 

_ f2"df_ 
dB 

&+(l+z)k(f) 
dd2 V ' w ' 

d0 = O 

so uy = vx. Then we can solve for u and v in terms of m to get 

u = xm(x2 + j>2, z), Ü = ^w(x2 + j 2 , z) 

for some smooth function mof x2 + y2 and z. Clearly u — v = 0 when m = 0. 
To complete the proof of the theorem we only need the following fact. 

LEMMA. At X— y — z = 0 we have m = 0 and dm/dz = 1. 
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PROOF. Since u = xm it suffices to show that du/dx = 0 and d2u/dxdz = 1 
at x = y = 0. Differentiating (**) with respect to x in the variables ƒ(#), u and 
ü gives 

— ^ + ( 1 + , ) * ' ( ƒ ) g ^ c o s * + g ^ sin* 

or differentiating with respect to z gives 

while differentiating with respect to both gives 

d2 *2< 

de2 dxdz ^ + < 1 + ' > * ' < ^ 

d2u aM d2v . a 
COS0 + TTTT Sin0. 9x9z 3X3Z 

When x=j> = z = 0we have ƒ = w = v — 0 and the equations simplify to 

— T -^- + ^ - = ^ - cos0 + -r- sm0, 
J0 2 ox dx ox dx 

</2 9/ 3 / du û ^ dv . û —z -^- + -r*- = -r- cos 0 + - j - sin 0, 
J0 2 3z 3z 3z 3z 

<*2 3 2 / , 92 / , 7 „/nx 9/ 9/ , 9/ 92w , ^ 92M . . 
+ ÏÏ7ÏÏT + * "(0) a t 757 + AT = ÏÏ3T cos0 + ^ - sin0. j # 2 9x9>> 9x9z v ' 9x 9z 3x 9x9z 3x3z 

Now the image of the operator d2/d02 + 1 contains no terms cos 0 or sin 0, so 
we see that du/dx — 9t>/9x = 9w/9z = 9t»/9z = 0 a t x = j > = z = 0. Since 
f(0) has for its Fourier series the coefficients x for cos0 and y for sin0, it 
follows that 9//9x has coefficients 1 for cos 0 and 0 for sin 0, while 9//3z has 
coefficients 0 for both. Therefore at x = y = z = 0, 

9//3x = cos 0 and 3//3z = 0. 

Then examining the last equation, we see that the only way to get a term 
3//3x = cos 0 on the left is to have d2u/dxdy — 1 on the right at x = y — z = 
0. This proves the lemma. 

If we persist in the above manner we can find the (formal) power series 
expansion for f(0) and m in powers of x, y9 and z. Our calculations show that 
if 

k(a) = a + k2o
2 + k3o

3 + • • • 

then up to terms of degree 3 in x, y and z 

f(0) = xcosO + ysm0- k2(x
2 + y2) 

+ 6*2[(*2 ->>2)cos20 + 2xj> sin 20] + • • • , 

m = z - ( | ^ - ^ 3 ) ( x 2 + ^ ) + . . . . 
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At any rate, since m — 0 and dm/dz = 1 at the origin, we can solve the 
equation m = 0 in a neighborhood of the origin to obtain z as a smooth 
function of x and ƒ. More precisely, since m is rotationally invariant we get 
that z is a smooth function of x2 -f j>2. Its series starts like 

z = ( f * 2
2 - ^ 3 ) ( x 2 + j 2 ) + ---

up to terms of order (x2 + >>2)2. Then the set of solutions to the equation (*), 
which is the set of solutions to (**) with u = v = 0, corresponds in our 
parameter space (x, y, z) to the line x=y = 0 (consisting of the stable 
solutions) and a smooth surface z = <j>(x2 + y2) invariant under rotations 
(corresponding to the oscillations). 

Finally, recall that the total energy 

E=±m(l+e*)(^)2 + mgh(s) 

is a constant of the motion. For our solutions E will be a smooth function of 
the parameters x and y. Since a change of phase 6 -+ 6 + a rotates x and y but 
does not change the energy, we see that E is a smooth function of x2 + y2. 
Indeed in our expansion 

s = [xcosvt + y sin vt]/c + • • • 

and hence 

E = (mg/2c)(x2 + y2) + • • • . 

By the inverse function theorem we can solve for x2 -f y2 as a smooth function 
of the energy £. Now z is a smooth function of x2 + j>2, Ü is a smooth function 
of z near z = 0, and T = 2TT/V. Hence the period r i s a smooth function of the 
energy E for E > 0. By an easy manipulation of series 

1 + À — E + 0 ( E 2 ) \ 
mg 'J 

where X = \k\ — \k3 is a dimensionless constant depending only on the 
geometry of the trough. When the trough is a circle we have 

k(a) = sin a = a — a3/6 + • • • 

from which we see &2 = 0 and A:3 = -1 /6 . This gives X = + 1 / 8 . Since X > 0 
the period increases as the energy increases. The same formula applies to a 
pendulum taking e = 0. 

5.5. Counterexamples in Frèchet spaces. In this section we present some 
counterexamples to the inverse function theorem in Fréchet spaces. They show 
that any straightforward generalization will fail, and serve to justify the extra 
definitions and hypotheses which are necessary for the Nash-Moser inverse 
function theorem. We being with some counterexamples where the derivative is 
the identity at the origin but is not invertible at points arbitrarily close by. 

5.5.1. COUNTEREXAMPLE. Let 6°°[-l , l] be the Fréchet space of smooth 
functions on -1 < x < 1 and let P be the differential operator 

P: e°°[-i, i] - e°°[-i, i], pf=/- xfdf/dx. 

T=2IT 
1 + e 2 
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Then P is smooth, and the derivative of P is given by 

DP(f)g = g-Xgfx-Xfdfx. 

At ƒ = 0 we have DP(Q)g — g, so that DP(0) = I is the identity map. Surely 
nothing could be more invertible than the identity. Since P(0) = 0, if the 
inverse function theorem were true then the image of P should fill out a 
neighborhood of 0. But it doesn't. Let gn — \/n + xn/n\. It is easy to see that 
gn -> 0 in G°°[-l, 1]; for the derivative of xn/n\ is the same sequence again. We 
shall show that gn does not He in the image of P for any n > 1. Thus the image 
of P does not contain any neighborhood of zero. 

More generally, if bn ̂  0 then \/n + bnx
n does not belong to the image of 

P. This can be seen by examining power series. Every smooth function on 
[-1,1] has a formal power series expansion at 0 (which of course does not 
converge unless the function is analytic). By an elementary computation if 

ƒ = a0 + axx + a2x
2 + a3x

3 + • • • 

then 

Pf- a0+(l- a0)alx + (a2 - a\ - 2a0a2)x
2 

+ (a3 — 3axa2 — 3a0a3)x
3 + • • • . 

Suppose Pf — \/n + bnx
n. First we have a0 — \/n. If n > 1 then a0 ¥= 1 and 

(1 — a0)ax = 0, so ax = 0. The next term is then (1 — 2a0)a2x
2. If n = 2 then 

a0 = j and this term is zero, which contradicts Pf = \ + b2x
2 when b2 ¥=, 0. If 

n > 2 then a0 ¥= \ so we conclude a2 — 0 and proceed to the next term, which 
is then (1 — 3a0)a3x

3. In general, we conclude that ax — a2 — • • • = ak_x — 0 
and arrive at a term (1 — kaQ)akx

k. If k < n then a0 =£ \/k\ we conclude that 
ak — 0 and proceed to the next term. When k — n then since a0= \/n this 
term must be zero. Thus it cannot equal bnx

n for bn ^ 0. This gives a 
contradiction. Hence \/n + bnx

n cannot be P( ƒ ) for any smooth function ƒ if 
bn =7^0and«> 1. 

It isn't hard to see what is going wrong if we evaluate the derivative at 
ƒ = \/n applied to h = xk: 

DP(\/n)xk = (1 - k/n)xk. 

Thus DP(\/n) kills off the term xn in the power series. Even though DP(0) = / 
is the identity, the linear maps DP(\/n) which are arbitrarily close by are not 
invertible. 

Note that this counterexample does not extend to Banach spaces. If we try 
to write 

P: Cl[-\,\] -* C° [ - l , l ] ? 

then the derivative DP(0) is the "identity" only as an inclusion of a dense 
subspace, which is not invertible. Likewise 

P:Cl[-\9\] -^C 1 ! - ! , ! ]? 
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does not work because P has to take a derivative, which lands us in C°[-l , 1] 
instead. 

5.5.2. COUNTEREXAMPLE. The next example is of considerable geometric 
interest. If A" is a compact manifold then the group of smooth diffeomorphisms 
tf)(X) has the structure of a Fréchet manifold and is a Frechet Lie group (see 
Example 4.4.6). Its Lie algebra, the tangent space at the identity map 1, is the 
space G°°(X9 TX) of smooth vector fields on X. The bracket operation of the 
Lie algebra is the usual Lie bracket of vector fields. Each vector field ü o n l 
gives rise to a one-parameter group etv of diffeomorphisms called the flow of t>, 
obtained as the solution ƒ = etv(x) of the differential equation 

dy/dt = v(y) 

with initial conditions y = x at t = 0. This equation may be rewritten as 

detv/dt = voe
tv 

which justifies the exponential notation. Note that etv is the one-parameter 
subgroup of the Lie group of diffeomorphisms with tangent vector v at the 
identity. 

Evaluating the flow at / = 1 we obtain the diffeomorphism ev called the 
exponential of the vector field v. The exponential defines a smooth map 

ev:eco{X,TX)-*6Ù(X) 

of the Lie algebra to the Lie group. The exponential of the vector field 0 is the 
identity map 1 = e°. The derivative of the exponential map at the vector field 
0 is the identification of the vector fields with the tangent space of the 
diffeomorphisms at the identity map 1. Given a smooth map of a vector space 
to a manifold whose derivative at a point is the identity map of the vector 
space to the tangent space of the manifold, we would ordinarily expect to 
conclude from the inverse function theorem that the map was locally invert-
ible, and hence filled out a neighborhood of the point on the manifold. Thus in 
our case, we would expect that every diffeomorphism close to the identity was 
the exponential of some vector field, so that a small diffeomorphism would 
extend to a one-parameter flow. This is false. The result fails already for the 
circle, where the following rather surprising result holds instead. 

THEOREM. If a diffeomorphism of the circle without fixed points is the 
exponential of a vector field, then it must be conjugate to a rotation. 

PROOF. If a vector field has a zero its exponential has a fixed point. 
Therefore a diffeomorphism without fixed points can only be the exponential 
of a nonzero vector field. Call the vector field v. Parametrize the circle by a 
parameter t, say the angle defined modulo 2ir, and write v — v(t)d/dt. Since 
t)(0 7e 0, we may define a new parameter 

0 = c f —TT where c—\/\ 7r—-r-. 
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Then 0 is also a parametrization of the circle modulo 2TT, and v — v(t)d/dt — 
cd/dO. Thus v is a constant vector field in the parametrization 0. Its exponen­
tial is the map 

ev:0^0 + c 

which is a rotation in the parametrization by 0. The change from the parameter 
/ to the parameter 0 is accomplished by some diffeomorphism. Therefore ev is 
conjugate by this diffeomorphism to a rotation. This proves the theorem. 

Any power of a rotation is also a rotation. If a rotation fixes one point it 
must be the identity. Thus if a power of a rotation fixes one point it must fix 
them all. The same must be true of any diffeomorphism conjugate to a 
rotation. Thus one way to find a diffeomorphism ƒ not conjugate to a rotation 
is to make ƒ k(x) — x for some point x but ƒ *(y) i^y for some other point y. 
The rotation t -* t + 2ir/k by an angle lir/k has fk(t) = t (mod27r) for all /. 
If we modify it by an extra little push just in the interval 0 < x < 2ir/k, so 
that /(O) = 2ir/k but f(ir/k) > 3ir/k9 then ƒ*(()) = 0 but fk(ir/k) s* m/k 
(mod27r). Then this diffeomorphism cannot be the exponential of a vector 
field. By making k large and the push small, we can make ƒ as close to the 
identity as we like in the Q°° topology. Therefore the exponential map fails to 
be locally invertible at the origin, even though its derivative is the identity. 

It is not hard to see what goes wrong in this example. Although the 
derivative of the exponential map is the identity at the origin, it fails to be 
invertible at nearby points. To see this, we shall compute the derivative 
explicitly by making an infinitesimal change w in the vector field v. Then the 
flow>>, obtained by solving the differential equation 

dy/dt — v(y), 
y = x at t - 0 

will experience an infinitesimal change z, which will be the solution of the 
linear differential equation 

dz/dt = Dv(y)z + w(y), 
z = 0 at t = 0. 

Just as the exponential map ev is obtained by evaluating the flow y — etv at 
/ = 1, so the infinitesimal change Devw in the exponential map is obtained by 
evaluating the infinitesimal change in the flow z at / = 1. 

We compute a special case. If v(x) =£ 0 at a point JC, then v(y) ¥* 0 all along 
the flow y = etv(x), 0 < / < 1, which is a compact set. We can therefore 
choose a coordinate chart in a neighborhood of this set in which the vector 
field v is a constant. In this case the exponential map is given by ev(x) = x + v9 

since the flow is y = etv(x) = x + tv. Since v is constant, Dv = 0, and z is the 
solution of 

dz/dt = w(x + tv), 
z = 0 at t = 0 

which is 

z = f w(x + rv) dr. 
•/T = 0 
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Then evaluating at / = 1 we get 

Devw(x) - f w(x + TV) dr 

which says that Devw, the derivative of the exponential map at v in the 
direction w9 is the average of w over the flow of v. 

Consider the case of a circle. If v = 2m/k is a small constant vector field, its 
exponential ev is a rotation through a small angle 2m/k. The averaging 
operator 

annihilates the functions w(t) = sin kt or cos /tf. More generally each term in 
the Fourier series expansion of w is multiplied by some constant, and for these 
terms that constant is zero. Thus the derivative of the exponential map at a 
small rotation through an angle 2m/k is never invertible. Note that the 
derivative in this counterexample looks like Counterexample 5.3.3. 

The preceding examples make it clear that the derivative of an operator P in 
Fréchet spaces may be invertible at one point but not at other points 
arbitrarily nearby. If however P is to be locally invertible in a neighborhood 
then its derivative must be invertible everywhere in that neighborhood. In 
Banach spaces this would have followed automatically. Therefore it seems 
reasonable in Fréchet spaces to add this as an extra assumption. Suppose then 
that P(f) = g defines a smooth map between open sets in Fréchet spaces 

P: UCF-+ VQG 
and that for each ƒ G U the derivative DP(f) is an invertible Unear map of F 
to G. (Note U may be made smaller if necessary.) We write its inverse 
DP(f)~x as VP(f)\ this notation avoids confusion between D(P~l) and 
(DP)~\ Then VP( ƒ )k = h is the unique solution of the equation DP( f)h = k. 
We regard VP as a function of two variables, that is as a map on the product 
space 

VP:UXGCFXG-^F 

the same as we did for DP. Thus we avoid the space of linear maps L(F, G), 
which is not a Fréchet space. Of course VP(f)k is Unear in k for each/. It is 
reasonable to ask that VP should be continuous and even smooth. We may 
then ask if, with all these assumptions, P will be locally invertible? The answer 
is no, as the following example shows. 

5.5.3. COUNTEREXAMPLE. Let H be the Fréchet space of functions holomor-
phic in the entire complex plane, with the topology of uniform convergence on 
compact sets. Define a map 

P:H^H9 P(f) = ef. 

Then P is smooth and its derivative is given by 

DP:HXH->H, k = DP{f)h = efh. 

The derivative is clearly invertible for all/, and the family of inverses 

VP.HXH^H, h= VP(f)k = e~fk 
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is also smooth. Therefore it is rather surprising that the map P is not locally 
invertible. Indeed the image of P does not even contain an open set. We can 
even prove the following precise result on the image of P. 

THEOREM. Let S be the subset of all functions in H which are never zero. Then 
S is relatively closed in H — {0} and contains no open set. The fundamental 
group 77,(5) is the integers Z. The map P. H -> H has image 5, and is a local 
homeomorphism onto S. Moreover P is a covering map and identifies H as the 
universal cover of S. 

PROOF. If f(z) is an entire holomorphic function which has a zero but is not 
identically zero, then the zeroes of ƒ are isolated and of finite multiplicity. If y 
is a curve on which/(z) is never zero, the number of zeroes of f(z) inside y 
counting multiplicities is given by 

{\/2m)f{f'{z)/f{z))dz 

by Rouché's theorem. The integral is a continuous function in a neighborhood 
of ƒ G if, and since it is integer-valued it is locally constant. Therefore any 
function close to ƒ in H still has a zero. This shows that H — {0} — S is open, 
so S is relatively closed in H — {0}. 

Every nonconstant polynomial has a zero by the fundamental theorem of 
algebra. The polynomials are dense in if, as we see by expanding in a power 
series, and so the nonconstant polynomials are also dense. Thus S contains no 
open set. 

Since P( ƒ ) = ef is never zero, the image of P Hes in S. If g G S, we can 
choose a branch of the logarithm at g(0) and define log g(z) in a neighborhood 
of 0. We can extend log g by analytic continuation to the entire plane since the 
plane is simply connected. Then ƒ = log g solves ef = g. This shows the image 
of P is all of S. 

Suppose gj -+ g in H. Then gj -> g uniformly on every closed disc. It follows 
that log g j -» log g uniformly on a disc around 0, and also on each subsequent 
disc in the analytic continuation. Hence the fj = P~\gf) = log gy converge to 
ƒ = p~ !(g) = log g uniformly on each compact set, so jij- -> ƒ in H. This shows 
P is a local homeomorphism onto S. Moreover if g, is a continuous path in S 
for 0 < t < 1, then gt is also continuous when restricted to any closed disc. If 
P( f0) = g0, we can then choose the ft — log gt to vary continuously on each 
closed disc by analytic continuation for 0 < / < 1. Thus g, lifts to a continuous 
path/, G H with P(ft) = gr Hence P: H -> S is a covering map. 

Since H is simply connected, H is the universal cover of S. For any g E S 
the choice of P~l(g) = log g is unique up to a constant lirni for integer 
n e Z. This shows that the fundamental group irx(S) - Z. Let C* = C - {0} 
be the nonzero complex numbers. Then C* C S. There is a projection S -> C* 
given by ƒ -> /(O). We can define a homotopy 

<>:SX [0,1] -*S 
where 

<t>f(t,z)=f(tz). 
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Then <j>/(0, z) = /(O) and <J>/(1, z) = f(z). Thus C* is a deformation retract of 
S. This also shows TTX(S) = ir^C*) = Z. 

5.5.4. COUNTEREXAMPLE. Let is* be the Banach space of continuous func­
tions/(x) on the real line which vanish for x < 1 and have 

ll/llw = supe"*|/(jc) |<oo 

and let E°° be the Fréchet space of functions in En for all n. For a product we 
have the estimate 

ll&ll,+,«:||/Ugll,. 
Define a linear map Lf — g by letting g(x) — f(x/2). Then we have the 
estimate 

\\Lf\\n^\\f\\2n 

so L defines a continuous linear map of E2n into En or of E°° into E°°. Define 
a bilinear map B{ ƒ, h} = kby letting k(x) — f(x/2)h(x/2). Then we have the 
estimate 

\\B{f9h}\\H<\\f\\Jh\\H 

so B defines a continuous bilinear map of En X En ^ En for 0 ^ n ^ oo. 
Define a nonlinear map P( ƒ ) — g by letting 

g(x)=f(x)-f(x/2)2 

so that P(ƒ) = ƒ - £{ƒ, ƒ}. Then P is a smooth map of En to itself for 
0 < « < oo. Its derivative DP(f)h = kis given by 

fc(jc) = A(JC) - 2f(x/2)h(x/2) 

so DP(f)h = h - 2B{f9 h). Note that DP(0)h = h is the identity map. There­
fore f or n < oo the map P is invertible as a map of a neighborhood of 0 to a 
neighborhood of 0 by the inverse function theorem. 

We can be more precise. We can solve the equation P(f) = g recursively for 
ƒ using the formula 

ƒ(*) = g(x) + f (x/2)2 

since the functions all vanish for x < 1. Indeed/(x) = g(x) for x < 2. Let us 
introduce the norms 

II ƒ II „,, = sup e"* | / ( x ) | . 

We prove the following result. 

THEOREM. If g G En and II g II „ < i then the solution ƒ e En and II ƒ II n < \. 

PROOF. We have HgH^ < ± for all /. Then || ƒ ||w2 < \. Suppose II ƒ lln>,/2 

< ^for some /. Since 

f(x)=g(x)+f(x/2)2 
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we have 

H/Hi. .r<l l* l l^+l l / l l2 . i /2<i 
also.Thus II ƒ I I n < \ . 

Observe however that the neighborhoods Il g II „ < i on which P is invertible 
are shrinking as n -> oo. Therefore it is not so surprising that P is not invertible 
on E°° at all. To see this let 

[0 i f x < l , 
fm(x) = \(x-l)e-2m i f l < * < 2 , 

[e~mx i f 2 < x < o o . 

Then fm is continuous and fm G Em but fm g Em+l. Let gw = P( fm). Then 
gm(x) = 0 for x ^ 4 so gm G is00 for all m. Now we can compute 

l l /JL = e2(""m) 

for m> n, so/m -> 0 as m -> oo in 2sw. Since P is continuous as a map of En to 
itself, gw - 0 in En for all n, so gm - 0 in E°°. But P" \gm) = fm & E°° so P is 
not invertible on any neighborhood of zero. 

Now by contrast the derivative of P is always invertible on a neighborhood 
of zero. Let U= { /G£°°: l l / l l 0 < i } . 

THEOREM. Iff G U then for each k G E°° there exists a unique h G E°° with 
DP(f)h = k. Letting h = VP(f)k, the solution map VP: (U C £°°) X E°° -> 
E00 is smooth. Moreover we have the estimate 

\\h\\n<\\k\\H + 4\\f\\2H\\k\\0. 

PROOF. We begin with the estimate. We can always solve for h recursively 
from the formula 

h(x) = k(x) + 2f(x/2)h(x/2) 

which gives the estimate 

IIA||„<||A||„ + 2||/||2J|A||0. 

When n = 0 and II ƒ ll0 < i we get ||A||0 < 2||fc||0. Substituting this for the 
last term gives the desired estimate. To prove that the solution exists, we can 
repeat the previous argument on 1 ^ x ^ t to get 

l l * l l n . / < l l * H | , , / + 4H / I I 2B>r||*||0fr 

and let t -^ oo. To prove VP is continuous, choose sequences jÇ G £/ and 
kj G E00 with fj-*feU and kj -* k in E°°, and let hj = VP(fj)kj and 
h = VP(f)k. Since 

hj(x) = kj(x) + 2fj(x/2)hj(x/2), h(x) = k(x) + 2f(x/2)h(x/2) 

we see by subtracting that 

II Ay " Alio < Wkj ~ Alio + i l l *y ~ Alio + 2|| j£ - ƒ «„«Allo 

so II Ay — A ||0 -» 0 as y -» oo. Now 

hj = kJ + 2B{fphJ) 
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and iîfj -*fmE°° and Ay -* h in E° then B{fJ9 hj) -> B{f, h) in E°°. Thus fy 
converges in E°° to an element /i with 

soh = h. If FP is continuous then it is smooth by Theorem 5.3.1. 
5.6. Differential equations in Fréchet spaces. Let U be an open subset of a 

Fréchet space F and 

P: UCF-+F 
a smooth map. We can try to solve the ordinary differential equation 

d//dt = p(f) 

for a smooth path ƒ(/) on a < t < b with values in F9 with given initial 
conditionna) E F. For a Banach space the solution will always exist and be 
unique. For a Fréchet space it may neither exist nor be unique, as the following 
counterexamples show. 

5.6.1. COUNTEREXAMPLES. Let C°°[0,1] be the Fréchet space of smooth 
functions/(JC) on 0 < x < 1 and consider the linear differential equation 

df/dt = df/dx. 

A path f(t) G 0°°[O,1] for 0 < / < 1 is a function /(JC, 0 on the square 
0 < J C < 1 , 0 < / < 1 . The above equation has solutions/(x, t) — f(x + /). 

Given any smooth function in <2°°[0,1] at t = 0, we can extend it to 
0 < x < 2. Then the above formula gives a solution for 0 < t < 1. Since the 
extension is not unique; neither is the solution. 

By way of contrast, if we consider the same equation on the space Sc°°[0,1] 
of smooth functions of x which vanish outside the interval 0 < x < 1, we see 
that the solution exists for 0 < / < e if and only if f(x) = 0 for 0 < x < e. In 
this case the solution is unique. 

Of course, on the space GJ°[0,1] of smooth functions on x > 0 which vanish 
on x > 1, the solution exists for all time and is unique. And on the space 
SJ°[0,1] of smooth functions on x < 1 which vanish for x < 0, the solution 
does not exist on 0 < / < e unless f(x) = 0 for x < e, and even in that case it is 
not unique. 

There is an interesting class of differential equations on Fréchet spaces 
which we can solve. 

5.6.2. DEFINITION. Let P: UÇF-^VcGbea smooth map between 
Fréchet spaces F and G. We say P is a smooth Banach map if we can factor 
P = Qo R where R: U Ç F-* W Ç B and Q: W Ç B -> V c G are smooth 
maps and B is a Banach space. 

5.6.3. THEOREM. Let P: U Ç F -> F be a smooth Banach map of a Fréchet 
space F into itself. For every f^E Uwe can find a neighborhood U off0 in F and 
an e > 0 such that f or all f E Ü the differential equation 

dr/* = p(n 
has a unique solution with /(O) = ƒ on 0 < t < e depending smoothly on t and f. 



130 R. S. HAMILTON 

PROOF. We can factor P = g o R where R has range and Q has domain in a 
Banach space B, and Q and # are smooth. Without loss of generality we may 
assume f0 = 0 and R(0) — 0. In the following discussion C will denote various 
constants independent of the parameters e, S, TJ, and 0. 

By Theorem 5.1.3, we can find a seminorm || ||F on F, an TJ > 0 and a 
constant C such that if || f || F, || f2 \\ F < TJ then 

\\R(fy)-R(f2)\\B^C\\fl-f2\\F 

for the norm || || B on the Banach space B. Since 2? has only one norm up to 
equivalence, we can find a 6>0 and a constant C such that if llgillB, 
||g2||B*£0then 

WQ(gi)-Q(g2)\\F^C\\gl-g2\\B. 

As special cases, since R(0) = 0 and || ö(0)ll F ̂  C anc* w e c a n ta^e * ^ 1, we 
get 

l l * ( / ) l l , < C | | / | | F i f | | / l l F < i j , 

l l f i (g)l lF<C if l lg l l***. 

These are the estimates we shall use. 
Let Ü = {ƒ E F: Il ƒ II F ^ «}, and let C([0, e], B) be the space of continuous 

paths g(t) E B on 0 < f < e, where e > 0 and 8 > 0 will be chosen small. We 
set up the map Af( ƒ, g(t)) = k(t) by letting 

*(/) = *(ƒ+ j£fi(*(*)),w). 

We claim the following. 

5.6.4. LEMMA. Let e and 8 be small compared to TJ, and TJ small compared to 0. 
Let Vbe the set of paths g(t) in C([0, e], B) with \\ g(t)\\ B^0. Then M defines a 
continuous map 

M: (ÜCF)X(VC C([0, e]9 B)) -+ V Ç C([0, e], B) 

which is a contraction in g for each ƒ. 

PROOF. By our estimates if g(t) E V 

sup II ƒ + f'Q(g(0)) d0\\B< Ô + Ce < T, 

if ô and e are small compared to TJ, and 

sup||A;(Ollfl<CTj<0 

if TJ is small compared to 0. Hence k(t) E V. If M( ƒ, g^O) = &i(0 and 
M(/ ,g 2 (0) = *2(0then 

8 u p | | * 1 ( 0 - f c 2 ( 0 l l B < C 6 8up| | f i (g 1 (0) -e (g2(0) l lF 

< C G s u p | | g 1 ( r ) - g 2 ( 0 l l B 

so M is a contraction of Ce < 1. 
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It follows from the contraction mapping theorem that for each ƒ G Ü there 
exists a unique g(t) G V with M( / , g(t)) = g(0- Moreover the solution g(f) 
depends continuously on/. We let 

f(t)=f + f'Q(g(9))dO. 

Then g(/) = R( f(t)). Since P = Q o JR, 

which implies that, for 0 < t < e, 

4T/A = P ( / ) 
and/ = / a t / = 0. 

We write ƒ(/) = 5( ƒ ) for the solution. We know that g(t) G C([0, e], £ ) 
depended continuously on/. Now the space of continuous maps of [0, e] into F 
is a Fréchet space C([0, c], F) with norms 

H/Hw = sup||/(0IU for || IIrt on F. 

We see that the solution map 

S: Û C F-+C([0, e], F) 

is continuous. Moreover from the equation we see that the solution f(t) is 
smooth in f, and S defines a continuous map 

S: UCF^C°°([0,e]9F) 

into the Fréchet space of smooth paths on 0 < / ^ e with values in F9 which 
has seminorms 

II ƒ H^ = sup ||Dkf(t)\\n for || ||„ on F. 
t 

To see that f(t) depends smoothly on ƒ we have recourse to the following 
strategem. In Lemma 3.3.1 we saw that we can find a smooth map L(/0, fY)h 
linear in h with 

' ( / i ) - - P ( / o ) = i ( / o . / i ) ( / i - / o ) -

Since L is obtained by averaging DP and P factors through a Banach space, so 
does L. Therefore we can solve the system 

df0/dt = p(f0), 

df,/dt = p(f}), 

dh/dt = L(f0,f,)h 

with f0 = f0, fl=fx,jmdh = hatt = 0. Let us write ƒ„ = S(f0), ƒ, = S( ƒ,), 
and h = M(f0, fx)h. These all exist if f0 and ƒ, are near a given point and A is 

near zero. Since the solution h is homogeneous of degree 1 in h, it will exist for 
all h G F and be linear in h. Moreover S and M are continuous in^, ƒ,, and h. 
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Subtracting the first two equations we see that 

d(A-f0)/dt = L(f0,fl)(fl-f0) 

so that 

S(/,) - S ( / 0 ) = M(/ 0 , ƒ,)(ƒ, - / 0 ) . 

Then by the reverse side of Lemma 3.3.1 we see that the map S( ƒ ) is C1 in ƒ. 
In addition 

DS(f)h = M(fJ)h = h 

is the solution of the equation 

dh/dt = DP(f)h 

with h = h~2itt = 0. 
In terms of the tangent functor 

TP(f,h) = (P(f),DP(f)h) 
we see that if ƒ = S( f ) is the solution of 

df/dt = P(f) 
with ƒ = ƒ at / = 0, then ( ƒ, h) = TS( ƒ, /*) is the solution of 

rf(/,A)/#=ZP(/,A) 

with (f,h) = (f9h)sitt = 0. Now if each solution S is Cr, then TS is also Cr 

so 5 is Cr+\ It follows that S is C00 in / . 

5.6.5. COROLLARY. Let P( ƒ, g) 6e a smooth Banach map and solve the 
differential equation 

df/dt = p(f,g) 

with ƒ = 0 at t = 0. 77ze« the solution ƒ = S(g) is a smooth function of g. 

PROOF. We adjoin a new variable h in the same Fréchet space as g, and solve 
the equation for the pair ( ƒ, h) 

df/dt = P(f,h), dh/dt = 0 

with ƒ = 0 and h = g at t = 0. Then we apply our previous result. The same 
trick works for time-dependent equations 

df/dt = p(f,g,t) 

where we adjoin a new variable x and solve 

df/dt = P(f9g9x), dx/dt=\ 

with x — 0 at f = 0. This proves the following. 

5.6.6. COROLLARY. If P( ƒ, g, /) w a smooth Banach map, the differential 
equation 

df/dt = P(f9g9t) 

has a unique solution with )' = f'at t — a, and on a neighborhood of a given f0 and 
g0 it exists for a fixed time e > 0 and depends smoothly on ƒ and g. 
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PART II. THE NASH-MOSER CATEGORY 

II. 1. Tame Fréchet spaces. 
1.1. Graded Fréchet spaces. The Nash-Moser inverse function theorem works 

in the category of tame Fréchet spaces and smooth tame maps, which we shall 
define in this part. Unfortunately the definitions involve a structure which is 
more refined than the topology of the Fréchet space. Our counterexamples in 
1.5.5 show that this extra structure is actually necessary, and that the current 
results are in some sense the best possible. 

The topology of a Fréchet space is defined by a countable collection of 
seminorms {II ||w} with the condition that a sequence j£ -» ƒ if and only if 
II fjr — ƒ II „ -> 0 for all n as jr -» oo. We say that the seminorms define the 
topology. Given a collection of seminorms, the topology is uniquely defined. 
But clearly there may be many collections of seminorms which would define 
the same topology. We wish to distinguish one collection. 

1.1.1. DEFINITION. A grading on a Fréchet space is a collection of seminorms 
{|| Il n: n G / } indexed by the integers J = {0,1,2,...} which are increasing in 
strength, so that 

l l / l lo<ll/ l l l<H/ll2< •*• 

and which define the topology. A graded Fréchet space is one with a choice of 
grading. 

We can of course insure that a collection increases in strength by adding to 
each seminorm all the lower ones. 

1.1.2. EXAMPLES. (1) Let B be a Banach space with norm || \\B. Then B is a 
graded space with II ƒ II „ = II ƒ II B for all n. 

(2) Let 2(2?) denote the space of all sequences {fk} of elements in a Banach 
space B such that 

H{ ƒ * } » . = l « " * H / J I B < o o 
k = 0 

for all n > 0. Then 2 (5 ) is a graded space with the norms above. 
(3) Let A" be a measure space with measure fi, let w > 0 be a positive weight 

function, and let Lf(X9 /*, w) be the space of all measurable functions ƒ such 
that 

11/11* = / > w | / l * < « > Jx 

for all n > 0. Then L<f( X, JU, w) is a graded space with the norms above. 
(4) Let X be a compact manifold. Then 6°°( X) is a graded space with 

ii ƒ ii „= il ƒ i W ) 

where Cn(X) is the Banach space of functions with continuous partial deriva­
tives of degree < n. If V is a vector bundle over X then the space G°°(X, V) of 
smooth sections of V is also a graded space. 
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(5) Let ?P be the space of entire holomorphic functions which are periodic 
with period 277/ and bounded in each left half-plane. Then 9 is a graded space 
with norms 

II ƒ ||B = sup{|/(z) I : Rez = «} . 

A closed subspace of a graded space is again a graded space with the 
induced norms. A cartesian product F X G of two graded spaces F and G is a 
graded space with norms 

\\(f,g)\\n=Wf\\n+\\g\\n-

1.1.3. DEFINITION. We say that two gradings (|| ||M} and (|| ||'n} are tamely 
equivalent of degree r and base b if 

\\f\\n<CWf\\'n + r ^ d II ƒ ||'„ < C || ƒ || „ + r 

for all n > b (with a constant C which may depend on n). All of the definitions 
and theorems in this paper will remain valid when a grading is replaced by a 
tamely equivalent one (except for a few remarks on precise norm estimates). 

1.1.4. EXAMPLES. (1) If B is a Banach space, then the space 2(B) of 
exponentially decreasing sequences in B has the following equivalent gradings: 

(a)ll{/*}lll, = ll{A}llfl.w = 2*e"*IIAIIB, 
(b)H{A}H„= II {A) II,7W = (2* e*"* IIAII £}'/«, or 
(c)ll{A}Hn = ll{A}llc(B) = s u p , ^ l l / J l f i . 

If r > 0 and C = 2* e~rk < oo then 

IKAHIcw < H{/*}H,;W < H{A}H/?W < c i i{A}ll ,^ ( B ) . 

(2) The space P̂ of entire holomorphic functions periodic with period 277-/ 
and bounded in each left half-plane has the following equivalent gradings: 

(a) II/II„=II/H,?=2^"+2,VW|^ 

(b) I I / I I . = ii/ii,»= {£ j [ "+ 2 " iAor*} , / f , 
(c) | | / | | „ = | | / | | ^ = s u p { | / ( z ) | : R e z = : « } 

where the integrals are taken over a path with Re z — n. We have estimates for 
\ < q< oo and r > 0 

l l / | l L , < l l / l l i ; < l l / l l i 4 < C | | / | | L . + , . 

The final estimate follows from the Cauchy integral formula 

1 f» + r+2m f($) d$ 

r 
with the integral taken over a path with Re f = n + r; we see that C = \/r < oo 
when r > 0. 
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(3) If A" is a compact manifold, then the following gradings on Q°°(X) are 
equivalent: 

(a) the supremum norms || ƒ || n = || ƒ || C " W , 
(b) the Holder norms II ƒ II „ = II ƒ II c

n+a(X) for 0 < a < 1, 
(c) the Sobolev norms II ƒ II „ = II ƒ II L« w for 1 < /? < OO, 
(d) the Besov norms || ƒ ||„ = \\ j \ \ B

n+a(X) f° r 0 < a < 1, 1 <p < oo, 
I < # < oo. 

For example, by the Sobolev embedding theorem if r > dim X/p then 

l l / l lc-W<C| | / | |L r ( J 0 . 

(4) If (II || J is a grading and || ƒ ||'„ = \\f\\2n9 then {|| ||'„} is also a grading 
but is not tamely equivalent to the first. 

(5) Let Lf(Rd) denote the Fréchet space of smooth functions on Rn all of 
whose derivatives lie in L2. Let a = ( a 1 , . . . , a^ )bea positive multi-index and 
define weighted Sobolev norms 

ll ƒ US = [£,0 + f.2a' + • • • +&") 1/(012^} • 

Then Lf(Rd) is a graded space for any of the gradings {|| || "}, but they are not 
tamely equivalent for distinct a. Weighted gradings are very useful for para­
bolic PDE's, where two space derivatives count for one time derivative. 

1.2. Tame linear maps. 
1.2.1. DEFINITION. We say that a linear map L: F -> G of one graded space 

into another satisfies a tame estimate of degree r and base b if 

WLf\\n^C\\f\\n+r 

for each n^b (with a constant C which may depend on n). We say L is tame if 
it satisfies a tame estimate for some r and b. A tame linear map is automati­
cally continuous in the Fréchet space topologies. 

1.2.2. EXAMPLES. (1) Define L: 2 (£ ) -> 2 (£ ) by (L/) k = e'*/*. Then || Lf || „ 
< II f\\n+r so Lis tame. 

(2) Define L: Lf(X9 /*, w) -> £ ? ( * , jn, w) by Lf=wrf. Then | |L / | | „< 
II ƒ11 w+r so Lis tame. 

(3) Let L: eoo(Ar) -> 600(Ar) be any linear partial differential operator of 
degree r. Then || Lf \\ n < C \\ f \\ n+r so L is tame. 

(4) Let 9 be the space of entire holomorphic functions periodic with period 
2mi and bounded in each left half-plane, with 

| | / | | „ = s u p { | / ( z ) | : R e z = n} . 

Define L: 9 -» 9 by Lf(z) = f(2z). Then || Lf\\H< II ƒ II 2„, so L is not tame. 
(5) Let Qx[a, b] denote the space of smooth functions on the interval [a, b] 

with the grading 

11/11, = sup sup \Dkf{x)\. 

Define a linear map L: e°°[0,1] -> e°°[-l, 1] by Lf(x) = f(x2). Then L is tame 
and IIL/1|„ < Cll ƒ II„. The image of L is the closed subspace S^°[-l, 1] of 
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symmetric functions with f(-x) = f(x)9 because the (formal) Taylor series of a 
symmetric function contains only even powers of x. Since L is one-to-one, the 
inverse map L~l: CJ°[-1, 1] -» G°°[0,1] exists and is continuous by the open 
mapping theorem. However L~l is not tame. For the 2nth coefficient of the 
Taylor series for Lf — g becomes the nth coefficient for the Taylor series of 
ƒ = L~ lg, so the best estimate possible is 

\\L-{g\\H<C\\g\\2H. 

(6) Define L: 2(B) -> 2(B) by (Lf)k =f2k. Then \\Lf \\n < || ƒ \\2n so L is 
not tame. 

If L satisfies a tame estimate of degree r and base £, then it also satisfies one 
of degree f and base bîor r> r and b > b. If L is tame with respect to one pair 
of gradings on F and G then it is also tame with respect to any pair of tamely 
equivalent gradings. 

1.2.3. DEFINITION. We say L is a tame isomorphism if L is a linear 
isomorphism and both L and L - 1 are tame. Note that two gradings on a space 
are tamely equivalent if and only if the identity map is a tame isomorphism 
from the space with one grading to the space with the other. 

A composition of tame linear maps is tame. Indeed if L satisfies a tame 
estimate of degree r and base b, while M satisfies a tame estimate of degree s 
and base b + r9 then LM satisfies a tame estimate of degree r + s and base b; 
for if n > b 

\\LMf\\n^C\\Mf\\n+r<C\\f\\n+r+s. 

1.3. Tame Fréchet spaces. 
1.3.1. DEFINITION. Let F and G be graded spaces. We say that F is a tame 

direct summand of G if we can find tame linear maps L: F -» G and M: G -> F 
such that the composition ML: F -> F is the identity 

1.3.2. DEFINITION. We say a graded space is tame if it is a tame direct 
summand of a space 2 (5 ) of exponentially decreasing sequences in some 
Banach space B. 

1.3.3. LEMMA. A tame direct summand of a tame space is tame. 

PROOF. If F is a tame direct summand of G and G is a tame direct summand 
of H, then F is a tame direct summand of H. 

1.3.4. LEMMA. A cartesian product of two tame spaces is tame. 

PROOF. If F is a tame direct summand of 2(B) and G is a tame direct 
summand of 2(C), then F X G is a tame direct summand of 2(B) X 2(C) = 
2(B X C). 

1.3.5. LEMMA. The space L°f(X, /x, w) is tame. 

PROOF. Recall that this is the space of all measurable functions with 

II ƒ II - = ƒ «""• I ƒ 1 **#* < oo 
Jx 
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for all n. Let Xk — {k^w < k + 1} and let Xk^c t n e characteristic function 
of Xk. Define maps 

L M 

L?(X, p, w) - 2 ( L , ( A, p)) -+L?(X, /i, w) 

by ( 1 / ) , = X, ƒ and M{fk} = lk Xkfk. Since 
H{A}H„ = 2e"k\\ AH L l (^ } 

i t i s easy tove r i fy tha t l lL / I I^CI I / IUand l lMI /^ I I^CIK/^ IU. 
Since ML = 7, Lf(Jf, /*, w) is a tame direct summand of 2(L,( A, ju)). 

1.3.6. THEOREM. If X is a compact manifold then G°°(X) is tame. 

PROOF. The strategy is to write 6°°( X) as a tame direct summand of a space 
Lf ( A, /*, w>) where Ais a Euclidean space i ^ with coordinates £ = (£, , . . . ,(-d)9 

ix = di is Lebesgue measure, and the weight function w = log(l + | £ |) where 
I f |2 — £? + * * * + £j. This will of course be accomplished by the Fourier 
transform. 

To begin, embed X in some Euclidean space Rd, which we can always do if 
d > 2 dim X + 1. Since X is compact it will lie in a large ball Bd. Let 0%(Rd) 
denote the graded space of smooth functions on Rd for which all derivatives 
tend to zero at infinity with the grading 

11/11,,= sup sup |/>«ƒ(*) I 
\a\<n X 

where the sup runs over all partial derivatives D* of degree | a | at most n. Let 
G™(Bd) denote the closed subspace of functions which vanish outside the ball 
Bd, with the induced grading. We can find a continuous linear extension 
operator e: e°°(X) -> Q%(Bd) satisfying || e ƒ1| „ < CII ƒ II „. It suffices to choose 
a tubular neighborhood of A, extend the function to be constant along the 
fibres, and cut off with a smooth bump function. If i denotes the natural 
inclusion and p the restriction map then \\if \\ n < CII ƒ II n and II pf || n < C || ƒ II „ 
and we have three tame linear maps 

e™{x) e-»e™{Bd) ^e%(Rd) ^e°°(x) 
whose composition is the identity. We proceed to factor / with the Fourier 
transform ^and its inverse 

L~( /^ ,^ ,k>g( l+ISI ) ) 

<%(#*) -. > So(Rd) 

Functions in G™(Bd) are of Schwartz class S, so their Fourier transforms 
exists. Since the Fourier transform takes a derivative Da of degree | a | < w into 
multiplication by a polynomial fa of degree | a | < « , we can relate the 
derivative norms to the power norms. The Fourier transform naturally takes 
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functions in Lx into functions in 60 , so the map 3F l is well defined and 
satisfies 

l l ^ ' g l l ^ C H * ! ! . . 

Then Sr_1 is tame. The same is true for 3F; however the estimate is not so 
precise. Since Bd is compact we can convert a sup norm on Bd into an Lx 

norm. But when we apply ^we get a sup norm estimate on the transform. To 
convert this to an L, norm we must consume a power (1 + | f \)r with r > d. 
This gives an estimate \\^f\\n<C\\f\\n+r9 which shows § also is tame. This 
completes the representation of 6°°( X) as a tame direct summand of 

£?(*',#, M I + m», 
which is itself a tame direct summand of ,2(Ll(R

d, d$)). 

1.3.7. COROLLARY. If X is a compact manifold with boundary then Q°°(X) is 
also tame. 

PROOF. Let X be the double of X. We can write Q°°{X) as a tame direct 
summand of 6°°(^) by choosing an extension map e such that its composition 
with the natural restriction map is the identity 

eoo(x)^eoo(x)^eoo(x). 
We can define e first in local coordinates and then patch together with a 
partition of unity. Let Rn have coordinates (JC, y) with x E R and y E Rn~\ 
and let i?+ be the subspace with x > 0. If f(x, y) is a function on R+ , we 
extend it to the other side by putting 

f(-x,y)=r*(t)f(tx9y)dt 
Jt=o 

where <j>(t) is a function which satisfies the condition 

rW(o*=(-i)" 
•'o 

for n = 0,1,2,. . . , which makes all the derivatives match up along the boundary 
x = 0. An example of such a function is 

* ( ' ) = -7^7T^( ' , /4+r ' /4 ,sin(/1/4 - r ' / 4 ) 
77^1 -T f j 

as the reader may "easily" verify by writing <£(ƒ) as the real part of a 
holomorphic function and using contour integration. 

Since <j>(0 goes to zero very rapidly as t approaches zero or infinity, there is 
no problem with the convergence of the integral, and we have an estimate 
ll«/ IL < C11/11 n for the sup norms II ƒ IL = II ƒ II c- (or the Holder, Sobolev 
and Besov norms too). Since ||pf \\n < CII ƒ ||n also, we have written 6°°(X) as 
a tame direct summand of Q°°(X). The above construction generalizes easily to 
manifolds with interior corners, which are locally diffeomorphic to products of 
lines R and half-lines R+ . Observe that if we extend in two different directions 
by the above operator the extensions commute. 
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1.3.8. COROLLARY. If X is a compact manifold with boundary and Q™(X) is 
the closed subspace of functions in Q°°(X) which vanish on the boundary together 
with all their derivatives, then G™(X) is tame. 

PROOF. Beware that Q™(X) is not even a continuous direct summand of 
e°°(X). However Q"(X) is a tame direct summand of Q°°{X) for the double 
X. Let X' denote the "mirror image" of X in X9 and let e' and p' denote the 
extension and restriction operators defined before for X'. Then p'e' = I so e'p' 
is a projection operator on G°°(X). The complementary projection 1 — e'p' has 
the subspace (2£°( X) as its image, so it is a direct summand. Since e' and p' are 
tame, so is 1 — e'p'. 

1.3.9. COROLLARY. If X is a compact manifold and V is a vector bundle over 
X, then the space Q°°(X9 V) of sections of V over X is tame. 

PROOF. Let / = X X R be the trivial bundle. Then e°°(X91) = e°°(X). If Id 

denotes the d-fold Whitney sum of / with itself, then S°°(X, Id) is the cartesian 
product of d copies of G°°(X, ƒ ), and hence is tame. We can write any vector 
bundle F as a direct summand of some trivial bundle Id. Since 

e°°( x, v® w) = e°°(x9 v) x e°°( x, w) 
it follows that S°°(X, V) is a tame direct summand of C°°(X, Id) and hence is 
tame. 

1.3.10. THEOREM. The space 9 of entire holomorphic functions periodic of 
period liri and bounded in each left half-plane is tame. 

PROOF. We claim that 9 is tamely isomorphic to the space 2(i?) of 
exponentially decreasing sequences of real numbers. Any function ƒ E 9 may 
be expanded in a series 

f(z) = 2cke
k*. 

k 

We define the isomorphism 9 -> 2 ( # ) by identifying the function ƒ in 9 with 
the series {ck} in 2(R). We can recover the constants ck by the integral 
formula 

C t = j_r2v-/ (z)& 
" 2 777 Jn 

for any value of n, since the integral of a periodic function over a period is 
independent of the path. 

9 has two equivalent gradings 

ll/llLT = i f + 2 * V ( * ) l * > II ƒ 11^ = sup{|/(x) I : Re^ = n} 
1 LIT J„ 

and 2(R) has two equivalent gradings 

\\{ck}h = 2e"k\ck\9 ||{c,}H/r = s u p ^ | c , | . 
k k 

We have the obvious estimates 

H ^ I I / i ^ l l / l l L T ^ I I / l l i A ^ I K ^ I I / r 
which shows that 9 is tamely isomorphic to 2(JR). 
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1.3.11. EXAMPLE. Let E[Q, oo) be the space of continuous functions ƒ(x) 
defined on 0 < x < oo which go to zero faster than any exponential in x, with 
grading given by the norms 

| | / | | „ = s u p e " * | / ( x ) | . 
X 

Then E[Q, oo) is tame. To see this, let C[0,2] be the Banach space of 
continuous functions on 0 < x < 2. Define a linear map 

L : £ [ 0 , o o ) ^ 2 ( C [ 0 , 2 ] ) 

by letting Lf — {gk} where gk(x) — f(x + k) for 0 < x < 2. Next choose 
continuous functions <J>̂ (x) with <j>0(x) — 1 for 0 < x < 1 and vanishing for 
x ^ 2, while <t>k(x) vanishes for x <: k or x> k + 2 and 2 ^ . = 1. Define a 
linear map 

M:2(C[0,2]) ^ £ [ 0 , o o ) 

by letting M{gk) = /where 

ƒ(*) = 2 * * ( * ) & ( * - * ) • 
A: = 0 

Then L and M are easily seen to be tame. Thus £[0, oo) is a tame direct 
summand of 2(C[0,2]), and hence is tame. 

Let £0[1, oo) be the closed subspace of functions in E[09 oo) vanishing for 
0 < x < 1. It is easy to write E0[\, oo) as a tame direct summand of E[0, oo), 
so it is also tame. Note that E0[l9 oo) is the space of E°° of Counterexample 
5.3.4. To define the splitting map £[0, oo) -* E0[\9 oo), we restrict the function 
to 0 < x < 1, extend the restriction to 1 < x < 2 by reflection, cut off by a 
continuous bump function equal to 1 on 0 < x < 1 and 0 for x > 2, and 
subtract the result from the original function. 

The linear map Lf(x) = f(x/2) defines an isomorphism of E[0, oo) onto 
itself. Since \\Lf\\n= II ƒ II 2w the m&p L is not tame. 

II.2. Tame maps. 
2.1. Definition of a tame map. 
2.1.1. DEFINITION. Let F and G be graded spaces and P: U Q F -> G a 

nonlinear map of a subset U of F into G. We say that P satisfies a tame 
estimate of degree r and base b if 

I IP( / ) l l l l <C( l + | | / | | , , + , ) 

for all ƒ E U and all n > b (with a constant C which may depend on n). We 
say that P is a tame map if P is defined on an open set and is continuous, and 
satisfies a tame estimate in a neighborhood of each point. (We allow the degree 
r, base b, and constants C to vary from neighborhood to neighborhood.) 

2.1.2. EXAMPLE. Let Zs[0, oo) be the Fréchet space of continuous functions 
f(x) on 0 < x < oo decreasing faster than any exponential, graded by 

ll/llw = s u p e " * | / ( * ) | , 
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introduced in Example 1.3.11. We define a map 

P:£[0,oo) ^£ [0 ,oo ) 

by letting P( ƒ ) = ƒ 2. Then P is tame. To see this we observe that 

H/giU^H/Uigii, 
for all p and q. Hence if II ƒ II0 < C then || P( ƒ )|| n < C || ƒ II n. This shows that 
P satisfies a tame estimate of degree 0 and base 0 on the balls {II ƒ ||0 < C}, 
which are open and fill out the space. 

2.1.3. COUNTEREXAMPLE. Let 9 be the space of entire holomorphic functions 
periodic with period liri and bounded in each left half-plane, with norms 

| | / | |„ = s u P { | / ( z ) | : R e z = «} . 

Define an operator E: 9 -*<$ by Ef=ef. Then E is not tame. For any 
neighborhood of zero contains a set {ƒ: 11 ƒ 11 b < 8} for some b < oo and 8 > 0. 
Let fk(z) = 8ek(z-b\ Then fk G 9 and II fk\\b = 8, while II ƒ*!!„ = «**<""*> and 
II *A IIM = efie*("~*). If E satisfies an estimate || Ef \\ n < C(l + || ƒ II n+r) for any 
« > b on the set { ƒ: II ƒ || 6 < 5}, then we would have an estimate 

e8ekin~h) < C8ek<H+r-» 
for a fixed n,b,8, and C and all A: -̂  oo. This is impossible, so E is not tame. 
The best estimate is the obvious one || ef\\n< e]]f]]\ Notice how differently the 
estimates for ef behave in 9 and C°°[a, b\. (See Example 2.2.4.) 

2.1.4. EXAMPLE. Any continuous map of a graded Fréchet space into a 
Banach space is tame. Any continuous map of a finite dimensional space into a 
graded Fréchet space is tame. 

PROOF. Let P: U C F -* B be a continuous map into a Banach space B. 
Given f0 G U, pick a constant C > HP(/0)II and let Ü= {ƒ: \\P(f)\\ < C}. 
Since P is continuous, 17 is open, and Ü is a neighborhood of/0. For all « we 
have HP( ƒ)!!,, = HP(/)II < C < C(l + || ƒ || J . Thus Pis tame. 

For the other case, let P: U C Rn -» F be continuous. Given /0 E t/, pick a 
compact neighborhood ^ of f0. Then since P is continuous, IIP(/)II„ is 
continuous on K for all n, so we can find a constant Cn with 

WP(f)\\„^Cn^Cn(l + \\f\\„) 

on # . Thus P is tame. 
If a map P satisfies a tame estimate for one pair of gradings on F and G, 

then it also satisfies a tame estimate for any tamely equivalent pair of gradings. 
If P satisfies a tame estimate of degree r and base b, then it also satisfies a 
tame estimate of degree f and base b when f > r and £ > 6. Moreover, our 
definition of tame for general (possibly) nonlinear maps coincides with our 
previous definition when the map is linear. 

2.1.5. THEOREM. A map is a tame linear map if and only if it is linear and 
tame. 

PROOF. Suppose L is linear and tame. Then L satisfies a tame estimate 

| |L / | | n <C( l + | | / | | n + r ) 
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for all n > b and all ƒ in some neighborhood of the origin. Increasing b if 
necessary, we may assume that the neighborhood is of the form { ƒ: || ƒ || b+r < e} 
for some e > 0. For any g ¥* 0 let ƒ = eg/1| g || b. Then II ƒ llft = e so \\Lf\\n< 
C(\ + 11/11 w + r ) . Since L is linear we have 

Lf=eLg/\\g\\b+r 

and if we multiply the estimate for ƒ by || g II b+r/e we get 

WLg\\H<C(\\g\\b+r/e+\\g\\H+,). 

Since || g II b+r < C\\g\\n+rfor n> b and 1/e < C, we have 

\\Lg\\n<C\\g\\n+r 

when « > b. Thus L is a tame linear map. 

2.1.6. THEOREM. A composition of tame maps is tame. 

PROOF. Let F, G and H be graded spaces with open sets U, V and W. Let P 
and Ö be two tame maps 

UCF^VQG^WCH 

such that the composition QP is defined. Given any f0 G U Q Fwe can find a 
neighborhood {ƒ of /0 on which P satisfies a tame estimate of some degree r 
and base b 

l W ) I L < C ( l + ||/| |m+,) form > b. 

Likewise we can find a neighborhood V of g0 = P( /0) on which g satisfies a 
tame estimate of some degree s and base c 

\\Q{g)\\„<C{\ + \\g\\n+s) f o r « > c . 

By increasing b or c if necessary we may assume b — c + r. Since a tame map 
is assumed to be continuous, P~\V) is a neighborhood of/0, so by shrinking 
Ü if necessary we may assume P(Ü) Ç V. Then for all ƒ E Ü and all n >• c we 
have 

\\Q(P(f))\\n < C(l + \\P(f)\\n+s) < C(l + II ƒ ll„+r+J) 

which shows that the composition Q ° P satisfies a tame estimate of degree 
r + s and base c in a neighborhood Üoff0. 

For a function P( ƒ, h) = g of two variables, we may wish to assign different 
degrees to ƒ and /*. We say that P satisfies a tame estimate of degree r in ƒ and s 
in h and base b if 

I IP ( / ,A) l l .<C( l l / l l B + r +HA| | B + ,+ l) 

for all n> b9 with constants C = Cn independent of ƒ and h. On the product 
space P satisfies a joint tame estimate of degree max(r, s). 

More generally, consider a map L: FX H -> G linear only in the second 
factor separately, which we write as L(f)h = g, grouping the parentheses to 
reflect the linearity. 
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2.1.7. LEMMA. If L(f)h is linear in h and satisfies a tame estimate of degree r 
in ƒ and s in h and base b for all fin a 11 \\b+r neighborhood of f0 and all h in a 
II \\b+s neighborhood ofO, then it satisfies the estimate 

IIL(/)AH< l<C(| | / | | ( ,+ r l | / ï | |»+ ,+ l|A||JI+J) 

for all n> b, with constants C — Cn independent of f and /*, for all f in a \\ \\ b+s 

neighborhood off0 and all h without restriction. 

PROOF. Suppose the given estimate holds for all h in the zero-neighborhood 
ll/Hlfc+j ^ £• Given any h, pick h — Xh with X = e/\\h\\b+s, and apply the 
given estimate to L(f)h9 so that 

\\L(f)h\\„^C(\\f\\n+r+\\h\\n+s+l). 

By linearity L(f)h = XL(f)h. Clearly we have the estimate 

\\L(f)h\\n^^(\\f\\n+r+l)\\h\\b+s + CH\\n+s. 

Since e is constant and HAIIfc+J < C||/Hlw+5, the lemma follows. In the same 
way we can prove the following result. 

2.1.8. LEMMA. Let B(f){g9 h} be bilinear in g and h and satisfy a tame 
estimate of degree r in ƒ, s in g, / in h and base b, for f in a II \\b+r neighborhood 
°ffo> S in a II Wb+s neighborhood of'0, and h in a II \\b+t neighborhood of 0. Then 
B satisfies the estimate 

WB{f){g,h}\\n 

< C(ll ƒ \\n+r\\g\\b+s\\h\\b+, + \\g\\n+s\\h\\b+t + \\g\\b+s\\h\\n+t) 

for all n**b, with constants C — Cn independent of f, g, and h, for all ƒ in a 
II II b+r neighborhood off0, and all g and h without restriction. 

Suppose now that F and G are graded spaces and P: U C F -* G is a 
nonlinear map. We say P is a smooth tame map if P is smooth and all its 
derivatives DkP are tame. The category ?T is defined to be that whose objects 
are tame spaces and whose maps are smooth tame maps. We shall state and 
prove the Nash-Moser theorem in terms of this category. 

2.2. Partial differential operators. We prove first a standard result in interpo­
lation theory which will be useful in estimating differential operators. 

2.2.1. THEOREM. If X is a compact manifold and / < m < n then for all 
fGe°°(x) 

i i / i ir /<cii/ i ir / i i / i irw . 
PROOF. It suffices to prove the result for ƒ E 6™(Rd) a smooth function on 

Euclidean space with compact support, since we can then use a partition of 
unity argument on X. Moreover it suffices to prove the case 

ll/ll?<C||/||2||/||0 

since we can derive the other cases by replacing ƒ by a derivative Daf. Since the 
maximum of the first derivative occurs at a given point in a given direction, it 
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suffices to prove the result on the line. We claim then that for ƒ €E Q™(R) we 
have 

s u p | / ' | < 2 s u p | / " | s u p | / | . 

If we replace ƒ by af and x by bx, we multiply ƒ' by a/b and ƒ" by a/b2. If 
ƒ ^ 0 we may thus assume sup | ƒ' | = 1 and sup | ƒ" | = 1. Moreover by transla­
tion we may assume sup | ƒ' | occurs at the origin. Replacing ƒ by -/and x by 
-x if necessary, we may assume /(O) ^ 0 and /'(O) = 1. By the second mean 
value theorem 

/(i)=/(o)+/'(o) + i/"(0 
for some £ in [0,1]. Then/"(I) » -1 so 

sup | / | ^ / ( 1 ) > * . 

This completes the proof. 
The above estimate also holds for the Holder norms Cn+a, the Sobolev 

norms Ln
p, and the Besov norms B£+a. 

2.2.2. COROLLARY, /ƒ (/, 7) lies on the line segment joining (k, I) and (m, n) 
then for any functions f and g in C°°( X) 

ll/IIJIgll^cdi/iijigi^+H/iLiigiiJ. 

PROOF. Let (1, j) = t(k, /) + (1 - t)(m9 n) with 0 ^ t < 1. By the previous 
result 

i i / i i i<c i i / i i i i i / i i i r ' , iigii,<ciigii<iigiijr<. 
Since xlyx~l < C(x + y)îor x>0,y> 0, the result follows. 

2.2.3. COROLLARY. Iff and g are functions in 6°°(X) then 

ll/glU<C(ll/IIJIgll0+ll/llollgllJ. 
PROOF. Again it suffices to prove the result on G™(Rd) since we can patch 

together with a partition of unity. If Da = (d/dxx)"1 • • • (d/dxd)a« denotes a 
partial derivative with multi-index a = (al9...9ad) of length | a | = a l 

+ • • - +ad then by the product rule 

Da(fg)= 2 D*fDyg-

2.2.4. EXAMPLE. Define P: e°°[a9 b] -> e°°[a, b] by P( ƒ) = ef. Any point 
has a neighborhood on which II ƒ II0 < C Then on that neighborhood we also 
have || ef 110 < C. A typical derivative of ef looks Uke 

(fMS+(f)1-
This gives us an estimate 

[|W*/ Ho lN*2llo ll^lloj 
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Since Il ƒ II ? < C II ƒ II 2 II ƒ II 0 by interpolation, we see that when || ƒ || 0 < C we 
have || Pf II2 ^ C(l + II ƒ II2). The same argument works for higher derivatives, 
and P is tame. 

Let U be an open subset of [a, b]X R and letp(x9 y) be a smooth function 
on U. Let £/ be the open subset of 6°°[a, &] consisting of functions y = / (x) 
whose graph lies in U. 

2.2.5. THEOREM. 77K? operator P: Ü C Q°°[a, b] -> e°°[a, é] defined by 

Pf(x)=p(x,f(x)) 

is tame. 

PROOF. We shall show that P satisfies a tame estimate of degree 0 and base 0 
in a neighborhood of each function /0 E £/ Ç &°°[a, b]. Given f0, let N be a 
compact neighborhood of the graph of f0 in U C [a, b] X R. Then/?(x, y) and 
all its derivatives Dj[Dfp(x9 y) are bounded on N. The set N c 17 Ç é°°[fl, ft] 
of all functions whose graphs lie in TV is a neighborhood of f0 in t/ c 6°°[a, Z?]. 
Using the chain rule we can write 

3* / ,, ^ d**f d'*f 
dxh dxik 

V' (i)'pi*.f(*)) = l~p(*.f(x))' 
where the sum ranges over terms withy + ix + 
may occur more than once). For ƒ E N we have II 

dJ dk 

:—7P(x, fix)) 
dxJ dykFK JX )} 

f\ 
Jrik — n (and some terms 

Cand 

< C 

so we get an estimate 

cSi i / i i/i 

where the sum ranges over terms with /, + ••• +ik < n. By interpolation we 
can bound II ƒ II, < CII ƒ II ' /" when || ƒ || 0 < C. Therefore 

| | i> ( / ) | | „<C( l + | | / | | „ ) 

when/E N. 
Let A' be a compact manifold and let V and W be vector bundles over X. Let 

U be an open subset of V and p: U Ç V -> W a smooth map of (/ into JT 
which takes fibres into fibres. If G°°(X9V) is the space of sections of the 
bundle V over Xy then the set Ü of sections whose image lies in U is an open 
subset. Define a map P: Ü C e°°(X, V) -> e°°(X, W) by composition with/?, 
so that Pf(x) = p(f(x)). We call p a nonlinear vector bundle map and P a 
nonlinear vector bundle operator. 

2.2.6. THEOREM. A nonlinear vector bundle operator P is tame. 

PROOF. If f0 E Q°°(X, V) we claim that P satisfies a tame estimate of degree 
0 and base 0 on a neighborhood of f0. Indeed let N be a compact neighborhood 
of the image of f0 in V, and let N be the set of sections whose images lie in N. 
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Then N is a neighborhood of f0 in e°°(X, V\ and we claim that \\Pf \\n < 
C(l + II / | | n) for all ƒ E JV. By using a partition of unity we can reduce the 
problem to proving such an estimate in local coordinates. If X has dimension k 
and F has fibre dimension /, then F has local vector bundle charts in Rk+l, and 
p is given locally by a function p(x, y) on an open set in Rk+l with x E Rk 

and y E Rl, while a section ƒ is given locally by a function y = ƒ(*). Then we 
must prove an estimate 

\\p(x,f(x))\\„<C(l + \\f(x)\\n). 

The proof is now exactly the same as before, except for having more di­
mensions. 

Again let X be a compact manifold and let V and W be vector bundles over 
X. A nonlinear partial differential operator of degree r from F to W is a map P: 
U Q e°°(X, V) -> e°°(Jf, fF) such that Pf(x) is a smooth function of ƒ and its 
partial derivatives of degree at most r at x in any local charts. 

2.2.7. COROLLARY. Any nonlinear partial differential operator P: G°°(X, V) -* 
eco(X9W)istame. 

PROOF. Using jet bundles, we can write P = QL where L is a linear 
differential operator of degree r and Q is a nonlinear vector bundle operator as 
before (involving no derivatives). Then \\Lf\\n < C\\ ƒ \\n+r and Il0gllw< 
C(l + llgllj , so II i y || „ < C(l + || ƒ || „+r) for all ƒ in a neighborhood of any 
point. 

If P(f) is a nonlinear differential operator of degree r in ƒ, then its 
derivative DP(f)h is also a differential operator of degree r in ƒ and h. From 
this it follows that P is a smooth tame map, and all its derivatives also are tame 
with degree r and base b. 

2.3. Tame Fréchet manifolds. We can define a tame manifold as one with 
coordinate charts in tame spaces whose coordinate transition functions are 
smooth tame maps. 

2.3.1. THEOREM. Let X be a compact manifold and B a fibre bundle over X. 
Then the space Q°°(B) of smooth sections of B is a tame manifold. 

PROOF. Let ƒ be a section of B. We can find a vector bundle and a 
diffeomorphism of a neighborhood of the zero section onto a neighborhood of 
the image of ƒ in B which takes fibres into fibres. We take the collection of all 
the maps on sections induced by such diffeomorphisms as our atlas of 
coordinate charts. The coordinate transition functions are vector bundle maps, 
which we proved are smooth tame maps in the last section. 

2.3.2. COROLLARY. If X is a compact manifold and Y is another manifold (of 
finite dimension) then the space 91t( X, Y) of smooth maps of X into Y is a tame 
manifold. 

PROOF. 91t( X, Y) is the space of sections of the product bundle XX Y over 
X. 
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2.3.3. THEOREM. Let X, Y, and Z be finite dimensional manifolds with X and Y 
compact. Then the composition map 

C: 9H(y, Z) X 9!L(JT, Y) -> <m,(X, Z) 

is a smooth tame map. 

PROOF. First we show C is tame. Let f0 G 911(7, Z) and g0 G 91L(*, y ) be 
two reference maps. We can cover X, 7, and Z by coordinate charts with 
ranges being closed balls in Euclidean spaces Rl, Rm, and Rn, such that each 
map takes a closed ball into the interior of another ball (by a positive amount). 
Then any maps ƒ and g close to f0 and g0 in the II 110 sense will take the same 
closed balls into the same closed balls. In order to estimate the maps in our 
coordinate charts on the Fréchet spaces 91t( X, Y) (etc.), it suffices to estimate 
their local representatives in the balls in Rl (etc.). We may as well take them to 
be all unit balls. Let Bl be the unit ball in Rl (etc.). Then we have the following 
estimate. 

2.3.4. LEMMA. Let ƒ: Bm -* Bn and g: Bl -» Bm be smooth maps. Fix a 
constant K and assume that II ƒ II! <K and llgllj < K. Then we can find 
constants Cn depending on Ksuch that for n > 1 

\\f°gh^Cn(\\f\\n+\\g\\„+l). 

PROOF. By a repeated application of the chain rule we can find constants 
c* , , such that for n > 1 

D"(fog)(x)= 2 2 CkJu.,.JD
kf(g(x)){D^g(x),...Mg(x)} 

withy',,. ..Jk> 1. This gives us the estimate 

\\D"U°g)h<c$ 2 ii/iijisli„---llgll,v 
lc=\ _/,+ ••• +jk = n 

Now by interpolation 

ll/IU<CH/lli , ,-*>/<"-1)| |/ | |(*-1)A»-1), 

Il g II j < C II g II f •-»/<»- » H g H U- DA»- » 

and inserting this above we get 

i i ^ ( / o g ) i i < c i i g i i r i ( i i g i i i i i / i i ^ i i / i i i i ^ n j . 

When || ƒ ||, < ^ a n d IIg||, < A"and C may depend on K 

\\DnU°g)Wo^C{\\f\\n+\\g\\n) 

for n>\. When n = 0, II ƒ o g\\0< C. Since II ƒ o g||n = 22=0II2>*( ƒ ° g)ll the 
lemma follows. 

Now the lemma shows that the composition map C( ƒ, g) = ƒ ° g satisfies a 
tame estimate of degree 0 and base 1 on neighborhoods of f0 and g0 open in 
II II, (so that || ƒ ||, and II g II, are bounded). Hence C is tame. 
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We saw earlier in 4.4.5 that C is a smooth map, and its higher tangents TnC 
themselves are formed by compositions and derivatives, so the TnC are also 
tame. Thus C is a smooth tame map of manifolds. 

A smooth tame Lie group is a smooth tame Fréchet manifold § which has a 
group structure such that the multiplication map C: § X § -> § and the inverse 
map 

are smooth tame maps. The following gives an example. 

2.3.5. THEOREM. Let X be a compact manifold and let tf)(X) be the diffeomor­
phism group. Then ty(X) is a tame Fréchet manifold. The composition maps 

c:6ö(x)xq)(x)^q)(x) 
and the inverse map 

V:%X)->^{X) 

introduced in Example 4.4.6 are all smooth tame maps. Hence 6D( X) is a smooth 
tame Lie group. 

PROOF. fy(X) is an open subset of 9H(Z, X) and hence a smooth tame 
Fréchet manifold. The composition map C is a smooth tame map by the 
preceding example. We shall show Fis a smooth tame map. Fix f0 G tf)(X). If 
ƒ is near /0, then y "̂1 ƒ = g is near the identity map 1, and since ƒ = f0g we have 

v(f) = c(v(c(v(af)),v(f0)). 
If we can show Kis a smooth tame map in a neighborhood of 1, then it will be 
also in a neighborhood of f0. 

Let Br denote the closed ball of radius r in Rn. We can find coordinate charts 
on X with values in the ball B3 such that the inverse images of the ball Bx still 
cover X. If ƒ is a diffeomorphism of X near the identity, the local representative 
of ƒ in each coordinate chart will map B2 into B3 and cover Bx. Then/"1 will 
map Bx into B2. We prove the following estimate. 

2.3.6. LEMMA. Let f be a smooth map ofB2 into B3 in Rn. Ife>0 is sufficiently 
small and if II f(x) — x II x < e then f^x is a smooth map ofBx into B2 and 

nr'ii^Qdi/iu + i) 
for all n> 1. 

PROOF. It follows from the inverse function theorem that ƒ is 1-1 and locally 
has a smooth inverse. That the image of B2 covers Bx is a topological result 
from degree theory. Let g = f~l on Bx. We know that 

Dg(x) = Df(rl(x)) 
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and if e > 0 is small we have an estimate \\Dg\\0< C. Since ƒ © g = 1 we have 
Dn(f o g) = 0 for n > 2. By our previous formula 

Df(g(x))D"g(x) 

+ 2 1 CkJ JD
kf(g(x)){DJ>g{x),...,DJ>g(x))=0 

k=2 j,+ ••• +jk=n 

which we can solve for D"g(x) to get 

D"g(x) 

= -Dg(x)i 2 CkJi^.JD
kf(g(x)){DJ'g(x),...,D^g(x)}. 

k = 2 y,+ ••• +jk = " 

Since j X 9 . . . Jk > 1 and k > 2 we have ju...Jk<n—l also. We have the 
estimate 

\\D*g\\0<c2 S ii/iiJigiiyr--HgiiA. 
k = 2 y,+ ••• +jk = n 

By interpolation 

ll/IU<C||/||^-^Aw-,)||/||(/-1)/<w-1>, 

\\g\\j<c\\g II \*-J- w-2) il g il \>zp/i»-*> 

and || ƒ ||, < C and IIg||, < C. This gives 

Hi>wgiio^c 2 l i /H^^^-^i lgi i ir^/^-^. 
k = 2 

We now proceed by induction on n. When n = 1 the theorem holds. Suppose 
we know that 

l lg l l . - 1<C(| | / | | 1 ,_ I + l). 

By interpolation 

(ll/ll,,_ l + i ) < c ( i i / i i ) , + i)<"-? ) / ("- , ) 

when II ƒ II, < C. Inserting this above gives 

\\D'g\\0<C\\f\\„. 

Adding in llgll,,-! proves the lemma. Since the higher tangents TnV also 
involve only derivatives, compositions and V, we see that TnV is also tame, 
and V is a smooth tame map. 

2.3.7. COROLLARY. The space c*(X) of all compact smooth submanifolds of a 
finite dimensional manifold X is a smooth tame Fréchet manifold. So is the space 
<3l (X) of all compact regions in X with a smooth boundary. 

PROOF. We refer the reader to Example 1.4.4.7, where we show that the 
coordinate transition functions are composed of compositions and inverses of 
the type already discussed. 



150 R. S. HAMILTON 

We can also define a smooth tame vector bundle as a Fréchet vector bundle 
whose coordinate charts are smooth tame maps. Likewise we can define a 
smooth tame connection on such a vector bundle as one for which the local 
representatives T are smooth tame maps. 

2.3.8. EXAMPLE. The bundle Q°°^i(X) of all smooth functions on compact 
regions with smooth boundary in a finite dimensional manifold A" is a smooth 
tame vector bundle. The intrinsic flat connection is a smooth tame connection. 

PROOF. We refer the reader to the discussion in Examples 1.4.3.6 and 1.4.5.4. 
The previous estimates should make it clear that all the maps involved are 
smooth tame maps. 

II.3. Inverses of families of linear maps. 
3.1. Smooth tame inverses. The following result is very useful. 

3.1.1. THEOREM. Let L: (U C F) X H -> K be a smooth tame family of linear 
maps. Suppose that the equation L(f)h = k has a unique solution h for all f and 
k, and the family of inverses V(f)k = h is continuous and tame as a map 

Then V is also a smooth tame map. 

V:(UCF)XK-*H. 

PROOF. By Theorem 5.3.1, Fis smooth and 

DHf){k, g) = -V(f)DL(f){V(f)k, g). 

Since V and DL are tame, so is DV. That DnV is also tame follows by 
induction on n. 

3.2. Ordinary differential equations. It is an important observation that not 
only do differential equations provide us with examples of tame maps, but so 
do their solutions. This is particularly easy to verify for ordinary differential 
equations. We begin with the solution in Example 1.5.3.5. 

3.2.1. THEOREM. Let C^ be the space of smooth functions periodic with period 
2 77, and let U be the open subset of functions f(t) with 

(2*f(t)dt*Q. 
•'o 

Let L(f)h = kbe the linear differential equation 

dh/dt+fh = k 

and let k = V(f)h be its solution. Then V is a smooth tame map 

v:(uçe?w)xez^eïw. 
PROOF. We already saw that the solution exists and is unique when f EL U 

and that the solution V is smooth. We shall show that V is tame. We saw that 
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Kis given by the following formulas: 

F(t) = ['f(6)de, c(f)=f2,,f(6)d0, 
Jo Jo 

fc(,) = e-
F^feF^h{e) dB + C( ƒ, *)}. 

Now S £ is a closed subspace of <3°°[0,27r], but not a topological direct 
summand (see Example 1.2.2). Even if ƒ(/) G S £ the integral F(t) will not, 
unless c( f ) = 0, which is exactly the case we must avoid. Therefore we regard 
the formulas above as giving a map 

V: (Ü Ç e°°[0,27r]) X e°°[0,27r] -> e°°[0,27r] 

where Ü is all functions not necessarily periodic with integral not zero. Then V 
will take g £ into itself, and V = V\ 6 ^ . We claim V is tame. It then follows 
that Fis also, for the same estimates will hold on the subspace. 

Now all of the following maps are smooth tame maps: 

e°°[0,27r] -> e°°[0,2*], f(t) - F(t) = ['f(O) dO, 

e ° ° [ 0 , 2 7 r ] - ^ , c(f) = [2wf(0)d09 

e°°[0,27r] -» e°°[0,2ir], F(t) -> eF(t\ 

e°°[0,27r] -» e°°[0,2w], F(r) -> -F(f)> 

e°°[0,27r] X e°°[0,27r] - e°°[0,2*], (ƒ(/) , g (0 ) -+f(*)g(t), 

R-{0} -*R, x-*(ex- l)~\ 

n^e°°[o,w], c-*/(o = c 
and the solution F is a rather complicated composition of these maps. Since a 
composition of smooth tame maps is a smooth tame map, V and F are smooth 
tame maps. 

We can also make tame estimates on the solution even when we lack an 
explicit formula, by the usual procedure for a priori estimates. As an illustra­
tion, we consider linear first order systems of ODE's. Let H be a finite 
dimensional vector space and let h = h(t) be a smooth path in H. Let 
L(H9 H) be the space of linear maps of H into itself and let f = f(t) be a 
smooth path in L(H9 H). We write f - h for the linear map applied to the 
vector. Then we can consider the linear first order system 

dh/dt -f-h = k 

o n a ^ / ^ w with initial conditions h(a) = h E H. This defines a family of 
linear maps 

L: e°°([a, co], L(H9 H)) X e°°([a, « ] , H) -> e°°([a, « ] , # ) X i / 
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with L(f)h = (k9 h). For a given/, k and h there will exist a unique solution h 
by the usual existence theorem for ODE's, and we write h = V(f)(k, h) for 
the solution, which defines a map 

V: e°°([a, « ] , L(i / , H)) X e°°([a, co], H) X H ^ e°°([a, « ] , 7/). 

The Fréchet space S°°([a, co], if) is graded by the norms 

11*11,, = sup sup |/>'*(/) | 

where | h | is any convenient norm on H.lî H = Rn we can take the Euclidean 
length. In this case L(H, H) is the space of n X n matrices, and the system 
looks like 

3.2.2. THEOREM. 77*e solution map V for the first order linear system is a 
smooth tame map. On any set \\ f || 0 < K it satisfies estimates 

l l* l l .+ i<C;{ | |* | | l ,+ ||/ | | l l(||A||0 + |A|)} 

with constants Cn depending on K. 

PROOF. We begin with the following estimate. 

LEMMA. 

IIAHo<C(||*|lo+|A|). 

PROOF. We introduce the norm 

| [A] | x = sup«- x ' |A(0l-
t 

Since 

h(t) = (\k{6) +f(0) • h(6)] dO + h 

we have 

e~Xth{t) = feW-'^e'MkiO) + f(0) • e'Mh(e)] dO + e~Xth. 

Since 

Ja A 

we have the estimate for X > 0 

| [ * ] | * < H l ï * ] | x + l l / l l o | [ A ] | x + |A|} . 

If II ƒ II o ̂  K and we choose X > K, we can subtract the middle term on the 
right from the left to get the estimate 

| [A] |x<C{ | [ * ] | x + |A|} 
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with a constant C depending on K and X. Since | [A] \x is equivalent to II A || 0, 
we have 

I IA | | 0 <C( | | * | | 0 + |A | ) . 

Having a low norm estimate, we can use the equation to get estimates on the 
high norms. Since 

dh/dt=f-h + k 
we get the estimate 

\\dh/dt\\n^C(\\f\\Jh\\0+\\f\\0\\h\\n+\\k\\n). 

When n — 0 we have 

HAH, = ||A||0 + \\dh/dt\\0 < C(| |*| |0 + | A |). 

We proceed by induction on n. Suppose 

IIAIIW<C{ 11*11,_! + 11/11 n-i(ll*ll0 + |A|)} . 

Then remembering II ƒ II0 < C 

11*11,,+ , = IIA||B + Uh/dt\\n< C{\\k\\n + || ƒ 11,(11*110 + IA I)} 

which proves the estimate. Thus V is tame. It is a smooth tame map by 
Theorem 3.1.1, since L is a smooth tame map, being a differential operator. 

We can apply this result to get a theorem for periodic solutions of periodic 
systems of ODE's, analogous to our previous result for a single equation. Let 
6>™(H) be the space of smooth functions h(t) with values in the finite 
dimensional vector space H which are periodic with period/?, so that h(t + p) 
— h(t). Let/(O E G™(L(H, H)) and consider the first order linear system 

df/dt-f-h = k 
as defining a smooth tame map 

M: e;(L(H, H)) X Q?(H) - 6?(H) 

by M(f)h = k. There may not always be a solution, as we see when p — 2m, 
ƒ = 0, and * = sin t. We let U be the set of all ƒ e e?(L(H, H)) for which the 
homogeneous equation 

dh/dt-f-h = 0 

has only the trivial solution A = 0. If H has an inner product and ƒ(/) is 
symmetric and positive-definite or negative-definite with respect to this inner 
product for all /, then ƒ E U\ for 

Jo
P(f.h,H)d<=fo

P(%,h)d^0. 

3.2.3. THEOREM. The set U is open. For all ƒ E U and k the equation 
M{f)h — k has a unique solution A = W(f)k. The map 

W: (U C e™(L(H, H))) X e?(H) -* G^(H) 

is a smooth tame map. 
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PROOF. We can regard Gj?(H) as a closed subspace of £°°([0, p], H). Given 
ƒ E C°°([0, p]9 L(H9 H)) and h E H we can solve the homogeneous equation 

with h(0) = hand let /*(/?) = h. We write ft" = N(f)h. This defines a family of 
linear maps 

N: e°°([0, />], L ( # , H))XH^H 

with /T = K( ƒ )(0, A) | {/ = ƒ>}. Since Kis a smooth tame map by Theorem 3.2.2 
and evaluation at p is a continuous linear map to a finite dimensional space, 
we see N is a smooth tame map. Suppose ƒ is periodic. Then we get a nonzero 
solution of the homogeneous equation with coefficients ƒ if we can find a 
nonzero h E H with N(f)h = A. Thus f E U if and only if ƒ - 7V(/) is 
one-to-one; and hence also invertible, since H is finite dimensional. Since the 
set of invertible linear maps in L(H9 H) is open and N(f) depends continu­
ously on/, we see that U is open. 

When ƒ E U, we can try to find a solution A of the periodic equation for a 
given periodic k by solving the initial value problem on [0, p], and hope that a 

fortuitous choice of h will make h periodic. This clearly happens when h = h. 
To be systematic, we can start with h = 0 and let A, = F(/)(A:,0) be the 
solution of the inhomogeneous equation 

dhx/dt-f-hx =k 

with /i,(0) = hx = 0 at / = 0. We then let A, = hx(p). Clearly A, is a smooth 
tame function of ƒ and k. Now we wish to change hx by a solution A2 °f t n e 

homogeneous equation so that h = hx+ h2 will be periodic. We need h = h or 

ïîx+ h2 = h\+ h2. Now hx= 0 and h2 = N(f)h2. Thus we must solve 

* 2 - ^ ( / ) * 2 = * i -

Since i / is finite dimensional, it is easy to see that iV defines a smooth tame 
map 

N: U Ç e?(L(H, H)) -> L(H, H). 

It suffices to choose a basis in H and represent iV( ƒ ) by a matrix, each element 
of which depends smoothly on ƒ. It is tame because L(H9 H) is finite 
dimensional. Since taking the inverse of a matrix is a smooth map, we see that 
the map ƒ -> (I — N(f))~l is also a smooth tame map. Then we choose 

h2=[l-N(f)]-%. 

As a composition, /T2 is a smooth tame function of ƒ and k. Thus so is 

h = hi + h2= v(f)(k,o) + v(f)(o, fi2). 
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Letting h = W(f)k defines a smooth tame map which gives a commutative 
diagram 

(u ç e?(L(H, H))) x e?(H) Z e;(H) 
i i 

w 

(ü c e°°([o, p], L(H9 H))) x e«([o, />], //) - e°°([o, P], H) 
on the set Ü for which I — N(f) is invertible. It is then clear that W is a 
smooth tame map also, since the estimates for W will hold for W. 

3.3. Elliptic equations. Let Z be a compact manifold without boundary, and 
let V and W be vector bundles over X. A Hnear partial differential operator of 
degree r from V to W assigns to each section h G 6 ° ° ( I , F ) a section 
k G C°°(Z, W) in a manner which depends linearly on the derivatives of 
degree r or less, so that locally 

(*) 2 fa'D"h = k 
\a\<r 

where D = (d/dxl)ax • • • (d/dxn)a" is a partial derivative of degree | a |= a1 

H- • • • +aw . The coefficients ƒ = {/a} themselves form a section of a bundle 
Dr(V9 W) of all operators of degree r, as may be seen by considering what 
happens to the fa under a coordinate change. We can identify Dr(V,W) with 
the bundle L(JrV, W) where Jr is the r-jet bundle of F, or with L(K, / rW) 
where JrW is the r-cojet bundle of W. The formula (*) defines a map 
L(f)h = A: where 

L: e°°( *, zr(F, j r» x e°°(*, K) -* e°°(x9 w). 
It is the generic partial differential operator of degree r with coefficients ƒ. Of 
course L is a smooth tame family of linear maps. 

To each linear differential operator L( ƒ ) of degree r we associate a principal 
symbol a( ƒ ) which is a homogeneous polynomial of degree r on the cotangent 
bundle T*X with values in L(F, W), given in local coordinates by 

0(f)S= 2 fj* 
\a\=r 

where £tt = Éf'S?2 • • • # \ The operator L ( / ) is called elliptic if a( ƒ)£ G 
L(V, W) is always invertible when £ ^ 0. If L( ƒ ) is elhptic, then it is well 
known that the null space of L( ƒ ) is finite dimensional, and its range is closed 
with finite codimension. We let U C &*(X, Dr(V, W)) be the open set of all ƒ 
for which the Hnear operator L( ƒ ) with coefficients ƒ is elhptic and invertible. 
Then for each ƒ G U and each k there exists a unique h solving the equation 
L(f)h = k. 

3.3.1. THEOREM. The solution S(f)k = h defines a smooth tame map 

s: (u c e°°( x9 D
r(v, w))) x e°°(x, w) -> e°°(x, v). 

PROOF. We need to exercise some care in the choice of the gradings, since 
Gârding's inequality fails for Cn. 
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To make the following argument work, we need only the following simple 
properties: 

(1) The norm 11 ||w is the norm 11 ||0 of the section and its derivatives of 
degree less than or equal to n. 

(2) The interpolation inequalities hold. 
(3) There is a multiplicative estimate for the ƒ and h norms 

iiy»iio<cii/ii0iiAii0 . 

(4) Gàrding's inequality holds for any elliptic operator L and the /î-norm 

HA| | r<C(| |LA| |0+| |A| |0) . 

There are many possible choices. We can take norms || || n in Cn+y measuring 
the «th derivative with a Holder exponent 0 < y < 1. Or we can take II ƒ II „ to 
be the Cn norm and \\h\\n or \\k\\n to be the Ln

p norm measuring n derivatives 
in Lp for 1 <p < oo. All these gradings will be tamely equivalent. 

LEMMA. If f0 e U then we can find an e > 0 and a constant C such that if 
\\f- fQ\\0<ethenf^Uandfor all h 

I IA| | r <C| |L( / )A| | 0 . 

PROOF. If f0 G U then L(f0) is invertible, so we do not need the slush term 
in Gàrding's inequality, and 

IIA| | r<C||L(/0)A| |0 . 

Now| |L ( / )A | lo<C | | / | | 0 I IA | | r andL( / )A-L( / 0 )A = L ( / - / o ) A , s o 

l | A | | r < C | | L ( / ) A | | r + C | | / - / 0 l l 0 I I A I I r . 

When || ƒ — f01| 0 < e and Ce < 1, we can subtract the last term from the other 
side. This proves the lemma. 

Now we proceed to estimate the higher derivatives in the usual way, by 
differentiating through the equation, paying careful attention to how the 
estimates depend on the coefficients. To avoid local coordinates, we have 
recourse to the following strategem. Pick a vector field t ? o n I and pick first 
order linear differential operators v„ from e°°(X9V) and e°°(X, W) to 
themselves whose symbols are 

avM) = <€,»>/ 
where / is the identity matrix. Then the operator vvL(f) — L{f)vv has its 
principal symbol zero, so it is itself of degree r. Hence there is a uniquely 
determined V^ ƒ with 

vMf)-L(f)vv = L(vJ) 

and vv is also a first order linear differential operator on 6°°(X, Dr(V, W)) 
with symbol as above, as we can see from the formula (*). If we pick a finite 
number of vector fields t; which span the tangent space at each point, then 

\\h\\n+x<c\\\h\\n + ^\\vvh\\n)-

We shall prove the following estimate. 
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3.3.2. LEMMA. If \\ f- /0 | | < e andL(f)h = k then 

IIAIU+^Cdlfcll^+ll/IIJIfcllo). 

Thus V(f)k = h satisfies a tame estimate of degree -r and base r. 

PROOF. This holds if n = 0. We assume it is true for some n and proceed by 
induction. First note that by the product rule and interpolation 

| | L ( / ) / I | | n < C ( | | / I | | „ + r + | | / | | „ + r | | / I | | r ) 

which shows L is tame of degree r and base 0. The induction hypothesis says 

| | A | | n + r < C ( | | L ( / ) A | | „ + | | / | | J | L ( / ) A | | 0 ) . 

Applying this to Vvh instead of h 

\\Vvh\\r,+r^C(\\L(f)Vvh\\n+Uf\\jL(f)Vvhh)-

Now we use the fact that 

L{f)vvh= vvL(f)h-L(vJ)h. 

Since L(f)h = kwe get 

\\L(f)vvh\\* < C(\\k\\n+l + \\h\\n+r + II ƒ ll.+ .HAII,). 

Using our estimates on \\h\\r and ll/i| |n+r from the previous lemma and the 
induction hypothesis and simplifying 

llM/)V^IU<C(||/:||n+1 + | | / | |n + 1 | | / : | | 0 ) . 

We can use this estimate and the corresponding one f or n — 0 in our previous 
estimate for vvh to get 

\WMn + r < C { ( \ \ k \ \ H + l + II ƒ l l B + 1 l l * l l o ) + II ƒ II „(II* Hi + II ƒ l l i l l * l l o ) } -
Now by interpolation 

11/11,11*11, <C( | | ƒ ||,,+ I||/cllo+11 ƒllollfell^,), 

l l / I I J I / l l , < C | | / | | „ + 1 | | / | | 0 . 

On our set | | / | | 0 < C s o 

IIV„AII)1+r<C(||*||1,+ 1 + | | / | | l l + I | |Ac| |0). 

Summing over a finite number of v 

IIAIU^.^cfllAII^ + SllV^II,,^) 

which shows that 

HA||„+r+1<C(||A:||„+1 + | | / | |„+ 1 | |Â:| |0). 

This completes the induction. 
Even in the case where L( ƒ ) is not invertible we can still define an inverse 

of sorts, up to something of finite dimension. Choose finite dimensional vector 
spaces N and M and continuous linear maps 

j : e°°(X, V) -> N9 i: M -» eœ(X9 W). 
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We assume that in some norms | | on M and N we have 

while for all n we will surely have 

\ix\H<C\x\ 

for all x G M. We then define a map 

L: e°°(*, Dr(v, w)) x e°°(x, V)XM-* e°°(x, W)XN 

by letting L( ƒ )(A, JC) = (*, ƒ ) where ƒ e e°°(*, £>r(F, W)\ A G e°°(X, F), 
k G e°°( JT, W),xEM9ye N9 and 

L(f)h + ix = k, jh — y. 

We let tf Ç e°°(X9 D\V, W)) be the open set (by Fredholm theory) of all 
coefficients ƒ of elliptic operators L( ƒ ) for which L( ƒ ) is an isomorphism. We 
can do this in a neighborhood of any f0. It follows that for all ƒ G Ü and all k 
and j there exist unique h and x solving the equation. 

3.3.3. THEOREM. The solution S(f)(k, y) — (h, x) defines a smooth tame 
family of linear maps 

S: (Ü C e°°(X, Dr(V, W))) X e°°(X, W)XN-+ e°°(X9 V) X M. 

When L(f) is infective we can forget N, and when it is surjective we can forget 
M. Always put y = 0 and forget x. Then for each ƒ G U and each k there exists a 
unique h in the null space of j (a subspace of finite codimension) such that 
L(f)h — k lies in the image ofi(a subspace of finite dimension). Moreover if we 
define the Green's operator h — G(f)k as above, then G is a smooth tame family 
of linear maps. 

PROOF. The argument proceeds much as before, except for the annoying 
presence of / andy. For a given/0, Gârding's inequality can be modified to 

I IAII r +|x |<C( | |L( / 0 )A + iJc||0+|yA|) 

since y is injective on the null space and / is transversal to the image of L( ƒ ). 
Then as before if II ƒ — f0 II0 < e we have 

I IA | | r +| jc |<C( | |L( / )A + jjc| |0+|7A|) 

when e > 0 is small enough to subtract off the extra error term on the right 
from the left. For the induction step we prove the following estimate. 

3.3.4. LEMMA. If || ƒ - f0 \\ 0 < e and L(f)h + ix = k andjh = y then 

\\h\\n+r + | * | < COIAII, + II ƒ UlAllo) + C(l + II ƒ \ \n) \y\ . 

PROOF. The result holds for n = 0. We assume it is true for some n and 
proceed by induction. We can put x — 0 in the estimate. Then for all A 

| |A | | n + r < C(||L(/)A||M + II ƒ I IJ |L( / )A| | 0 ) + C{\ + II ƒ IIJUAI . 
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Applying this to Vvh instead 

I I V ^ I I r t + r < C ( | | L ( / ) v ^ l U + l l / I I J | L ( / ) v ^ l l 0 ) 

+ C(l + \\f\\H)\jVvh\. 

If \jh\<C\\h\\r_} then \jvvh\^ C\\h\\r. By the first estimate \\h\\r< 
C(\\ k || o + | y |). Hence this term will cause no trouble. For the others, we have 

V 0 L ( / ) A = V , * - Vjx 

and we always have 

l l V ^ I I ^ C I I w l l ^ i ^ C l j c l 

since i is continuous. But by the basic estimate | * | < C(||fc||0 + \y\) also. 
Thus 

I IV 0L(/)A| | ( 1<C( | |* | | ,+ 1 + b | ) . 

As before 

L(f)vvh= VvL(f)h-L(vJ)h 

and 

\\L(vJ)h)\n<C(\\h)\n+r+\\f\\n+l\\h\\r). 

By the induction hypothesis 

IIL(/)v„A|l„<C{||A:| |„+1 + ll/ll„+1IIA:||0+ (1 + || ƒ ||„+1) \y \). 

Using this estimate also for n = 0 and interpolating as before 

iivrAH ( I+r<c{ii*ii ( ,+ , + H/iu.iifciio + O + n / i i „ + , ) b | } . 

Summing over a finite number of v gives the desired estimate for II h || n+r+ x. As 
| x | is already estimated, we are done. 

We can also prove tame estimates for solutions of elliptic boundary value 
problems. We shall only discuss the simplest cases, but the results extend even 
to weighted systems (see Martin Lo [11]). Let A" be a compact manifold with a 
smooth boundary dX, and let V and W be vector bundles over X and Z a 
vector bundle over 3X We shall consider a single equation L(f)h = k of 
degree r taking a section h of V to a section k of W, with coefficients ƒ forming 
a section of the bundle Dr(V, W). For boundary conditions we will also have a 
single equation B(g)h = / of degree s < r taking the section h of V into a 
section / of W with coefficients g in a bundle DS(V, Z), so that locally 

B(g)h= 2 ft^AIMT 
| j8|<* 

and we put M(f, g)h = (A:, /). We let £/ be the open set of all ƒ E 
e°°(X, Dr(V9 W)) and g € &»(X9 D\V, Z)) such that L( ƒ ) is elliptic, the 
boundary condition B(g) is coercive, and the boundary value problem L(f)h 
= k on X and B(g)h = I on dX has a unique solution h E 6°°(X, F) for all 
k E e°°(X, W) and / E e°°(3X, Z), i.e., M( ƒ, g) is invertible. There are well-
known algebraic conditions for the boundary conditions to be coercive, but 
they are not so easy to state. They include the following special cases. We say v 
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is a normal cotangent vector if v _L TdX, and we say v>0 iî v points inward. 
(With local coordinates x1 , . . . ,xd~ l and xd > 0, then v — v(x)dxn is normal 
and points inward if v(x) > 0.) 

Case 1. Let V9 W and Z be trivial bundles so that h, k and / are functions, 
and let r = 2. Then in local coordinates 

L(f)h = 2fiJ-^+fi—+f°h. 
ij dxldxJ dxl 

We say L is strongly elliptic if aL(f)$ > 0 for all £ ¥= 0, which happens if ƒ/y is 
positive definite. Let 1 be the constant function. Then the coefficient ƒ ° = 
L( ƒ )1. If L( ƒ )1 < 0 and L(f)h = 0 then the maximum of h occurs on the 
boundary. 

Case la. Suppose s = 0. Then g is a function on 8A" and B(g)h = gh. If 
g > 0 then this is a Dirichlet boundary condition, which is known to be 
coercive. Moreover it has index zero, so the operator Af( ƒ, g) is invertible if 
and only if the only solutions of the homogeneous equations L( ƒ )h = 0 and 
B(g)h = 0 are /i = 0. If L(f)\ < 0 this happens by the maximum principle. 

Case lb. Let s = 1. Then in local coordinates 

B(g)h = 2g<^: + g%. 
,- ox' 

Note that g = (2, g'B/Bx1, g°) is given by a vector field on dX pointing along 
X, and a function on dX. The vector field points inward if and only if 
oB(g)v > 0 for any normal v > 0. In this we have Neumann boundary 
conditions, which are known to be coercive. If L( ƒ )1 < 0 and 2?(g)l < 0 then 
the only solution of the homogeneous equations is trivial by the maximum 
principle, and M( ƒ, g) is invertible since the index is also zero. 

Case 2. Let V, W and Z be general bundles, and let r — 1 and s — 0. Then in 
local coordinates 

L(f)^=ifa^+ifih" 

and 

B(g)hT = 2glh°. 
a 

Since B(g) has degree zero, it is a vector bundle map of V\ dX into Z. We shall 
require that B(g) always be surjective. Its null space Null B(g) is a vector 
subbundle of V\ 3X The homogeneous boundary condition B(g)h = 0 says 
h | dX G Null 5(g). We distinguish between real and complex equations. 

Case 2a. For real equations with real coefficients, any boundary conditions 
are coercive provided 

dim Z = { dim V. 

Case 2b. For complex equations with complex coefficients the condition is 
more complicated. Let £ be any real cotangent vector at a point in the 
boundary which is not normal to the boundary, and let v be any cotangent 
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vector at the same point which is normal to the boundary at the same point 
and points inward, so v > 0. If L( ƒ ) is elliptic then oL(f)v is invertible, and 
the linear map 

[oL(f)r]-l[oL(fH] 

is an automorphism of the fibre of V at that point which has no real 
eigenvalues. For aL(f)£ is linear in £ since r — 1, and if 

[oL(f)p]-i[oL(f)i]v = \v 

for some v E V then 

oL(f)($-\P)v = 0. 

If X is real then £ — Xv is real, and £¥"\v since v is normal and £ is not. Since 
L( ƒ ) is elliptic we have v = 0. 

We can decompose the fibre of Fat the point as a direct sum 

v+(f, £, v) e v (ƒ,£,„) 

of eigenspaces whose eigenvalues have imaginary part positive or negative. 
Then B(g) is a coercive boundary condition for the elliptic operator L( ƒ ) if 
and only if Null 5(g) is transversal to V~(f, £, *>) for all such £ and P. Using 
the homogeneity in £ and v, it suffices to check the condition for |£ | = 1, 
\v\ = 1, and £ ± v in some inner product on V. Hence the set of pairs ( ƒ, g) 
such that L( ƒ) is elliptic and B(g) is coercive is open. When dim X> 3 we 
can continuously rotate £ into -£ without passing through the normal covec-
tors. Since oL(f)£ is linear in £ 

F + ( / , - £ , , ) = F - ( ƒ , £ , , ) . 

Hence dim V* = dim V~ = dim Z when dim X > 3. 
For an elliptic equation L( ƒ ) with a coercive boundary condition B(g% the 

map M(f, g) always has finite dimensional null space and closed range of 
finite codimension, and its index 

ƒ( ƒ, g) = dim Null M( ƒ, g) - codimlm M( ƒ, g) 

is locally constant. Hence one way to evaluate the index is to deform the given 
problem into one for which it can be computed. If the index is zero and the 
only solution of the homogeneous equation is trivial, then M(f, g) is invert­
ible. 

We now give the following result. 

3.3.5. THEOREM. Let Ube the open set of all pairs ( ƒ, g) in 

e^ix, D\V, w)) x e°°(aM, DS(V, Z» 
such that L(f) is an elliptic linear operator of degree r and B(g) is a linear 
coercive boundary condition of degree s, and the boundary value problem 

L(f)h = k onX, B(g)h = l ondX 
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has a unique solution h G &*(X9 V) for all k G G°°(X9 W) and l G e°°(dX9 Z). 
Then the solution h = S( ƒ, g)(k91) defines a smooth tame family of linear maps 

s-, (u ç e°°( x, Dr(v9 w))) x e°°(dx, DS(V, z)) 
xe°°(x9 w) x e°°(dx, z) -> e°°(x, v). 

PROOF. Again we must choose gradings on our spaces with the properties 
listed before, and we also need the condition that for / G Q°°(dX9 Z) and 
ïee°°(x9Z) 

||/||0 = in f{ | | / | | 0 : / | a^=/} . 

This condition works for the grading Cn+y but not for Ln
p. Another possibility 

that works is to take II II n as the norm in the Besov space B^d/p)+n where d is 
the dimension (with &m$X= dim X- 1). Then we have Cy C Bffi C C° 
for y > d/p. 

Choose/0 G U. Since the equation L(f0) is elliptic, the boundary condition 
B(g0) is coercive, and the solutions are unique, we have a strong Gârding's 
inequality 

\\h\\r<C(\\L(f0)h\\Q+\\B(g0)h\\,-,). 

As before, if II ƒ - / 0 1| 0 < e and II g - g0 II r_j < 8 we have 

l l * l l ,<C( | |L ( / )A | | 0 + | | J (g )A | | r _ , ) + C ( | | / - / 0 | | 0 + | | g - g 0 | | r _ 1 ) | | A | | r . 

When e > 0 and 8 > 0 are small enough then 

HAII r<C(| |I.(/)A|lo+ll2Kg)A|l r_,). 

3.3.6. LEMMA. If | | / - / 0 | | 0 < e , l l g - g 0 H , - , < * . and L(f)h = k and 
B(g)h = I then for alln> r 

HAH. <C(||fc|| ) l_ r+||/| | ( l_J + C(||/ | | ( I_ r+||g| | l l_,)(| |*| |0+II/H r_,). 

PROOF. This holds for n = r. We assume it is true for some n and proceed by 
induction. Let v be a vector field on X which is tangent to the boundary, so 
that v | 3 X is also a vector field on dX. We choose first order linear differential 
operators Vv on e°°(X,V)9 e°°(X,W) and e°°(dX9 Z) whose symbols are 
aV t ?( |) = (£, t)>. Then we also get first order linear operators on 
e°°(X9 D\V9 W)) and e°°(dX9 D\V9 Z)) so that 

VVL( f ) = L{ ƒ )V0 + L(VJ), VvB(g) = B(g)vv + B(vvg). 

By the induction hypothesis, for all h 

\\h\\n^C(\\L(f)h\\n_r+\\B(g)h\\„_s) 

+ C(\\f\\„-r+\\g\\„-s)(UL(f)h\\0+\\B(f)g\\r_s). 

Applying this to Vvh instead 

IIV.AII,, < C( | |L( / )v o A| | n _ r + \\B(g)vDh\\n-s) 

+ C(\\ ƒ II „_r + | |g| |„_,)(| |L( /)V„A||0 + \\B(g)vvh\\r-s)-
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Now we have 

\\L(f)VvH\\n-r< tiVvk\\n-r+ II L( V„/)A || „_„ 

HB(g)V0h\\„-s < IIV^II,- , + \\B(vvg)h\\„_s 

and 

HL(vc/)AII I 1_r<C(||A|| l l+||/ | |1 I_r + 1 | |A||r), 

ll*(v0g)*ll l,_,*:C(||A|| )1+||g||I,_1+1 | |A||r) 

and from the induction hypothesis 

HAH, < 0(11*11.-, + ||/||„_J + C(\\ ƒ ||„_r + Il g||„_,)(!!kHo + 11/11,-,), 

IIAIIr<C(||Jfello+ll/llr-,). 

Combining these estimates and interpolating where necessary 

\\L(f)vvh\\„-r + \\B(g)vvh\\n-s^C(\\k\\„_r+l + II / II „_,+ ,) 

+ C(||/| |11_r+I + ||g|| ),_,+ I)(l|A|lo+11/11 , - J . 

Then using this estimate for n and for 0 

i i v ^ i i ^ c o i f c i i , , . ^ , + H/II „_,+,) 

+ C(H ƒ II,,_,+ , + llsll(,_,+ I)(ll*ll0+11/11,-,). 

This estimates all the tangential derivatives, but we must still estimate the 
normal derivative at the boundary from the equation L{f)h — k. 

Choose local coordinates near the boundary JC1,. .. ,xd~l and xd >• 0. Let K 
be a compact neighborhood of a given point and let II h II nK denote the «-norm 
over K. We can cover the boundary with a finite number of patches of this 
sort. Then for n > r we will have 

IA IU I^ IS I IV .A IU + S S 
K a 

drha 

(dx»y n-r+\,K 

summing over a finite number of vector fields v tangent to the boundary and a 
finite number of patches K at the boundary. On the patch K we can write 

L{f)h = L*(f)h + d^LjU)fj + L0(f)h 
j=\ dxJ 

where Ly( ƒ ) and L0( ƒ ) are linear differential operators of degree r — 1 whose 
coefficients are just some of the coefficients of L( ƒ ), and where 

L*(f)hfi = 2ff 
drha 

and ƒƒ = oL(f)(dxd) is the symbol of L( ƒ ) in the normal direction. Then f£ 
is always invertible, and if \\f — fo\\0< e with e sufficiently small we will have 
the estimate 

i i ( / / r ! iu*<c( i + iij*nM>k). 
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We can solve for 

and we see that 

drha 

drh" 

(dxd) 
- = 2 ( f!YxL*{f )h» 

(dxdY 
C{\\L*{f)h\\mtK+\\f\\m,K\\L*{f)h\\0tK). 

m,K 

Now L*( ƒ )h = k- ZdjZ\ Lj(f)dh/dxJ - L0(f)h and 

w>£ dxj <c 
m,K 

M dh 

r-l,K OX-ML + r-l.JC II OXJ 

WL0(f)h\\m,K^C{\\h\\m+r_UK+\\f\\m,K\\h\\r_hK). 

We can extend d/dxJ outside of A' to be a smooth vector field tangent to the 
boundary f or 1 <y < d — 1. This gives us the estimate 

l l^ / ÏAIL^cf l IAr lL + SlIV.AIL^-. + ll/ILIIAII,) 

summing over a finite number of v tangent to the boundary. Since 
IIL*(/)A|lo*<C||A||rwehave 

d'h 

We now let m = n 

drh II 

c(ii*iim + 2iiv0Aiim+r_I + n/iijiAiir). 

r + 1 and get 

<c( | |A: | |„_ r + 1 +2l lv < J / i l l n +l l / l l„_ r + ,IIA||r). 
(dx"Yl_r+hK 

Combined with our previous estimate on II vvh \\ n we get 

l|A||„+I < C(||AH„_,+ , + 11/11 „_,+ ,) 

+ C( | | / | | ( l _ r + I + ||«|| „.^.KHAIIo+ll/ll , . ,) . 

3.4. Symmetric systems. Let I be a compact manifold with a smooth 
boundary dX. Let V be a vector bundle over X, and let V* — L(V, R) be the 
dual bundle. We write ( , > for the pairing of V and V*. Let L( ƒ )h = k be a 
linear differential operator of degree 1 mapping sections h in V to sections k in 
F* with coefficients ƒ in the bundle D\V, V*) of all such operators. We say 
L( ƒ ) is a symmetric operator if its symbol oL(f)(£) is symmetric, so that for 
all hx and h2 in V 

(oL(£)huh2)= (oL{i)h2ihx). 

We say that the boundary dX is nowhere characteristic if oL(v)h ¥= 0 when 
h ¥=0 and v =£ 0 is a normal covector at the boundary. In this case the 
boundary dX divides into two components 9+ X and d~ X, such that for an 
inward pointing normal covector v > 0 we have oL(v) positive-definite on 
8 + X and negative-definite on 3 " X. 
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We wish to solve the symmetric system L(f)h = k with given boundary 
values h — h+ on d+ X and no condition on d~ X. This will be possible 
provided there exists a function / on X such that oL(f)(dt) is always 
positive-definite for the covector dt G T*X. This result is due to Friedrichs. We 
call t a positive weight function. 

LEMMA. Let L(f) be a symmetric system nowhere characteristic at the 
boundary. If there exists a positive weight function, then both 3 + X and d~ X are 
not empty. 

PROOF. Let x and x be the points where / has its minimum and maximum. If 
oL(f)(dt) is positive-definite, surely dt =£ 0. Hence x and x He in dX. At x the 
covector dt is an inward pointing normal covector, and at x it is an outward 
pointing normal covector. Then x Ed+ X and x G d~ X. 

It is also possible to consider the case where X is a manifold with corners. At 
the corner we allow X to be modeled on Rm~2 X {R > 0} X {R > 0}. We 
must assume that at each corner there are two boundary components intersect­
ing, one of which belongs to d+ X and the other to 8~ X. The following 
argument goes through unchanged, because in our estimates we take deriva­
tives parallel to 9+ X only, and they need not be parallel to 3~ X also. This is 
important for finding local solutions of the equation, or for showing that 
compact support is maintained in a certain set. 

Let DX
S(V, V*) denote the subbundle of the vector bundle D\V, V*) of first 

order operators which are symmetric. Let h G Q°°(X9 V) and k G G00^, V*). 
In local coordinates h — {ha} and k = {ka}9 and the pairing is given by 

a 

Then locally ƒ = { f^, fap) and the operator is given by 

a,i "X a 

We see that L( ƒ ) is symmetric if and only if f^ — fja. The zero order terms of 
fap need not be symmetric. We let U denote the open subset of 6°°( X, Z>]( V, V*)) 
of coefficients ƒ of symmetric operators which are nowhere characteristic at the 
boundary and have at least one positive weight function, 

3.4.1. THEOREM. For each fGUçe°°(X9 D*(V, V*)), each k G e°°( X, V*) 
and each h+ G (2°°(3+ X, V) there exists a unique h G e°°(X9 V) with L(f)h = k 
and h \ 9+ X = h+ . The solution h = S(f)(k, h+) defines a smooth tame family 
of linear maps 

s: (uc e°°(x9 DX
S{V, v*))) x Ö°°(x, v*) x eco(d+x, v) - e°°(*, v). 

PROOF. We shall show how to derive the a priori estimates that prove S is 
tame. If we replaced functions by distributions and derivatives by differences, 
we could also prove the necessary regularity for the solution, but we leave this 
to the reader. 
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To begin, we choose an inner product ( , > on the bundle V giving an 
isomorphism between V and V*. We also choose a smooth positive measure on 
X given locally by d\k — fx(x)dx where p(x) is a positive function and dx is 
Lebesgue measure. Finally we choose a smooth normal cotangent vector field v 
on dX pointing inward. Then there is a uniquely determined smooth positive 
measure dfL on dX such that dp = vdfi. In local coordinates if x = (x\... ,xm) 
with xm>0 and x = (x\...,xm~l) then dfx = [i(x\.. .,xm)dx\. .dxm and 
dji = ji(x\... ,xm~x)dx\ . .dxm~l and v = v(x\... ,xm~x)dxm. Then we have 

li(x\...,xm-\0) = ^ ( X 1 , . . . , J C W - 1 ) / X ( X 1 , . . . , J C W - 1 ) . 

We define inner products on e°°(X,V), e°°(dX9V) and e°°(3+X,F) by 
letting 

((h,k))=f(h,k)d(i, 

((h,k)),=f (h,k)dn, {(h,k))+ = f (h,k)dji 

and we let 

l l * l l g = « A , A » , I IAIIg ,a=«A,A» 8 , IIA||gp + = « A , A » + . 

We shall measure h E 6°°(X, V) in a norm \\h\\n which measures the size of 
the first n derivatives in the L2 norm \\h\\0. Similarly for k, and for h+ = 
/Î | 3 + A" we have | | / J+ || „ + analogously on 8+ X But we shall always measure 
ƒ G Q°°(X, D[(V, V*)) in a norm II ƒ II „ which measures the size of the first n 
derivatives in the supremum norm II ƒ II0 — sup^ | f(x) | . It will be clear from 
the context which is meant. Both gradings satisfy the interpolation inequalities, 
and| |y»| lo<C| | / | lol lA| |0 . 

We define the divergence of a section ƒ = {/a^, faP} of the bundle DX
S{V, V*) 

to be the section div( ƒ ) = / = {fap} of the bundle L(V, V*) given locally by 

fafi = 2 J-Ü + 2 / ^ lOg/lto - Va,-

Thus div is itself a linear first order operator. We get the following formula. 

3.4.2. LEMMA. For all h G 6°°(X, V) 

2 ( < L ( / ) * , A > ) = ( ( d i v ( / ) A , A » - « a L ( / ) ( F ) A , A » a . 

PROOF. This follows at once when we integrate by parts. 
Pick an f0 G U. Then for all ƒ in a neighborhood 11 ƒ — f01| 0 < e of f0 the 

symbols oL(f)(dt) on X and oL(f)(v) on a neighborhood of 8+ X will be 
uniformly positive-definite and oL(f)(v) on d~ X will be negative-definite, for 
e > 0 sufficiently small. If in addition || ƒ - f01| x < e then II ƒ II, < C. We let Ü 
denote any open neighborhood of f0 such that for all ƒ G U the symbols 
oL(f)(dt) and oL(f)(v) are uniformly positive- or negative-definite and II ƒ II ! 
is uniformly bounded. 
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3.4.3. LEMMA. For allfGÜ and all h 

-((L(f)h,h))^C{\\h\\2
0+\\h\d+X\\l+). 

PROOF. This follows from Lemma 3.4.2. Since || ƒ ||, < C on £/, ||div( ƒ )|| 0 < 
C, and 

| « d i v ( / ) A , A » | < C | | A | | g . 

On the other hand, oL(f)(v) is positive-definite on 8+ X and negative-definite 
on 3"X, while || ƒ ||0 < Con Ü, so 

((oL(f)(v)h,h))d<C\\h\d+X\\l+. 

This proves the lemma. 
Next we introduce the parameter/?, and we measure e~pth using the weight 

function t. The following estimates will hold for all p sufficiently large with 
various constants C all independent of p. We always take ƒ E Ü and let 
k = L(f)hsindh+ = h\d+X. 

3.4.4. LEMMA. We have the estimate 

pWe-t'hWz < C( | |* -"* | | 0 + {pWe-P^ ||0f + ). 

PROOF. For any function <j>onI 

L( / )*A = *L(/)A + aL(/)(</*)A 

and taking <j> = e~pt 

L{f)e~pth = e~r'L(f)h -poL(f)(dt)e-pth. 

Then 

p((oL(f)(dt)e->%e-»h)) 

= ((e-"L(f)h,e-"h))- ((L(f)e-'%e-"h)). 

In the first term oL(f){dt) is uniformly positive definite for ƒ E Ü, while the 
last term is bounded by Lemma 3.4.3. Thus 

/7||e-^^/i[|g ^ Cl le -^^ | | 0 | | e -^^ | | 0 -h CHe-^^llg -h CTIIe-^^^ ll§,+ . 

When p>2C we may eliminate the term C\\e~pth\\l on the right. Then 
completing the square gives 

h/p lk-^ | | 0 - -^ lk-^ | | 0 <j\\e-ptk\\l + C\\e-p<h+\\l + 

which gives 

{i II e-"h II o < - p II e-"k II o + CII iT"A+ Il 0 + 

which proves the lemma. 
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Now we prove the main estimate 

3.4.5. LEMMA. For alln>0 we have 

p\\e-"h\\H< C ( l k ' ^ | | w + &\\e-n+ \\Ht + ) 

+ C(||/||w+1+p-)(||e-^||0+i/plle-^A+||0f + ). 

PROOF. The result holds when n = 0 by the previous lemma. We assume it is 
true for some n and proceed by induction. To simplify the discussion we let 

£„= l |e- " fc | | „+ /He-" / .+ ||„> + 

+ (II / ll»+i +/>")(lle-"*||0 + Jp\\e-»h+ ll0> + ) 

so that we have 

p\\e-"h\\H<En 

for the induction hypothesis. We point out first that by interpolation (since 
11/11, <C) 

( l l / l l /+ ,+y) l le-"*IL<C£:J I , 

i}\fh+x+ P>)Jp\\e-»h+\\m, + <CEH 

where /, m ̂  0 and / + m < n. As a consequence we have 
pEn<CEn+l. 

We begin by estimating tangential derivatives. Let v be any smooth vector 
field tangent to the boundary. Choose a first order linear differential operator 
V„ on sections of V « V* with symbol 

0V„(€) = <«,»>• 

Then there is a uniquely determined operator v„ on sections of Dg(V, V*) with 

VvL(f)=L(f)vv + L(vvf). 

In general if II ƒ II0 < C we have 

IIL(/)A||„<C(||A|| I 1 + I + | | /IUIA|| I) 
by interpolation. Now since 

Vv(e-"k) = e-"'Vvk-pe-P'(vvt)k 

we have 

II e~p' V„* II, < CII e~»k II „+ , + Cp II e-P'k \\„<CEH+X. 

Also since II v„ ƒ II0 < CII ƒ II, < C we have 

IIL(v r/)e-"A||,<C(lk-"A||1I+1 + ll/ll l l+,lle-"All1) 
and 

pIIoL(V„f )e-"h ||„ < C(/>IIe~"h II „+/>II ƒ II „+1IIe""AII0). 
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Since e~p'L(v0f) = L(vJ)e~p' + poL(yvf)e~<", by interpolation we get 

lle-"L(v„/)AH l ,<C||e-"A||II+1 + C( | | / | | l ,+ 2+|»-+ I) | |e-"A| | 0 . 

But we know that for/? s* 1 

II e~"h II o < /> II e~"h || o < C( II e-"k II0 + i/p II e_"A+ II0. + ) 

so 

||e-"L(v l )/)AIIB<CI|e-"A|| (1+I + C£ l l+1. 

Now e-<"L(f)vvh = e~>"vvk - e-
p'L{vJ)h, so that 

lk-"L(/ )v B A| |„<CHe-"A| | , + 1 + C£B+1. 

We now apply the induction hypothesis to vvh instead of h. This gives 

p\\e-"vvh\\n<c(\\e-<"L{f)vvh\\n+ {pWe-p'Vvh\*+ XWn, + ) 

+ C(\\f\\„+}+p")(\\e->"L(f)vvh\\o+Jp\\e-p'Vvh\d+X\\0, + ) . 

Since v is parallel to the boundary, and 

e-"vvh = Vjie-t'h) +p{vvt)e-P<h 

we have 

lk"^V0A|3+^IU i + <Clk-^A+ | |n + I > +H-C jplk-^A+ | | l l f + . 

This gives us 

p\\e-"vvh\\*<C\\e-»h\\H+x + CEn+x. 

Now Vv(e~p'h) = e~p,Vvh + p(vvt)e~p'h so we get 

/»IIV„(e-"A)llII<C|k-"A||.+1 + Cp\\e-"h\\„ + CEn+l. 

By the induction hypothesis 

p\\e-»h\\l,<CpE.<CEn+l 

so we have the following estimate. 

3.4.6. LEMMA. If v is parallel to the boundary 

p\\Vv(e-pth)\\n<C\\e-p'h\\n+x + CEn+l. 

Next we must estimate the normal derivatives. To do this, we pick a finite 
number of vector fields vl9...9vm_x,vm which span the tangent space at each 
point, such that vx,... 9vm_x are all parallel to the boundary, while (v, vm)= 1. 
We choose operators V, as before with symbols 

ov,U) =<»,,£)'• 
Let g = (g0, g,,. . . ,gm) be a section of the bundle Ls(V,V*)m+\ that is, 
(m + 1) sections of LS(V9 V*). We can form the operator 
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with ƒ E Dliy, V*). This defines a linear vector bundle map 

A: Ls(V9V*)m+l -*Dl
s(V,V*) 

with Ag = ƒ. Since the vector fields span TX9 A is surjective. Then we can find 
a smooth right inverse (which is not unique) 

B:Dl
s(V,V*)->Ls(V9V*)m+l 

withAB = I.Let 

B(f) = (B0(f)9Bl(f)9...9Bm(f)) = (g09gl9...9gJ. 

Then each Bj is a linear vector bundle map 

Bj:D*(V9V*)-*Ls(V,V*) 

and for any ƒ 

L(f) = BoU) + *i( / )V, + • • • +Bm( ƒ )vm. 

The symbol of L( ƒ ) is 

*£( ƒ)(«) = 2 (è,>j)Bj(f) 

and since t?,, . . . , vm_, are parallel to 3 A", 

O L ( / ) ( F ) = * „ ( ƒ ) . 

For all ƒ E Ü the automorphism Bm(f) is uniformly invertible on a neighbor­
hood of the boundary. Let <j> be a smooth function with compact support in 
this neighborhood which is identically 1 on a smaller neighborhood of the 
boundary, and let 

CjU)=*Bm(f)~*BjU). 

Then <j>Bm(f)~l and each Cj(f) is a smooth nonlinear vector bundle operator, 
and for all ƒ E f / a n d n > 0 

HBm(fV%< C(l + II ƒ ll„), \\Cj(f)\\n ^ C(l + l l / I I J . 

We can write 

*Vm = 4>Bm(fYXL{f ) - C0(ƒ) - 2 C / ƒ ) V , 

and apply this formula to e~pth. Thus 

$Vm{e->>th) = <i>Bm{f)-xL{f)e-?,h-C0{f)e-<"h- 2 C/ / )y , (e""A) . 

This gives us 

ll*V„,(e-^)||„ < C{\\L(f)e~'»h\\n + II ƒ \\n\\L(f)e-"h\\0) 

+ C( |k -"A | | l l + | | / | | 1 , | | e - "A | | 0 ) 

+ C 2 (\\Vj{e-"h)\\n+ \\f\\JVj(e-"h)\\0). 
j<m 
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SinceL(ƒ>-''/* = e~ptk -poL(f)(dt)e~pth 

\\L(f)e-»'h\\n^ C\\e~ptk\\n + Cp(\\e-p'h\\n + | | / | | nll*-"A||0). 

By interpolation we get 

Hvm(e-pth)\\n^ C{}\e-"k\\m + II ƒ WJe^kW») 

+ Cp{\\e-pth\\n+ \\f\\n+x\\e-pth\\0) 

+ C 2 \\Vj(e-pth)\\n. 

Now/? || e~pth || „ < CEn by the induction hypothesis, while 

/Hi/iUiiie"'7Hio<a^ 
also. Thus we get the following result. 

3.4.7. LEMMA. We can find a differential operator Vm with symbol oVm{v) — I 
on 9+ X, a finite number of operators V, acting parallel to the boundary, and a 
function <j> equal to 1 in a neighborhood of the boundary, with 

Hvm(e-P'h)\\n < C 2 IIV,(e-"A)||„ + CE„. 
j<m 

Now clearly we have an estimate 

ll*IL+i < cl\\h\\H + Hvmh\\n + 2II v0AII J 
V 

where v runs over a finite number of vector fields parallel to the boundary. 
Applying this to e~pth and using Lemmas 3.4.6 and 3.4.7 we get 

p\\e-"h\\n+l<C\\e-'"h\\„+] + CEn+i 

remembering that pEn < CEn+l. Now if p is large enough compared to C 
(which may depend on n) we get 

p\\e-»h\\K+l<CEn+l 

which completes the induction. This proves Lemma 3.4.5. 

3.4.8. COROLLARY. For all n 

\\h\\n < C(\\k\\n + \\h+ \\nt+) + Cll ƒ ll„+1(ll*:llo + U+ | | 0 t + ) . 

PROOF. Take any p large enough in Lemma 3.4.5. This shows that h = 
S(f)(k,h+) satisfies a tame estimate of base zero and degrees 0 in A; and h+ 

and degree 1 in ƒ on a II II ! neighborhood of any f0 G U. Thus S is tame. Since 
it is a family of inverses of a smooth tame linear family, S is even a smooth 
tame map. 

Part III. THE NASH-MOSER THEOREM 

III.1. The proof. 
1.1. Statement of the theorem. 

1.1.1. THE NASH-MOSER THEOREM. Let F and G be tame spaces and P: 
U QF -> G a smooth tame map. Suppose that the equation for the derivative 
DP{ f)h = k has a unique solution h — VP( ƒ )k for all f in U and all k, and that 
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the family of inverses VP: U X G -> F is a smooth tame map. Then P is locally 
invertible, and each local inverse P~~l is a smooth tame map. 

Observe by contrast with the inverse function theorem in Banach spaces that 
we need to invert the derivative DP(f) for all ƒ, not just one, and the whole 
collection of inverses must be "nice". 

Of course we also have partial results if DP is merely injective or surjective. 
Let P be a smooth tame map. 

1.1.2. THEOREM. Suppose DP is injective with a smooth tame family of left 
inverses VP. Then P is locally injective. 

1.1.3. THEOREM. Suppose DP is surjective with a smooth tame family of right 
inverses VP. Then P is locally surjective. Moreover in a neighborhood of any 
point P has a smooth tame right inverse. 

1.2. Normalizations. To begin the proof of the Nash-Moser theorem we make 
several normalizations which simplify the proof of the theorem. Let F and G be 
tame graded spaces and let P: U C F -> G be a smooth tame map of an open 
set U in F into G. We suppose that DP(f)h = k has a solution h = VP(f)k 
where VP: U X G -> F is also a smooth tame map. 

1.2.1. LEMMA. We may assume F= 2 (5 ) and G - 2(C) for two Banach 
spaces B and C. 

PROOF. If VP is invertible, then F and G are tamely isomorphic, and we may 
assume F= C, identifying them by DP(Q). Since F is tame, we can find an F 
with FX F^ 2(5)_for some Banach space B. Define a new map P: U Ç 2 (5 ) 
-* 2 ( 5 ) by letting U = U X F and 

P(fJ) = (p(f)J). 
Then we have 

DP( ƒ, ƒ )(A, h) = (DP(f)h, h) = (k, k) 

which has the solution 

VP( ƒ, ƒ)(* , *) = (VP(f)k, k) = (A, A). 

Then P satisfies all the same hypotheses as P. 
If DP is only injective with a left inverse VP, we can let F X F » 2 (5 ) and 

G X G « 2(C) and define a new map P: U C 2 (5 ) -» 2 ( 5 X C) by letting 
U= UXFtrnd 

?(/,/>(o,/>(/),o) 
since 2 ( 5 X C) = 2 (5 ) X 2(C) = FXFXGXG. Then 

DP( ƒ, ƒ )(A, A) = (0, A, DP(f)h90) 

is also injective with left inverse 

VP(f, / ) ( / , /, k9 k) = (VP(f)k, Î) 
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and P satisfies the same hypotheses as P. If DP is only surjective with a right 
inverse VP, we let U = U X F X G X G and define a map P: U c 2 ( 5 X C) 
-* 2(C) by letting 

* ( ƒ , ƒ . * , * ) = ( * ( ƒ ) . * ) • 
Then 

DP(f> I Z> ê)(h, h, k, k) = (DP(f)h, k) 

is also surjective with right inverse 

VP(f, I g, g)(k, k) = (VP(f)k, k) 

and P satisfies the same hypotheses as P. 
We wish to find a solution of the equation P(f) — g. Given any f0 E U C F 

with P( f0) = g0 G G, we shall find a solution ƒ near/0 for any g near g0. 

1.2.2. LEMMA. We may assume f0 = 0 and g0 = 0, and /ie«ce that P(0) = 0. 

PROOF. We may replace P(f) = g by P(f) = g where ƒ = ƒ —^ and 
g = g — g0. Then P satisfies the same hypotheses as P, since it differs only by 
composition with translations, which are invertible. 

The maps P9 DP, D2P and VP will all satisfy tame estimates on a 
neighborhood of zero. It is convenient to normalize these estimates. 

1.2.3. LEMMA. We may assume that P(f ), DP(f)h9 D2P(f)h2 and VP(f)k 
satisfy tame estimates of degree 2r in ƒ, r in h, and 0 in k (for some r > 0) and 
base 0 on the set (II ƒ II 2r < 1}. 

PROOF. On the space F = 2 ( 5 ) of sequences ƒ = {fk) of elements in B we 
have the operators vp: F -» F given by (Vpf)k = e77*/*» which satisfy II v * / Il n 

— II ƒ II *+/>• Similar operators exist on G = 2(C). We may replace P by a new 
map of the form 

?(ƒ) = v v ( W ) . 
If P satisfies an estimate 

H/ ,( / ) l l , ,<C(l +11/11,+,) 

on || ƒ || a < 8 for n > b, then P will satisfy an estimate 

| | f ( / ) | | m < C ( l + | | ƒ || „,+,_,+,) 

on || ƒ || a_q < S for all m > b — <?. By choosing /? and # large enough we can 
make P, DP, D2P and FP satisfy tame estimates of base 0 on a set {11 ƒ 110 < 8}. 
Of course we cannot make them all have degree zero, since the degree of DP 
plus the degree of VP will be an invariant. But we do have enough freedom to 
make VP(f)k have degree 0 in k. Then the degrees of P ( / ) , DP(f)h, 
D2P(f)h2 and VP(f)k in ƒ and h are finite, so they will be at most 2r in ƒ and 
r in h for some r. For convenience we assume r > 0. Finally if we replace P( ƒ ) 
by P( f ) where ƒ = c/for some constant c, this dilation will make 8 = 1 . Since 
the dilation and the operators vp are all invertible linear maps, the other 
hypotheses of the theorem all remain valid. 
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1.2.4. LEMMA. On \\ f \\ 2r < 1 we have estimates 

\\P(f)K^c\\f\\„+2r, 

\\DP(f)h)\n<C(\\h\\n+r+\\f\\n+2rH))r), 

\\D2P(f){hl,h1}\\n<C(\\hl\\n+r\\h2\\r+\\hl\\r\\h2\\n+r 

+ ll/ll„+2r IIA,llrIIA2llr), 

IIW»(/)*ll ,<C(| |*| | , ,+ |l/llI,+2,ll*llo) 
for every n> 0 with a constant C which may depend on n. 

PROOF. The second, third and fourth estimates are immediate consequences 
of the fact that the maps satisfy tame estimates of degree 2r in ƒ, r in h (or hl 

and h2) and 0 in k and are linear in h (or hx and h2 separately) and k. For the 
first estimate we would expect \\P(f)\\n < C(\ + \\f\\n+lr\ but P(0) = 0, so 
we can do without the 1 in the estimate. This may be seen by integrating the 
second estimate using the formula 

P(f) = P(0)+ (lDP(tf)fdt 
Jo 

which gives us the estimate 

I I^/Î I I^COI/I I^+II/ I I , ,^!!/!! ,) . 
Since II ƒ II n+r < CII ƒ || n+2r and II ƒ II r < CII ƒ II 2r < C the result follows. 

1.3. Injectivity. In this section we only need that DP is injective with a left 
inverse VP. 

1.3.1. THEOREM. There exists ao>0 such that if II f0 II 2r < 8 and II fx \\2r^8 
then 

11/, - / o l l o < C | | P ( / 1 ) - P ( / 0 ) i l 0 . 

Hence P is injective on \\ f 112r < 8. 

PROOF. We use Taylor's theorem with integral remainder 

P(A) = P(fo) + DP(f0)(fl-f0) 

+ f\\ - t)D2P{(\ - t)f0 + /ƒ,)(ƒ, - fofdt. 

Since VP(f0)DP(f0)h = h we have 

fx-fo=VP{f0)[p{fx)-P{f0) 

- j \ \ - t)D2P((l - t)f0 + /ƒ,)(ƒ, -fofdt}. 

Using the tame estimates on 11 ƒ 112r < 1 

l l / i - / o l l o < C H P ( / 1 ) - P ( / o ) l l o + C | | / 1 - / o l l J . 

Now by interpolation 

H/ , - / o l l? '«C | | / 1 - / o l l 2 r l l / 1 - / o l lo 
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and ll /1-/oll2 r<ll/1 l l2r+ II/o"2r<28. Hence 

II/i 'foh< C\\P(fx) ~ P(/o)ll0 + 2C«|| ƒ, -/olio-

If we take ô < 1/2C the result follows. 

1.3.2. COROLLARY. If II f0 \\2r^à and II ƒ, II 2r < ô /or /te same ô as te/ore, 
then for alln>0 

\\fl-fo\\n<C\\P(fl)-P(f0)\\H 

+ C(\\f}\\„+2r+\\fJn+2r)\\P(f])-P(f0)\\Q. 

PROOF. Using the higher norm estimates 

\\D2P({1 - 0/o + 'ƒ,)(ƒ, - fofh < C\\ ƒ, - /0 | |„+r | | ƒ, - / 0 l l r 

+ C(ll/1ll„+2r+ll/0IL+2r)ll/1-/oll?. 

By interpolation 

II/, -/oll.+ ,ll/i - /o l l ,< CU/, - / o lU^I I / , -/olio, 

H/i-/oll?<C| |ƒ,-/„Il2 r l l / , - /olio-

But 

ll/l-/oll» + 2,<l l / lH» + 2 ,+ H/oll- + 2„ H / l - / o l l 2 r < C 

SO 

\\D2P((\ - t)f0 + /ƒ,)(ƒ, - /o)2H„<C(| | / t | |n + 2 r + | | /0 | |„+ 2 f) | | / , -/olio-

Then using the previous formula and the higher norm estimates on VP 

H/i-Zoll-^ClWO-PU)!!. 

+ C(ll/1lln+2,+ ll/0ll„+2r)llP(/1)-P(/o)Ho 

+ C||2)2i»((l-/)/o + /ƒ,)(ƒ, -/o)2H„ 

+ C(ll/,ll„+2r+ ll/0ll„+2,)l|Z>2i>((l - 0 / o + '/ ,)(/, -/o)2Ho-

Plugging in our earlier estimate on D2P and using || ƒ, — f0\\0 < C\\P(fx) — 
P( /0)ll0 from the previous theorem completes the proof. 

1.3.3. COROLLARY. We also have 

Wfx-U-VP{f0)[P{fx)-P{f0)]\\n 

<cn/1-/0iu+2rii/1-/0ii0 + cii/0iu+2rii/1-/0ng. 

PROOF. By our previous estimate 

| |/>2i>((l-0/o + >/,)(/, -/o)2H„ 

< CH/, -/ol lB + 2 , l l / . -/oil + Cll/0ll„+2r|| ƒ, - /o i l2 
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since II ƒ, II „ + 2 r < II f0 II n+2r + || ƒ, - f0 \\ n+2r. We can rewrite our formula as 

fi-fo-VP(fo)[Hfx)-P(fo)] 

= -VP(f0)f\l ~ t)D2P((l - 0/o + *ƒ,)(ƒ, - fof dt. 

Then using the estimates on VP the result follows. 
1.3.4. Problem. How much more is true? Is II ƒ ll„ < C\\P(f)\\n+s for some 

s? Is the image of P relatively closed in a neighborhood of zero? Is P a 
homeomorphism onto its image? Is the image a submanifold? Does there exist 
a smooth tame left inverse for P locally? 

1.4. Smoothing operators. The proof of the Nash-Moser theorem involves the 
use of smoothing operators, which are particularly easy to construct on the 
model spaces 2(5) . For each t we construct a linear map St: 2 (5 ) -» 2 (5 ) 
such that St = 0 for / < 0 and St -> / as t -> oo. Choose a smooth function s(u) 
with ,s(w) = 0 for u < 0 and s(u) = 1 for w > 1, while 0 < .S(M) < 1 in be­
tween. If ƒ = {/J is a sequence in 2 (5 ) we let 

(S,f)k = s(t - k)fk. 

The smoothing operators St satisfy the following estimates. 

1.4.1. LEMMA. For allm<n 

IIVII^c^-^il /IL, W(i-st)f\\m^Ce^-^\\f\\n 

with a constant C which may depend on m and n. 

PROOF. Recall that 

ll/ii,, = 2«"*il All*-
k 

Now \\(SJ)k\\B< II/Jl B for all t and k9 while (SJ)k = 0 for t < k and 
([/ - St]f)k = 0 for / > k + 1. Thus 

\\stf\\n<2e»k\\fk\\B^e^<\\f\\m 

k^t 

and 
\\(I-S,)f\\m* 2 em*IIAIIB<Ce<'"-">MI/ll(, 

k^t-\ 

with C = en~m. 

1.4.2. COROLLARY. Ifl^m<n then we have the interpolation estimate 

\\f\\n
m-l<c\\f\\rm\\fK-1 

with a constant C depending on /, m and n. 

PROOF. For all / 

I I / I L ^ I I ^ / I U + IK^ - ^J / I L^C^ -^MI / I IZ + C ^ - ^ I I / I U . 

If ƒ T^ 0, we can choose t with the last two terms equal. This happens when 

^ -^ l l / I L / l l / l l , . 
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Then 

n/ i i r / <cn/ i i r m i i / i i r / 

as desired. 
We shall need to estimate the solution of the equation in 2(5) , 

where c is a constant. Since kt is a smooth path in 2(5) , it is represented by a 
sequence of smooth paths ktJ in B for j = 0,1,2, — Likewise /, is represented 
by a sequence ltj of paths in 5. We define a smooth path at in 2 (5) , 
represented by a sequence a, y of smooth functions with values in 5 , by setting 

Letting a prime denote differentiation with respect to t, we have 
a\j = cs{t-j)atJ 

and 

{atkt)
f = flr(^î + cS/fcf) = a,/r 

Therefore 

atkt = a0k0 + f a,/,dfl. 

Let û̂  r = ae/an so that 

**,/,; = exp|-cj J(T -y) </T j . 

Dividing by a, we get the following result. 

1.4.3. THEOREM. If k't + cS,fc, = /, /fow 

*r = flo,**o + f aeJede-Je=o 
This is of course the classical formula for the solution of a linear first order 

ordinary differential equation, adapted to our space of sequences in a Banach 
space. In order to use the formula we must estimate the kernel ae r Clearly we 
always have 0 < a01 j < 1. 

1.4.4. LEMMA. For all 0, t, andj we have 

ecta0tJ<C(ece + ecj). 

PROOF. If i < 0 or / <y + 1 the result follows from a$ttJ < 1. If 0 >j + 1 
then s(r-j)= 1 for all r > 0, so adtJ,= *"<*'-'> arid ecta$tJ = ec0. If 
0 <7 + 1 then 

fl#f,fj, < exp( -c /^5(r - y ) </r) - e'^'^ 

so ectae tj < ec(y+1) < eceC7. Therefore the lemma holds with C = ec. 
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1.4.5. LEMMA. 7/0 <q<c then 

C eqtaet ,</ /<C(e""+ **')• 
Jt=e 

PROOF. If y < 6 we have a ^ , < Cec(*_'} and 

ƒ eqta$t :dt<Cece e^~c)t dt < Ceq6 
Jt=e ' ^ -^ 

provided q < c. If 6 <j we break up the integral into two parts. Since 

fJ e^adt ,dt< fJ eqtdt<Ceqj 

while since û^t/ • < Ce c ( y - r ) 

/ , C ° ^ % , y A < CecJ re{q~c)t dt < C ^ ' . 

This proves the lemma. 

1.4.6. THEOREM. If k\ + cStkt = ltforO*zt*zT then for allp>0 and for 
0<q<c 

j fV i iM , * < c n*011^ + c j fVi i / j , + I I /J I^A. 

Je=o 

Wkt\\p = ^e"\\ktJB 

Jo 
PROOF. We have 

Je=o 

Since 

we have 
rT . . . cT 
f e«'\\kt\\pdt= f 2eqtePJ\\kti\\Bdt Jo y Jo j ,J 

<r 2e«eMa0,Jk0J\\B+ f' <,, | | l 9 J B d o } dt. Jt=o j \ Je=o ) 

The first part is bounded by 

2 ^ { j r ^ ' V « . ^ } l l * o . > l l « < C 2 e ( ' + ' v l l * o , y l l * < C | | f c 0 | | J , + , . 

The second part is bounded by 

(T l*Pj[fT eq%,tjdt\\\lej\\BdO^(T 2ePJ(e«J + e«e)\\lej\\BdO 

^C(T WleUP+q + e«e\\le\\pd6 Je=o F 

which completes the proof of the theorem. 
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1.5. Surjectivity. We now describe the plan of attack for solving P( ƒ ) = g. If 
we were working with Banach spaces, we could solve an ordinary differential 
equation for a path ft starting at f0 — 0 such that P{ft) goes in a straight line 
from P(0) = 0 to g. The equation is 

f,' = cVP(f,)[g-P(f,)] 
where a prime denotes differentiation of a path with respect to /, and c is a 
constant. Since DP o VP = I we have 

DP(ft)f; = c[g-p(ft)]. 
If kt — g — P( ft) is the error then k0 = g and 

k\ + ckt = 0 

which shows that kt — e~ctg. Thus the error goes to zero as fast as any 
exponential we desire, and ft converges to a solution ƒ of P(f) = g as / -» oo. 

In Fréchet spaces there is no reason to expect that the differential equation 
will have a solution. However the spaces 2(i?) and 2(C) possess the smooth­
ing operators St described before, which may be used to mollify the differential 
equation so that it will have a solution. Since St -> / as t -> oo, the behavior in 
the limit is much the same as before. 

1.5.1. Algorithm. Let ft be the path in 2(J5) with f0 = 0 which solves the 
differential equation 

/ ' = c W » ( S , / , ) $ [ g - P ( / , ) ] . 

We shall show that ƒ converges to a solution ƒ of P ( / ) = gas / ->oo , while the 
error kt — g — P(ft) goes to zero exponentially in any norm. To obtain this 
result we must choose c > 2r + 1. To see that the error does go to zero, we 
observe that kt itself satisfies a differential equation. 

1.5.2. LEMMA. Let ft be the solution of the algorithm and let 

kt = g-P(ft ), /, = [DP{Stft ) - DP(ft )} ƒ/. 
Then 

k't + cStkt = /,. 

PROOF. The algorithm says that 

f; = cvp{stft)s,kt. 
Since DP o VP — I we have 

DP{s,f,)f; = cstkt. 
Now P(f,)' = DP(f,)/;, so 

*; + cS,k, = [DP(S,f, ) - DP{ ft )] ƒ/ = /,. 
The question naturally arises whether the algorithm will have any solution at 

all. We can write the differential equation as 

ft'=V(t,fng) 
where 

V(t,f,g) = cVP(Stf)St[g-P(f)]. 
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Here V maps an open set in R X F X G into F. Observe that V factors through 
a Banach space. For let 2r(i?) denote the subspace of sequences {fk) in 2(2?) 
with fk = 0 for k > T. Then 2r(Z?) is a closed subspace and all the norms II II „ 
are equivalent on 2r(i?). Hence 2r(2?) is a Banach space. The image of the 
smoothing operator St lies in 2r(2?) for t < T. Hence S / /E2 r (2?) and 
St[g-P{f)] £ 2 r ( C ) for t^T. This shows that V factors through the 
Banach space 2 r ( 5 ) X 2 r (C) for / < T. Indeed if we let 

Z(t, ƒ, g) = ( V . St[g - P( ƒ )]), JF( ƒ, fc) - cKP(/)* 

then K = PF o z and Z maps into 2r(J5) X 2 r(C). 
It follows by Theorem 1.5.6.3 that the algorithm has a solution for at least a 

short time with any initial data in its domain. Moreover there will be a largest 
half-open interval [0, w) with w<oo on which the solution exists. We shall 
establish a priori estimates for the solution independent of to, which show that 
the solution remains in the domain of definition and is uniformly continuous. 
If co were finite, the solution ƒ, would converge to a value of ƒ in the domain of 
definition as t -> <o. Since w < oo, the equation still factors through a Banach 
space. We could then solve for a solution on [w, w + e) which extends the 
original solution to [0, w-he), contradicting the optimality of w. It then 
follows that o) = oo, the solution exists for all time, and converges to a solution 
of P( f ) = g as t -> oo. This is the plan. To make it work, we turn now to the 
derivation of the a priori estimates. 

1.6. A priori estimates. We now estimate the various terms in the algorithm 
using the tame estimates on P, DP, D2P and VP. 

1.6.1. LEMMA. For alln>0 and qX) 

\\f,'\\n+,< Ce«'(HM„+ II/,ll„+2rIIMo). 

PROOF. Since// = cVP(SJt)Stkt we have 

II f/\\m+,< C\\Stkt\\n+q + C | | 5 r / r | | n + , + 2 r | | ^ | | 0 . 

Using the estimates on the smoothing operators the result is immediate. 

1.6.2. LEMMA. For alln>0 

\Ut\\n<C\\ft\\n+2r\\kt\\0. 

PROOF. We have 

lt=:[DP(Stft)-DP(ft)]ft>. 

Then 

lt = -B(fnStft){(l-St)fnf/} 

where 

B(f, ƒ ) {* , h) = f' D2P((l - « ) / + uf){h, h) du. 
Ju=0 
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It is immediate that B( ƒ, ƒ ){h, h) is smooth and bilinear in h and h and 
satisfies a tame estimate of degree 2r in ƒ and ƒ and degree r in h and £ and 
base 0. Thus 

\\B{fJ){hJ}\\n<C\\h\\n+r\\h\\r+C\\h\\r\\h\\n+r 

+ C{\\f\\n+2r+\\f\\n+2r)\\h\\r\\h\\r-

Applying this estimate to /,, 

ll/, II, < c\\(i - s,)f,\\n+r H f;\\r + \\(i - s,)ft\\,\\f;\\n+r 

+c(\\fl\\n+2r + \\stft\\n+2r)\\(i-stU\\r\\fl'nr-
We estimate these three terms using the properties of the smoothing operators 
and our previous estimate for//. For the first use 

\\(I-St)ft\\,,+r<Ce-"\\f,\\H+2, and ||/' |lr < Ce"\\kt\\0. 

For the second use 

\\(I-S,)ft\\r<Ce-<*+'*\\ft\\H+2r and || f/\\n+r ^ Ce^\\kt\\0. 

For the third use || Stft \\ n+2r <C\\ft II „+2r and 

\\(I-St)ft\\r*Ce-"\\ft\\2r<Ce-« and \\ft'\\r<Ce"\\kt\\0 

since || ft \\ 2r < 1. Then the lemma follows. 
The following barrier estimate will show that the solution remains bounded 

in the lowest norm. 

1.6.3. LEMMA. If the algorithm has a solution ft on 0 < / < T then with a 
constant C independent of T 

fTe2r'\\kt\\0dt<C\\g\\2r+ c ( /V 'MIM 0 <*) a ' 

PROOF. By our estimate for the solution of k't + cStkt — lt we have (for 
c>2r) 

(Telrt\\kt\\0dt < C||g||2r + cfTe2rt\\lt\\Q + \\lt\\2rdt. Jo Jo 

Our estimates for// say that 

\\ft'\\2r<Ce2"\\kt\\0 and || // | |4r < Ce4»\\kt\\0 

from which we see that 

ïï/tWir^cfe^WkiWodO, 

\\ft\\4r<cfteM\\k§\\0de<Ce2rtfte2r9\\k$\\0de. 

By our estimates for lt we have 

\\ltW^C\\ft\\2r\\kt\\0 and ll/JI2r<C||/J|4r | |*,||o 



182 R. S. HAMILTON 

which shows that 

e2rt\\lt\\0+\\lt\\2r<Ce2r<\\kt\\ore2re\\ke\\0d6. 
Jo 

For / < T the integral from 0 to Ms of course bounded by the integral from 0 
to T. Then if we integrate this estimate the result follows, since 

fe2rt\\lt\\0 + \\lt\\2rdt ^ C^fTe2rt\\kt\\0dt)i\ 

To apply the barrier estimate, let 

KT= (Te2rt\\kt\\0dt. 

Then we have KT < C II g II 2r + CK}. 

1.6.4. LEMMA. Either KT <2C\\g II 2r or KT > 1/2C. 

PROOF. We have KT(\ - CKT) <C\\g\\2r If KT < 1/2C then 1 - CKT > 
\/2andKT<2C\\g\\2r. 

Now KT clearly depends continuously on T. If we choose l lg l l 2 r
< 1/4C2 

with the constant C above, then 2C| |g| |2 r < 1/2C It follows from the 
estimate above that KT cannot cross the forbidden region between 2C| |g| |2 r 

and 1/2C Since K0 = 0, KT must remain on the small side, and we get the 
following result. 

1.6.5. LEMMA. If II g || 2r < ô and 8 is sufficiently small then 

fTe2rt\\kt\\0dt<C\\g\\2r. Jo 

1.6.6. COROLLARY. We also have II ft II 2r ^ C II g II 2r. 

PROOF. We have || f{\\ 2r < Ce2rt \\ kt \\ 0, and the result follows by integrating. 
If Wg\\2r < ô a n d c s < ! t h e n H ftWir ̂  I» a n d t h e solution of the algorithm 
remains in the domain of definition. 

We still have to estimate the higher order norms. We begin with a pre­
liminary step to start an induction. 

1.6.7. LEMMA. If \\ g \\ 2r < 8 and 8 is sufficiently small then 

f>+»'ilMo<a<ciigii2 r + 1 . 
•'o 

PROOF. By our estimate of the solution of k', + cS,k, = I, we have (when 
c>2r+ 1) 

(Te<2r+ !>' II k, II0 dt ^ C II g II 2 r + , + C fe^+ »' II /, II o + II /, II 2 r + , dt. 
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Since | | / / | |2 r < Ce2rt\\kt\\0md II//Il4r+1 ^ Ce^^\\kt II 0 from Lemma 1.6.1, 
we have 

n/,ll2r<c/V''iiMo«/0<ciigii2r, 
•'o 

\\M\Ar+x<cf>r+W\\kt\\<id6<Ce*'+v>tf,e2't\\kt\Ud9 
<CeV'+l*\\g\\2r. 

By the estimate for lt in Lemma 1.6.2 we have 

l l / J l o < C | | / J | 2 r | I M 0 and l l /JI2r+ i<CII/J |4 r + 1 | | fc r | |0 

so that 

e(2 '+1) 'll/,ll0 + | |/, | |2r+1 < Ce<2'+1>'|lgll2rIIMo-

Integrating this estimate we have 

(V^^NIfcJIoA^CllglU^^CIIgl^jV^^ll^l lo*. 

If C| |g| |2 r < 1 we may subtract the last term on the right from the left, and 
this proves the lemma. 

We can now prove the following estimate. 

1.6.8. THEOREM. If ft is a solution of the algorithm and if \\g\\2r ^ S with ô 
sufficiently small, then for alln>2r and all qX) we have 

lT\\ft'\\n+qdt^Ce«T\\g\\n 

with a constant C which may depend on n and q but is independent of T. Note that 
8 > 0 is independent of n and q. 

PROOF. We write n—p + 2r. We shall do the proof by induction on p. 
From Lemma 1.6.1 we have 

so that by the last lemma 

Jo Jo 

This starts the induction for/? = 1. 
Assume that for some/> > 1 and all # > 0 we have 

fo
T\\ft'\\P+q+2rd0<Ce"T\\g\\p+2r. 

Then II / , l l ,+ 2 r< C| |g | | , + 2 r and I I / J , + 4 r + , < C ^ ' ^ ' l l g l l , ^ . Conse-
quently by Lemma 1.6.2 

e<2r+,) 'll/,ll, + ll/ , l l ,+ 2 r + I < Ce<2 '+ I>' | |g | | ,+ 2 r | |M0 . 
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By the estimate for the solution of the equation k't + cStkt = /, we have 

j f > ' + I ) ' I I M , < * < C||g||,+2r+1 + cfo
Te<2r+^'\\lt\\p + \U,\\p+2r+ldt. 

Since 

[Te*'+nkt\\0dt<C\\g\\2r+l 

we have 

j [> ' + I ) ' I IM,<a<C | | g l l , + 2 r + 1 + C l l g l l ^ l l g l l ^ , . 

By Lemma 1.6.1 we have 

IU'll,+ ,+2r+I < C ^ + 2 ' + I ) ' ( I I * , I I , + II/,ll,+2rllM0) 

and since 

H/,ll,+2,<C||g||,+2r and /o>'+ 1>' |IM0<fc<C| |g| |2 ,+ 1 

we have 

When || g || 2r < 8 < 1 we have by interpolation 

Hgll^2rll*ll2r+l<C||g|l1 , + 2 r + 1 | | g | | 2 r <C | | g | l i , + 1+2r 

which eUminates the last term and completes the induction. 

1.6.9. COROLLARY. Iff is a solution of the algorithm on 0 < t < <o < oo and if 
Il g || 2r < 8 with 8 sufficiently small then 

\\f,\\m<C\\g\\n forn>2r 

with a constant C depending on n but independent of t, and 

lim 11/, - ƒ,11, = 0. 

PROOF. The first estimate follows from 

\\ft\\n^f\\fe\\nd0<C\\g\\n 

which is the previous theorem with q — 0. Since 

f T \ \ f t ' \ \ n d t < c \ \ g \ \ n 

with a constant independent of T, we have also 

f l l / / M f < c i i g i i „ < * 
•'0 

and therefore 

lim n i / / | | „ * = 0 
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since II ƒ/ Il n is a continuous function of / with a finite improper integral. Then 

lim l l / , - / T l l „< Urn ft\\fe\\nde = 0 

and the corollary holds. 
As indicated before, we consider the largest open interval 0 < / < c o < o o o n 

which the solution exists. If co were finite, the previous estimates show that 
ft ->/w as / -> co for some fu€F with || /J l 2 r ^ 1- We could then use our 
existence theorem to prolong the solution past co. Therefore co = oo, the 
solution exists for all time, and ft-* f^ as t -> oo for some / M G F with 
II ^ || 2r < 1. Moreover we have II f„ || „ < C II g II n for all n > 2r. Since ƒ/ = 
cVP(Stft)St[g — P(ft)] and ft converges to /^ as / -» oo, we must also have// 
converging as t -> oo. Since for all « 

rii//iu^<ciigiu<oo 
'o 

we must have// converging to zero. Since St converges to the identity 
VP(fJ[g-P(foo)]=0 

and if we apply DP{ƒ„), we get that g - ƒ>(ƒ„) = 0, so ƒ>(ƒ„) = g. Hence4 
is a solution. This shows the following. 

1.6.10. THEOREM. If ||g||2r < * wiYA 5 sufficiently small, then the algorithm ft 

converges at t -» oo to a solution f^ ofP(f00) = g9 and for all n > 2r we have 

We can show the convergence more dramatically. 

1.6.11. COROLLARY. If\\g\\2r<Sas above, then for alln>2rwe have 

re'\\f;\\Hdt<c\\g\\m+l 

and consequently 

PROOF. By the end of the proof of Theorem 1.6.8 we have 

/V'+I>'|I^II^A<C||g||^+2r+1 

for all/? > 0. By Lemma 1.6.1 

ll//llw<C^(||/:JU_2r+||/J|J|^||0). 
We also have II ƒ, II „ < C II g II „. Then integrating 

/V||//IUc//<C||g||M+1 + C||g||J|g||2r+1. 

Since II g || 2r < S < 1 we have 

HsUslUr+i^ci ig i i , 
by interpolation. This proves the first result, and the second follows im­
mediately. 
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1.7. The inverse map. We finish the proof of Theorem 1.1.1 where DP is 
invertible. We have seen that in neighborhoods of 0 the map P is both injective 
and surjective, and hence invertible. From Theorem 1.6.10 we have the 
estimate 

\\P-\g)Wu*C\\g\\H 

for all n > 2r, which shows that P~l satisfies a tame estimate with degree 0 
and base 2r. Moreover by Theorem 1.3.2 if P(f0) — g0 and P(fi) = g\ 

WP-\$x) ~ P-\g»)Wn<C\\gx- g0\\n 

+ C{\\p-\g1)\\„ + 2r+\\P-i(go)Un + 2r)\\gl-goh-

Combining this with the above estimate 

«'"'(Si) - P - \ g o ) h < Cllg, - «oil- + C(\\gi\\n + 2r + l l g 0 H - + 2 r ) l l g l - ftllo-

This shows that P~l is continuous, and provides a tame estimate for the 
modulus of continuity. By Corollary 1.3.3 we also have 

\\P-\gi) - P-'(go) - VP{P-\go))(gi ~ &)H» 

< C\\P~\gl) - / > - , (go) l l„ + 2 r l l^ 1 (g 1 ) - P-'(So)Ho 

+ CII^- ,(*o)ll- + 2 r l l ^ - 1 ( f t ) - i , - I (go) l l§ -
Using 

\\P'l(go)h + 2r^C\\g0\\n+2r, 

WP-l(g,) ~ P-l(go)h<C\\gl- g0\\0, 

\\P-\gi) ~ P-l{go)h + 2 , 

< C l l g , - g o l l „ + 2 , + C(\\gl\\n+4r + l l g o l l „ + 4 r ) H g . - goh 

we get 

\\P~\gi) - P- ' (go) ~ ^ ( ^ ' ( g o ) K g . ~ So)». 

< Cllg, - goll„+2,ll*i - «olio + C(llg,ll„+4r + llg0ll»+4r)ll*i - «olio-
Replacing g0 by g and g, by g + tk we get 

\\P~l{g + tk)-p~l{8)-vp(p~\g))k\\ 
II lln 

< O | | * | | I I + 2 r | | * | | 0 + O(| |g1 | | ,+ 2 r+| |g0 | |B + 2 r) | |Ar | |g . 

Letting t -> 0, we see that P~x is differentiable, and 

DP-l(g)k=VP{p-\g))k. 

Then since VP and P~x are continuous, so is DP~~l, and P~x is C1. It now 
follows by the chain rule that P~l is C00. Since VP and P~x are tame, DP~l is 
tame. Then so are all the derivatives DnP~\ and P~x is a smooth tame map. 

When we only know that DP is surjective with a right inverse, we proceed in 
a less direct fashion. 

file:////P-/gi
file:////P-/gi
file:////P~/gi
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1.7.1. THEOREM. The solution f^ = S(g) defined as the limit of the algorithm 

f; = cvp{sjt)s,[g-p{f,)\ 
defines a smooth tame map in a neighborhood of the origin II gll 2r < ^ which is a 
right inverse for P, so that P ° 5(g) = g. 

PROOF. First we argue that S(g) depends continuously on g. If we let 
St(g) —f be the solution at time t9 we know by Corollary 1.5.6.6 that St(g) 
depends smoothly on g for all /. By Corollary 1.6.11 the continuous functions 
St(g) converge uniformly to 5(g), so 5(g) is continuous also. 

Next we differentiate the algorithm itself. This shows (by the argument at 
the end of the proof of Theorem 1.5.6.3) that DSt(g)k — ht is the solution of 
the differential equation 

K = VP(S,f, ){cS,[k - DP(ft )ht - D2P(S,ft ){ƒ/, S,ht}]}. 

Now we recall the definition of the tangent functor 

TP(f,h) = (P(f),DP(f)h) = (g,k). 

Its derivative is 

DTP( f, h){f, h) = (DP(f)f, DP(f)h + D2P(f){h, ƒ}) = (g, k). 

It is easy to check that a right inverse for DTP is given by 

VTP(f,h)(g,k) = (VP(f)g,VP(f)[k- D2P(f){h,VP(f)g}]) = (f,h). 

We can set up the algorithm for TP the same way we did for P. This gives 

( ƒ/, ƒ/) = cVTP(S,f„ SA)[(Srg, S,k) - TP(f„ h,)] 

which reduces to the equations 

f; = cvp{sj,)st[g -p(f,)], 
h', = cVP(S,f, )[s,k - DP(f, )ht - D2P(S,f, ) 

{S,h„VP{Stft)[Stg-P( ƒ,)]}] 

which gives the same equation for// as before. Therefore the tangent TSt to the 
solution 5, for P is the solution to the algorithm for the tangent TP. It follows 
that TSt converge uniformly as t -> oo. Therefore 5 is C1 and its tangent 
TS — l im^ oo !T5r Moreover TS is also tame. Then by induction on n we get 
TnS being continuous and tame for all n. Thus 5 is a smooth tame map. 

111.2. Applications. 
2.1. Embedding surfaces of positive curvature. 
2.1.1. EXAMPLE. Let M be a compact strictly convex smooth surface in R3. 

Then M acquires a Riemannian metric of strictly positive curvature. The 
converse is a classical result due to Nirenberg [15]. 

2.1.2. THEOREM. Let M be a compact oriented surface with a Riemannian 
metric of strictly positive curvature. Then M can be isometrically embedded as a 
smooth convex surface in R3. 
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PROOF. Since the surface is oriented and the metric has positive curvature, 
the surface has positive Euler class by the Gauss-Bonnet theorem, and hence M 
is the sphere S2. Let ?F denote the Fréchet manifold of all smooth strictly 
convex embeddings of M into R3, and let § denote the Fréchet manifold of all 
smooth Riemannian metrics on M of strictly positive curvature. There is an 
operator P: $"-> § which assigns to each embedding the induced metric. We 
shall show that P is surjective. In fact P represents ^as a principal fibre bundle 
over % with group being the group of Euclidean motions. To see that P is 
surjective we will show that the image of P is both open and closed and that % 
is connected. Our main interest Hes in the first of these three assertions, since it 
is here we use the inverse function theorem. 

We let Greek indices a, /?, y denote tensors on R3 and Latin indices /, j9 k 
denote tensors on M. We let ƒa be the functions on M giving the embedding, 
gap the Euclidean metric on R3, gtj the induced metric on M, and 8, the 
induced covariant derivative on M. Then we have 

in = ga&rv*-
We let iiapy be the volume form on R3 and ptJ the induced area form on M. 
Then the unit outward normal ne is given by the formula 

Pafij>ifa9jf0 = *a*n%j. 

If bjj is the second fundamental form of the embedding then we have 

9,n« = bljgJ%f", Wjf = -bijn« 

by the usual calculations. 
The operator P(fa) = gtj is given by the formula 

g,J = gaftW 
and its derivative DP(f)fa = gtJ is given by 

i,j = gaftJ'V'' + g^if"¥P-
We can decompose/" into its tangential and normal components v' and w. Let 

/« = #8. ƒ« + wn«. 

Then the linearized equation becomes 

(*) itj = Si^jVk + gji?fik + Utjw. 

Observe what this equation says; a tangential motion & changes the metric gtJ 

by its Lie derivative in the direction v\ while a normal motion w changes the 
metric proportionally to the second fundamental form. Since the equation (*) 
does not involve any derivatives of w we may reduce modulo b(J to obtain the 
equation 

(**) 8ij = gii?jVk + gji?iVk mod*y . 

We can first solve (**) for vk and then solve algebraically for w. 
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2.1.3. LEMMA. The equation (**)for a strictly convex surface is an elliptic first 
order system mapping sections vk of the two dimensional tangent bundle TM into 
sections of the two dimensional quotient bundle Q = L\(TM)/B, where L\(TM) 
is the 3 dimensional bundle of symmetric tensors g^- and B is the one dimensional 
subbundle spanned by btj. 

PROOF. Let 

L(ti)u = gii?jVk + gji?iVk modfc^ 

be the operator. Then its symbol is 

°L(£)*ij = gikSj*k + gjkSi*k mod ft,, 

in the direction of a cotangent vector $k. If oL($)v = 0 then we have 

gikSj*k + gjkSiVk = ° mod ft,,. 

Choosing a special coordinate system at a point we can make 

• « I 

' - • . « , 

g<j=(l ? ) • b u = [ o X2J-
Then our equation oL(Ç)v = 0 becomes 

= 0 mod 2?,0' f 2 * I + ? i « 2 \ _ n ,(Xi ° 
\S2#+Sl& 2?20

2 ƒ \ ° X2; 

This implies the equations 

A2fi*
1 ~ ^if2û

2 = 0, f2t5' + f,t52 = 0. 

There will be a nonzero solution v only if the determinant is zero. Thus 

det £ ' f | " l = X 2 f ? + X,f2
2 = 0. 

When the surface is convex we have A, > 0 and \ 2 > 0. This forces f x = 0 and 
f2 = 0. Hence the equation is elliptic. 

2.1.4. LEMMA. For a strictly convex surface M the elliptic operator L is always 
surjective and has null space of dimension 6. 

PROOF. Since the rigid motions of R? give elements in the null space of L, it 
is clear why the null space has dimension at least 6. We claim that the index of 
the elliptic operator is exactly six. Since any two convex embeddings can be 
joined by a path of convex embeddings, it suffices to check the index for one 
example. The standard sphere S2 is particularly simple, since b{j — gtj. Then 
the equation 

gn?jvk + gj$fik = ° m o d gtj 
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says that the rate of change of gtj in the direction vk is proportional to giJ9 

which means that vk is an infinitesimal conformai transformation. In complex 
coordinates on the sphere the condition is that v = v(z)d/dz be an analytic 
vector field. If w = \/z then 

d/dz = -w2d/dw 

and hence to represent a finite vector field at infinity, v(z) must grow no faster 
thanz2, so 

v(z) = az2 + bz + c. 

This gives three complex or six real parameters. To complete the lemma, it 
suffices to show that L is always surjective. Since L is elliptic, this is equivalent 
to the assertion that the adjoint operator L* is injective. The dual bundle to the 
quotient bundle Q — L2

S(TM)/B is the subbundle of symmetric tensors hij 

with bjjhiJ = 0. The adjoint operator L* is given by 

L*hJ = 2dth
iJ\ 

Then the next theorem shows L* is injective. Its proof is similar to (and slightly 
easier than) the classical proof of infinitesimal rigidity for convex surfaces (see 
Spivak [23]). 

2.1.5. THEOREM. Let M be a compact strictly convex surface in R? and let hlj 

be a symmetric tensor on M with 

dth
iJ = 0 and btJh

ij = Q. 

Then tij = 0. 

PROOF. We proceed by a series of lemmas. 

2.1.6. LEMMA. Let <$ = ^iikh
kldlf

a. Then 

li%tf = 0. 

PROOF. We have fi%k = ôJ
k and 8,-3/ fa = -b^n". Therefore 

/i"9,# = djhJ'd,/* - bâlhH«. 

2.1.7. LEMMA. Let xfa = h^^djP. Then d^ = 0. 

PROOF. We have 

Hafijif'V7 = Pu**»'* Wy = -bu"y 

and so 

2.1.8. LEMMA. Let s be the support function s = gapfn^. Then 

v'atf = 2sdet(h'J). 
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PROOF. We have 

which makes 

and it is easy to see that 

liiklxjlh
iJhkl=2âQt(hiJ). 

2.1.9. LEMMA. IfbiJh
u — 0 andbtj is strictly positive-definite then det(A'7) < 0, 

awd equality holds only when hlj — 0. 

PROOF. We can simultaneously diagonalize btj and hij. Since the eigenvalues 
of btj are positive, those of hij must have opposite signs, which makes the 
determinant negative. If one eigenvalue of hij is zero, so must be the other. 

LEMMA. If the origin lies inside M, the support function s is strictly positive. 

PROOF. The origin lies on the inside of the tangent plane and the normal on 
the outside. 

2.1.10. LEMMA. If 3,i/ = 0 and \LiJ^t = 0 then 

f v^dfi^ 0. 

PROOF. If /i '7"^- = 0 then 3^ , = 3,-fy. Consequently regarding <j> as a 1-form 
we have d$ — 0. Since H\M, R) = 0 for a convex surface, <j> = d\p for some 
function i//, so <J>, = 3 ^ . Then by Green's theorem 

ƒ üfy öfjn = ƒ v%yp dix = - ƒ 3f.t?
; -^dfx = 0. 

2.1.11. COROLLARY. For the vl
a and <$ above we have 

JM 

PROOF. Sum over a. We see now that 

/ 
sdet(hiJ)dix = 0. 

M 

Since s > 0 and det(hiJ') < 0 we must have det(hiJ) = 0 everywhere. Thus 
A/y = 0. 

It follows that for each convex embedding ƒa the operator DP{fa)fa — gtj 

is surjective with a six dimensional null space. We can find a right inverse 
ƒ« — VP(fa)giJ. Since it is obtained by solving the elliptic operator L whose 
coefficients depend smoothly on ƒa, we know that our right inverse VP is a 
smooth tame operator. Then by the Nash-Moser inverse function theorem the 
operator P is locally surjective, and the image of P is open. If we wanted, we 
could normalize six parameters of ƒa (for example, the image of a point, the 
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direction of the tangent plane at the point, and the direction of a curve through 
the point in the tangent plane) to make P invertible. This shows P is locally a 
bundle of fibre dimension 6. We shall briefly sketch the rest of the proof. To 
show that % is connected we first appeal to the uniformization theorem, which 
shows that any two metrics on M are conformally equivalent, up to a 
diffeomorphism. Next we observe by a lengthy calculation that if g and e*g are 
conformally equivalent metrics of strictly positive curvature, then e^g also has 
strictly positive curvature for 0 < t < 1. Since the orientation-preserving dif-
feomorphisms of S2 are connected (and indeed have the homotopy type of the 
rotation subgroup) this shows how to connect any two metrics of strictly 
positive curvature by a path of such metrics. 

To complete the proof we must show that the image of P is closed. Since 
translation does not change the induced metric, let % denote the closed subset 
of convex embeddings in <% whose center of mass lies at the origin. Then 
P(%) = P(&). We claim that P: % -* % is a proper map, which is to say that 
the inverse image of every compact set is compact. From this it follows easily 
that P(%) is closed in 8. To see that P: % -» S is a proper map, we must 
establish a priori estimates for embeddings ƒa with center of mass at the origin 
in terms of the induced metrics. We must estimate the size of the derivatives of 
the ƒa using constants which depend only on the size of the derivatives of the 
induced metric gtj and a lower bound for its curvature. Since 6°°(M) is a 
Montel space, every bounded set is compact. In making our estimates on the 
derivatives of the fa we may use the induced metric gtj and its connection 9,, 
for if we take various metrics in a compact subset of § they are all equivalent, 
and the various connections 9, differ only by lower order terms involving 
derivatives of the gij9 which are all bounded in a compact subset of §. 

Suppose then that we have a collection of embeddings ƒa with center of mass 
at the origin whose induced metrics lie in a compact subset of §, and hence 
have all their derivatives uniformly bounded and their scalar curvatures 
bounded uniformly away from zero. A positive lower bound on the scalar 
curvature gives a positive upper bound on the diameter of a surface. Hence the 
fa are all uniformly bounded. Since 

*%A/«V = 2 
the first derivatives 9, ƒ" are also uniformly bounded. The next step involves a 
very clever estimate due to Weyl. Let b = trace btj be the mean curvature of 
the embedding and k = det b^ the scalar curvature. Note that by Gauss we 
know k from gtj without knowing the embedding. 

2.1.12. THEOREM (WEYL). For any compact convex surface we have the 
estimate 

max b < max 4k j - . 
M M K 

PROOF. A lengthy computation shows that b satisfies the equation 

(bgiJ - bjdfljb = àk+\ d,bJk |
2 - | d,b |2 + k(b2 - 4k). 
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At the point where b assumes its maximum we have dtb = 0 and dfi-b is a 
negative matrix. If M is convex then btj is a positive matrix, and so is 
bgtj — btj. Also | dibJk |

2 > 0. Hence at this point 

Ak + k(b2 - 4k) < 0, b2<4k- Ak/k 

and the theorem follows. 
This theorem shows that the mean curvatures b are uniformly bounded. 

Since 

|6/yf = & 2 - 2 * 

the second fundamental forms btj are also uniformly bounded. Then since 

w° = -v 
and the «a are unit vectors, the second derivatives dfijf01 are also uniformly 
bounded. One is now in a position to use standard results about elliptic 
equations to estimate the higher derivatives as well. This completes the proof. 

2.2. Shallow water equations. 
22A. EXAMPLE. The shallow water equations describe the motion of an 

incompressible inviscous fluid where the wave-length is long compared to the 
depth, so that the vertical component and variation of the velocity of the fluid 
may be neglected. This approximation is very good for tidal waves. To simplify 
the discussion we assume that the earth is a perfect sphere covered with water 
and neglect the rotation of the earth. We choose our units of length, time and 
mass so that the depth of the water at rest is 1, the acceleration due to gravity 
is 1, and the density of the water is 1. We let gtj be the Riemannian metric on 
the earth sphere S and 8, the induced covariant derivative. The motion of the 
water is described by a tangent vector field v — v'd/dx' on S giving the 
horizontal velocity (independent of the height) and a function h on S giving the 
height of the water. The shallow water equations for v and h are 

forf/dt + vJdjv' + gVdjh = 0, 

I dh/dt + vJdjh + hdjvj = 0. 

The first equation is Newton's law that force equals mass times acceleration. 
Since the density is one the force equals the acceleration. The term 

dv*/dt + vJ'djV* 

is the acceleration of a particle moving in the water, which is the sum of the 
acceleration due to the change in the velocity at the point with time and 
acceleration due to the change in velocity when the particle moves to a region 
of different velocity. The force on the particle is 

g%h 

which is the gradient of the function h. If the particle is on the surface it must 
gain potential energy to climb to a greater height; while if the particle is on the 
bottom it gains potential energy from an increase in the pressure, and the 
pressure equals the height. The force is the gradient of the potential energy. 
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The second equation is conservation of mass. The mass per unit area is the 
height, so the rate of increase of mass per unit area with time is dh/dt. On the 
other hand, the transport of mass is given by hvJ

9 so the rate at which mass 
flows out per unit area is given by its divergence 

dj(hvJ) = vJdjh + hdjvj 

and the equation follows. Note the equations make sense on any Riemannian 
manifold. We shall prove the following results. 

2.1.2. THEOREM. The shallow water equations (*) admit a solution on any 
Riemannian manifold (A) with any initial conditions v and h > 0 at time t = 0 
for a short time 0 < t < e (where e depends on the initial conditions), and (B) for 
a long time 0 ^ t < T with initial conditions v near 0 and h near 1 (how close 
depending on T). 

PROOF. First we modify the equations by replacing h by k = 2y[h. This is 
reasonable since we want h > 0 on physical grounds anyway. (When h — 0 the 
bare earth is exposed, giving rise to an interesting free boundary problem 
which we shall not treat.) We also multiply the first equation by gip to lower 
the index. This casts our equations in the form 

J&„(8«79f + « V ) + *H* = °> 
[±kdjvj + (dk/dt + vJdjk) = 0. 

If our Riemannian manifold is S we let M = S X / where / is the time 
interval 0 < / < T. Note that the tangent bundle TS over S pulls back to a 
bundle which we also call TS over M, while R can be regarded as a trivial 
bundle over S or M. We let B = TS X R be the product bundle. A section of B 
consists of a vector field t>' E TS and a function k E R. The dual bundle 
B* = T*S X R, and a section of B* consists of a 1-form wp E T*S and a 
function / E JR. 

Define an operator 

P: e°°(M, B) - e°°(M, B*) X e°°(5, B) 

by letting 

P(vi,k) = (wpJ,vi
0,k0) 

where i?j = v* \ {t = 0} and A:0 = k \ {t = 0} and 

fc,(at>'/3/ + t>V") + ±k%k = WP> 
$kdjVJ + (dk/dt + ü-'fyjt) = /. 

We can compute the derivative of the operator P 

DP(v?9k)(e9k) = (wpJ9d'09Q; 
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it is given by the equations 

^ 9 , - ^ + i % ^ + ( | p + o^fc + vJdjk\ = Ï 

(***) 

with ff | {/ = 0} = v'0 and k\ {t - 0} = fc0. Now we claim that DP(v\ k) is a 
linear symmetric system in (v\ k). To check this we evaluate the symbol of DP 
in the direction of a cotangent vector £ by replacing 8y by £ and 3/9r by T, and 
dropping the zero-order terms. This gives 

aZ)P(ü,fc)(T,S)(ï5,£) = (>M), 

{r + v%)gipv
i + mpk = wp, 

\k£jvj + (T + v%)k = Ï 

which shows the matrix of the symbol is 

w ( „ t ) („ { ) =([ ' + <;^' *« ' 
which is symmetric. The function t will be our weight function. The covector dt 
has coordinates T = 1, £ = 0 for which the symbol oDP(v9 £)(1,0) = I is the 
identity, so / i s a positive weight function. Moreover dt is a normal covector 
pointing inward on 5 X 0 and outward on S X 1. Thus the boundary is 
nowhere characteristic and d+ M = S X 0 and 9~ M = S X 1. The theory of 
symmetric systems shows that DP(v, A:) is always invertible and has a smooth 
tame inverse. Then the Nash-Moser inverse function theorem implies that P is 
locally invertible in a neighborhood of any v and k. 

To prove part (B) of the theorem, we use the inverse of P in a neighborhood 
of v = 0 and k = 2. When Ü0 is close to 0 and k0 is close to 2, and w = 0 and 
/ = 0, we get a unique solution v and A: of 

P(t>,*) = (0,0,t>o,*o) 
which gives a solution of the shallow water equations for time 0 < t ^ T. Note 
that v0 and k0 must get closer to 0 and 2 as T gets large. 

To prove part (A) we use a clever device. The shallow water equations are 
formally solvable at t = 0. This means that for given initial data v — v0 and 
k = k0 at / = 0, we can solve for all the derivatives dnv/dtn and dnk/dt" at 
t = 0 by differentiating through the equation. We can then find smooth 
functions v and A: on M which have the right time derivatives at t = 0. Let us 
define w and /by letting 

P(v,k) = (wj,v09k0). 

By our choice of v and k, the functions w and /and all their derivatives vanish 
at t — 0. Extend w and /to vanish for t < 0. Then perform a small shift, so that 

w(t) = >v(f - e) and /(/) = î(t - e). 
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Then w and / vanish for 0 < t < e. Since P is invertible in a neighborhood of 
(v9 k)9 we can solve the equation 

P(v9k) = (w9l9v09k0) 

when e > 0 is sufficiently small. Then i; and k will solve the shallow water 
equations for a short time 0 < t < e. This completes the proof. 

2.3. Submanifolds of fixed volume. 

2.3.1. THEOREM. Let F be a tame space and P: U C F -> Va smooth map of 
an open set in F to a finite dimensional vector space. Suppose that for some 
f0 E U the derivative DP(f0) is surjective. Then the level set N = {ƒ E U: 
P(f) = P(fo)} is a smooth tame submanifold in a neighborhood of f0 with 
tangent space 

TfN = Null DP( f ). 

PROOF. We may assume that f0 = 0, that F — GX V and that the derivative 
of P at 0 is the projection on V. Define a map (gona neighborhood of zero in 
GX F to itself by 

Q(g,u) = (g9P(g9u)). 

Then Q is a smooth tame map since the first factor is the identity and the 
second is finite dimensional. Moreover 

DQ(g9 u)(h9 v) = (A, DuP(g, u)v) = (h9w) 

has solution 
VQ(g,u)(h9w) = (h9v) 

where 
h = DuP(g9u)~lw. 

Now DMP(0,0) is the identity, and DuP(g9 u) is a matrix in L(V9 V) whose 
entries depend smoothly on g and u. Hence the same is true of the inverse 
matrix. Thus h is a smooth tame function of g, u and w (since any map to a 
finite dimensional space is tame). By the Nash-Moser theorem, Q has a local 
smooth tame inverse. Since Q~ \G X0) = JVwe are done. 

Let A" be a finite dimensional Riemannian manifold. If S is a submanifold of 
X, we can define on S the mean curvature vector 

k(S) ee°°(S9TX/TS) 
with values in the normal bundle, the measure dfx(S)9 and the total measure 

ti(s)=JMs). 
Let §>(X) be the smooth tame Fréchet manifold of all compact submanifolds 
S9 and let Sr(^0 be the closed subset of those with total measure r. 

2.3.2. THEOREM. If S E Sr( X) and k(S) is not identically zero9 then Sr( X) is a 
smooth tame submanifold of codimension 1 in a neighborhood of S9 with tangent 
space 

Ts%r(x) = \hS e°°(S9 TX/TS): ƒ (k(S)9 h) dp(S) = Ok 
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REMARK. If 5 is a geodesic curve in X of length r then Sr(X) may not be a 
submanifold of codimension 1 near S. For a minimal isolated geodesic is an 
isolated point in Sr(X). 

PROOF. If S e S ^ a n d 

h e TSS(X) = e°°(S9 TX/TS) 

then by differential geometry 

Dii{S)h= f(k(S)9h)dv(S). Js 

Pick a reference S0 in Sr(X) and choose a diffeomorphism of a tubular 
neighborhood of the zero section in the normal bundle of S0 into X. If ƒ is a 
section of the normal bundle, let S( ƒ ) be the corresponding submanifold. This 
gives a local chart on S(X) near 50. Let k{ ƒ ) be the appropriate pull-back of 
the mean curvature k(S(f)) to S0 under/. Then in our chart if fx( f ) = fx(S( ƒ )) 

The mean curvature k( ƒ ) is given by a nonlinear differential operator in ƒ of 
degree 2, with A:(0) = A:(S0) not identically zero. Let F be the subspace of all 
sections ƒ of the normal bundle to S0 which are orthogonal to k(Q). Define a 
map P of a neighborhood of zero in F X R into F X # by letting 

P(f,s) = (f9li(f+sk(0))). 

Then P is a smooth tame map with derivative 

DP(f9 s)(h, t) = (A, Dp( ƒ + *fc(0))(A + f*(0))) 

and we have 

D/i(ƒ + dfc(0))(A + tk(0)) = f (k{f+ sk(0))9 h + dfc(0)) </JK(S0) 
JS0 

which we can solve for /, provided 

fs(k(f+sk(0))9k(0))dii(S0)*0 

which happens for all ƒ in a C2 neighborhood of zero. Therefore P gives a 
smooth change of coordinate near S0 making /i into one of the coordinate 
functions. This shows Sr(^0 = /x-1(r) is a smooth submanifold with tangent 
space Null D/A. 

2.4. Symplectic and contact structures. The following result is useful in 
showing that a group acts transitively on a manifold. Let § be a tame Fréchet 
Lie group acting tamely on a tame Fréchet manifold 911 with action 

^ :SX9H^9H. 

For any m G 9H there is a linear map 

^ : G - * r w 9 H 
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of the Lie algebra G—Tx% into the tangent space of 9lt at m given by 
A'm — DQA(\, m\ the partial derivative with respect to % of the action at the 
identity. 

2.4.1. THEOREM. Suppose 9H is connected, and f or each m Œ^the map A'm\ 
G -> Tffli is surjective with a tame linear right inverse. Then % acts transitively 
o/l 911. 

PROOF. Consider the map 

P : S - 9 1 t , P(g)=A(g9m). 

If Lg denotes left multiplication by g on S and Ag denotes multiplication by g 
on ylt, there is a commutative diagram 

L
g 

§ 4 g 

P i Pi 
9H -^ 9H 

which shows that 

DAg-DP(l) = DP(g)-DLg. 

We can define a smooth tame vector bundle map VP: T9H -» T§ which is a 
right inverse for DP by letting 

FP(g) = Z)L goFP(l)oZ)^_ 1 

where VP(X) is a tame linear right inverse for DP{\) = D@A(\, m), which exists 
by hypothesis. Then it follows that P is locally surjective; hence § locally is 
transitive. If 9H is connected it follows that % is transitive on all of 9H. 

2.4.2. EXAMPLE. Let X be a compact manifold of even dimension In. A 
symplectic form on I is a closed differential 2-form to G Z2(X) C A2(X) 
such that 

cow = t o A < o A - - - A ( o ^ 0 

n times 

or equivalently <o = oitjdxl A dxy in local coordinate where <of- • is an invertible 
matrix. If such a form exists then H2(X) ¥= 0. All Kàhler manifolds admit 
symplectic forms. A diffeomorphism of X takes a symplectic form into another 
symplectic form in the same cohomology class. Locally this is the only 
restriction, as the following result shows. 

2.4.3. THEOREM. Let co be a symplectic form on a compact manifold. Then any 
closed form near co in the same cohomology class is also symplectic and is 
conjugate to w by a small diffeomorphism. 

PROOF. A closed form close to a symplectic form is still symplectic. Let h be 
the cohomology class of w in H2(X). Then h determines an affine subspace 
B2(X) + h in the linear subspace Z2(X) of closed forms of all those differing 
from o) by an exact form in B2(X). The exterior derivative d: A l(X) -> B2(X) 
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is surjective and has a linear right inverse given by a Green's operator G: 
B2(X) -> A \X) from Hodge theory. Since this is derived from the Green's 
operator of the elliptic system A = dd* + d*d it is clear that G is a tame linear 
map. We let our group be the diffeomorphism group ^(X) of the manifold X, 
and we let it act on the affine space B2(X) + h of closed 2-forms in the 
cohomology class h. This is obtained by restricting the action on all of A 2( X). 
That action 

A:ty(X)X A2(X)^A2(X) 

has partial derivative with respect to the first factor at the identity 1 G ÓD( X) 
in the direction of a tangent vector v G Q°°(TX) = T^(X) given by 

A'„v = DxA(\,u)v = L^ 

where Lvu is the Lie derivative of co in the direction v given in local 
coordinates by 

do)U k^ *vk . dvk 

v lJ
 3JC*

 Jdxl lkdxJ 

When co is closed so that dco = 0 or 

d<au/dxk + 'àujk/'àx1 + 3coA|./3x> = 0 

then we see that 

Lvo) — d(v -L co) 

where Ü ± co is the contraction 

(v±ù))J = viœij. 

Note that the tangent space to the affine subspace B2( X) + h is just the linear 
subspace B2(X). We must show that the partial derivative of the action with 
respect to the first variable at the identity 

A'0:e°°(TX)^B2(X) 

given by v -> d(v _L co) is surjective with a tame right inverse. When co is 
symplectic the equation v ± co = a for any 1-form a has a unique solution 
v — a J- co"1 where 

( a X c o - ' y ^ ^ . c o - 1 ' 7 

and œ~UJ is the matrix inverse to co,7. Then to solve d(v _L co) = ^ we take 
t> = G\// -L co-1 where G is the Green's operator described before. It is easy to 
see that this is a tame linear map. It now follows from the previous theorem 
that the identity component of the diffeomorphism group acts transitively on 
the component of the symplectic forms in the cohomology class h containing co. 

2.4.4. EXAMPLE. Let X be a compact manifold of dimension n + 1 and let B 
be a subbundle of the tangent bundle of codimension 1. There is a natural 
antisymmetric bilinear map 

XB:BXB -* TX/B 
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defined by letting 

XB(u,v) = [u,v]/B 

where u,v E B Q TX are vector fields and [u, v] is their Lie bracket. 

2.4.5. LEMMA. The map XB is a bilinear vector bundle map, i.e. XB(u, v) does 
not involve derivatives of u and v. 

PROOF. We compute in local coordinates x\...,xn, y. Suppose that B is the 
subbundle of TX where 

dy = bi(x9 y) dxl 

for some functions bt(x, y) defined in a local coordinate chart. If u and v lie in 
B then 

u = u'd/dx' + u%d/dy, v = v*d/dx' + v%d/dy. 

We now evaluate the commutator at a point where bt — 0 and reduce mod B 
by ignoring the d/dx' components; this gives 

/ 96, db \ a 

[ w , t ) ] E M - ^ « v f mod* 
1 J la*' dxjJ dy 

so that X(w, r) = XijidWd/dy mod 5 where 
X/y = dbj/dx' - dbÉ/dxJ. 

A contact structure is a subbundle B of TX of codimension 1 for which the 
map XB is nondegenerate, so that XtJ is invertible. This can only happen if the 
dimension of X is odd, so that n is even, since XB is antisymmetric. The group 
of diffeomorphisms ty(X) acts on the Fréchet manifold % of all contact 
structures B on X. 

2.4.6. THEOREM. 7 /5 w a contact structure on a compact manifold X, then any 
contact structure near B is conjugate to B by a diffeomorphism near the identity. 
The identity component offy(X) acts transitively on each component of%. 

PROOF. The manifold % of all contact structures is an open subset of the 
Grassmannian manifold of all subbundles of TX of codimension 1. We can 
identify its tangent space as 

TB% = e°°(X9 L(B9 TX/B)), 

the space of sections of the bundle of linear maps of B into TX/B. The action 

i 4 : < * D ( j r ) x a - > a 

has derivative^ = DxA(l, B) which is a linear map 

A'B = e°°(X, TX) -> e°°(X, L(B9 TX/B)). 

In general A'B will be a differential operator of degree 1 from TX to 
L(B, TX/B\ but on the subbundle B Q TXit has degree 0 and is given by XB, 
as the following lemma shows. 
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2.4.7. LEMMA. IfvGB and w G B then 

[A'B(v)](w) = \B(w,v). 

PROOF. If v G B then locally 

v = v'd/dx' + b^d/dy. 

We regard v as infinitesimally small and consider the diffeomorphism 

x' = xl! + v\ y; = y4- btv
l. 

Let 5 be the new bundle jnduced from B by this diffeomorphism. Then B is 
given by dy = &,- dx' and 5 is given by dy = 6, rfx' where 6, = &, -f at for some 
infinitesimal change at in 6,.. We proceed to expand the equation 

dy — bt{x, y) dx' 

by replacing 3c' by xl + v\ y by y + 6,-Ü1, and ^ by 6, + ai9 and throwing away 
quadratic terms in the infinitesimal quantities vl and at. This gives 

dbt . dbt . 36/ . 36.- . 
J dxJ *y J dxl 3^ ' 

Evaluating at a point where bt = 0 and using our previous formula for \tj gives 
at = A/yü

y. Since^4'fi(t?) = awehave 

i<i( i?)M = X ^ W = Xiï(iv,ü) 

which proves the lemma. 
Now it is easy to see that if B is a contact structure then AB is surjective, and 

in fact the restriction of AB to sections of B is an isomorphism. For on 6°°(B) 
the map A' is just induced by the linear vector bundle map B -» L(B, TX/B) 
given by Xfl, and when XB is nondegenerate this is a vector bundle isomor­
phism. This proves the theorem. 

2.5. Volume preserving diffeomorphisms. We can use the inverse function 
theorem to give a characterization of principal bundles. Let S be a tame 
Fréchet Lie group acting tamely on a tame Fréchet manifold 911, and let P: 
911 -> % be a smooth tame map onto another tame Fréchet manifold $ . We 
assume that % takes each fibre P~ \b) for b G % into itself and acts transitively 
and fixed-point free on the fibres. Let G be the Lie algebra of §. Then for each 
m G 911 the action A of % on 9H defines a map 

, 4 :3x911^911 

whose partial derivative defines a map 

DêA(l9 m): G = T{§ -* Tjlt. 

If G X 9H is the trivial vector bundle over 9H with fibre a, then D%A defines a 
linear vector bundle map of % X 9H into 7911. Likewise the derivative of P 
defines a map 

DP(m):Tjm^TP(m)% 
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which induces a Unear vector bundle map of TtyïL into the pull-back bundle 
P*T%. This gives a sequence of tame linear vector bundle maps over 9H 

DqA DP 

o -* G x 9n -* ran -> p*r® -» o. 

2.5.1. THEOREM. Suppose the above sequence is exact, and admits a smooth 
tame linear splitting over 9H 

vp V%A 
0 -* P*r® -> rDlt -> G X 911 -> 0 

J ^ • Dg,4 = ƒ, DP - VP = I9 

Z V • F ^ + VP-DP = I. 

Then 911 « a principal %-bundle over % with projection P and action A. 

PROOF. Fix b E %. In a neighborhood Uoîbwe can define a smooth section 

S: C/ç<& ->9H 

with PS = 7, since DP is surjective with a tame right inverse VP. We define a 
map 

g: 0 X (tfX ®) -> 9H, Q(g, b)=A(g9 S(b)). 

We claim (by making U smaller if necessary) that Q is a diffeomorphism. Since 
Q gives a chart in which § acts by multiplication on the first factor and P acts 
by projection on the second, this will complete the proof. Since § takes fibres 
into themselves and acts transitively and fixed-point free on the fibres, we see 
that Q is an invertible map of S X (U c S ) onto P~\U) C 911. It remains to 
show that Q is a diffeomorphism. Since § acts transitively on the fibres, it is 
enough to prove this in a neighborhood of (1, b). 

To do this we first compute the derivative of Q. Letting § be a tangent vector 
to S at g and b a tangent vector to ® at b we have 

DQ(g, b)(g, S) = DêA(g9 S(b))g + D^A(g9 S(b))DS(b)b. 

Let m be a tangent vector to 9H at m = Q(g9 b)9 and let us solve the equation 

DQ(g9b)(g9b) = m. 

Since PA(g9 m) = P(m) we have 

DP • Dg^ = 0, DP • D ^ = DP. 

Therefore applying DP to the equation and remembering that P o s = I so 
DP o DS = ƒ we have 

£=DP(m)m 

which solves for b. Then for g we have the equation 

DêA(g9 S(b))g = m- D^A(g9 S(b))DS(b)b. 
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Since the term on the right lies in the null space of DP by our choice of b, and 
the sequence is exact, there exists a unique solution which is given tamely in 
terms of m, g and b by taking 

g = VêA(m)[m - D^A(g, S(b))DS(b)b\. 

Since DQ is invertible with a tame inverse, so is g in a neighborhood of (1, b). 
This proves the theorem. 

2.5.2. COROLLARY. Let % be a tame Fréchet Lie group and 9H a tame Fréchet 
manifold on which § acts tamely and transitively. Suppose for some m G^ithe 
subgroup % of elements of § which fix m is a closed tame submanifold, and that 
there is a short exact sequence of Fréchet spaces 

which admits a tame linear splitting. Then § is a principal %-bundle over 911 with 
projection P(g) — gm. 

PROOF. Since § acts transitively on 9H, the fibres of P are all cosets of % in 
S, and % acts transitively and fixed-point free on itself. If the sequence above 
splits at the identity 1 E S, then it splits at every point in % using the group 
action. Then the result follows from the previous theorem. 

We consider an example of a subgroup of the diffeomorphism group. Let X 
be a compact manifold. We say that a smooth positive measure /i on X is one 
which in local coordinates looks like p = m(x)dx where m(x) is a smooth 
positive function and dx is Lebesgue measure. Its total measure is 

li(X)=fdii. 

We let 91L( X) be the Fréchet manifold of smooth positive measures on X of 
total measure 1. The smooth measures are sections of a vector bundle M over 
X, those of total measure 1 are an affine subspace, and the positive ones are an 
open subset. If JU, and v are smooth positive measures in ?f\l(X) then v/\x is a 
smooth positive function of average value 1 with respect to ju. This provides a 
useful (global) coordinate chart. 

2.5.3. THEOREM. The diffeomorphism group tf)(X) acts transitively on the 
space tyiliX) of smooth positive measures of total measure one. For each 
ju E ty\L(X) the subgroup ^(X) of diffeomorphisms which preserve the measure 
/i is a closed tame Lie subgroup, and ^(X) is a tame principal bundle over 
9IL(A') with fibre %(X) under the projection P</> = <t>fi. Hence ^(X)/\(X) = 
Vl(X). 

PROOF. First note that ^(X) is connected. For if /A and v are smooth 
positive measures of total measure one, so is (1 — t)n + tv for 0 < t < 1. Next 
recall how to construct a coordinate chart near the identity 1 in ty(X). We 
choose a tubular neighborhood U of the zero section in the tangent bundle TX 
and a diffeomorphism $ of U to a neighborhood V of the diagonal in A" X A", 
which takes the zero vector at x E X into the point (x9 x) on the diagonal, and 
which has for its derivative along the zero section in the vertical direction the 
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inclusion of TX into the second factor of TX X TX. In a local coordinate chart 

0(.x, v) = (x, <t>(x, v)) 

where <j>(x,0) = x and Dv4>(x,Q) = I. We could construct O globally by 
patching such maps together with a partition of unity. Then $ defines a 
diffeomorphism of a neighborhood Ü of zero in 6°°(X, TX) into a neighbor­
hood K of the identity in ty(X) by letting O(Ü) be the diffeomorphism whose 
graph is the composition of O and v. In local coordinates 

$(t>): x -» 4>(x, t>(x)). 

Given a measure [x G ^ ( Z ) and a diffeomorphism </> G 6D( Z) we let <£JLI be 
the pull-back measure. This defines a smooth tame action of tf)(X) on ?ft(X), 
as is clear from our estimates on compositions. We define a map 

P.e^iX, TX) ^e°°(X) 

by letting 

P(v) = *(t))M//i-

2.5.4. LEMMA. 77ze wa/? P is a nonlinear partial differential operator of degree 
1. Its derivative DP(v)w is a family of linear partial differential operators of 
degree 1 in w with coefficients which are nonlinear differential operators of degree 
1 in v.Atv = 0 

DP(0)w = V^w 

is the divergence of the vector field w with respect to the measure ju. 

PROOF. We write out P(v) in local coordinates. The diffeomorphism 

y = 4>(x,v(x)) 

has for its derivative the matrix 

which is a nonlinear differential operator of degree 1 in v. Then so is the 
Jacobian Z(t>) = det M{v). Since p = m{x)dx in local coordinates, we have 

P(v) = J(v) • m(4>(jc, v(x)))/m(x) 

which is also a nonlinear differential operator of degree 1 in v. Hence P is a 
smooth tame map of the type considered before. Its derivative may be 
computed as follows. If M(v) is a matrix depending smoothly on v and J(v) is 
its determinant then 

DJ(v)w = J (o) • trace{M(ü)_1 • DM(v)w) 

as can easily be seen by diagonalizing the matrix (or at least upper-triangulariz-
ing). Then we get the formula 

DP(v)w = i>(ü)[trace{M(ü)"1 • DM(v)w) + Q(v)w] 
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where 

DM(v)w = -fafo(x, v(x))w(x) + -^(x, v(x))-^(x)w(x) 

+ f£(*>»(*))^(*) 
is a differential operator of degree 1 linear in w with coefficients depending 
nonlinearly on t>, and where 

Q(o)w = ° l g * (*(*, v(x)))^(x, v{x))w(x) 

is an operator of degree zero linear in w and nonlinear in v. At v = 0 we have 
d<j>(x9 0)/dv — I so d2<j>(x, 0)/dxdw = 0. Then the formula simplifies to 

r^/^\ dw , 3 log m 
Z)i>(0)>v = trace - ^ + — ^ — , w = V^w, 

which is the formula for the divergence of w with respect to the measure /x. It is 
the rate at which the measure expands or contracts under a flow in the 
direction w. This proves the lemma. 

Next we choose a Riemannian metric g = {g,..} on A" with measure /A, so that 
m — ^det gtj. We can then take the gradient Vg ƒ of a function f on X with 
respect to the measure g, defined by 

V g / ' = giJdf/dx'. 

Note that V^gf — A g / is the Laplacian of ƒ with respect to the metric g. Let 
us let C*(A') denote the closed subspace of G°°(X) of functions of average 
value zero with respect to the measure /i. Also let F denote the closed subspace 
of 6°°( X, TX) of vector fields ü o n X which are divergence-free with respect to 
jùi, so that v^p = 0. We define a map on some neighborhood U of zero in the 
product 

Q: UQ vxe™(x)-+ vxe^(x) 
by letting 

Q(v,f) = (v9P(v+vgf)-l). 

We claim Q is invertible in a neighborhood of zero by the Nash-Moser inverse 
function theorem. To see this we can compute its derivative 

*>Q(v, f)(w, h) = (w, DP(v + Vgf )(w + Vgh)). 

To solve DQ(v, f)(w9h):=(w,k)we need to find h with 

DP(v + Vgf)vgh = k- DP(v + Vgf )w. 

Now the operator DP(v + Vgf)Vgh is a linear differential operator of degree 
2 in h with coefficients which are smooth nonlinear differential operators of 
degree 1 in v and 2 in ƒ. When v = 0 and ƒ = 0 the operator is just 
VpVgh — àgh. Since the Laplacian is elliptic, the operator remains elliptic for 
small v and ƒ. Moreover the operator always has the constant functions for its 
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null space, and takes its range in the functions of average value zero with 
respect to the measure JU. Therefore the operator defines an invertible linear 
map of Q™( X) to itself. Moreover the family of inverses forms a smooth tame 
family of linear maps by our argument for the Green's operator of an elliptic 
family. Hence DQ is always an invertible family with a smooth tame family of 
inverses. Then we can apply the inverse function theorem. 

Since Q is invertible, we obtain a coordinate chart on a neighborhood of the 
identity in § by composing Q~x with the chart 3> introduced before. In this 
chart with domain in VX &™(X) the image of KXO corresponds to the 
subgroup ty (X). This shows that ^(X) is a closed tame submanifold near the 
identity, and hence everywhere using the group operation. Moreover in our 
chart the second factor describes the change in the measure JU under the 
diffeomorphism. Hence the action of tf)( X) on ?)H( X) is locally transitive, and 
then globally so since 91t(AT) is connected. The rest of the theorem follows 
from Corollary 2.5.2. 

2.5.5. Problem. If A" is a compact manifold with a symplectic form w, is the 
subgroup of the diffeomorphism group tyj^X) which preserves <o a smooth 
tame submanifold? 

2.5.6. Problem. If X is a compact manifold with a contact structure B, is the 
subgroup of the diffeomorphism group ty^X) which preserves the contact 
structure B a smooth tame submanifold? 

III.3. Generalizations. 
3.1. The Nash-Moser theorem for exact sequences. Our first generalization is 

useful in problems involving deformation of structures. Let F, G and H be 
tame Fréchet spaces and let P and Q be two smooth tame maps between open 
subsets U9 V and W, 

UCF^VQG^WQH 

such that the composition QP — 0. 

3.1.1. THEOREM. Suppose that for each ƒ E F the image of DP(f) is the entire 
null space of DQ(P(f)). Suppose moreover that we can find two smooth tame 
maps 

VP: (UCF)XG->F, VQ: (U C F) X H -> G 

with VP(f)g and VQ(f)h linear separately in g and h such that 

DP(f)VP(f)g+ VQ(f)DQ(P(f))g = g 

for all f E U Ç F and ail g E G. Then for any f0 E U the image of a neighbor­
hood off0 fills out a neighborhood of g0 = P(f0) in the subset of V Ç G where 
Q(g) = 0. Moreover we can find a smooth tame map S: V' C G -> U' Q F from 
a neighborhood V' of g0 to a neighborhood U' of f0 such that P(S(g)) = g 
whenever gEV' and Q(g) = 0. 

PROOF. We refer the reader to our paper [4, §2.6]. 
We now give a version of the above theorem which is invariantly defined for 

manifolds, where the condition Q(g) — 0 does not make much sense. 
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3.1.2. THEOREM. Let <$, § and % be smooth tame Fréchet manifolds and let P, 
Q and R be smooth tame maps 

p Q 

R 

such that Q(P(f)) = R(P(f))for all f G %. Let TÏÏbe the tangent bundle to f, 
T% the pull-back to & of the tangent bundle over § by the map P, and T% the 
pull-back to <$ of the tangent bundle to % by the map Q o p — R o p. Then there 
is a sequence of linear maps of vector bundles over *§ 

DP DQ-DR 
TW-* T§ > T% 

with (DQ — DR) o DP = 0. Suppose that this sequence is exact, and admits a 
splitting by smooth tame linear maps V and W of the vector bundles 

DP DQ-DR 
T<$**T<3 *± T% 

v w 

such that DP °V+ W o (DQ - DR) = I (the identity). Then for every f0 in % 
the image of a neighborhood of f0 fills up a neighborhood of g0 = P(f0) in the 
subset of@ where Q(g) = R(g). Moreover we can find a smooth tame map S of a 
neighborhood of g0 in g to a neighborhood of f0 in ^ such that P(S(g)) — g 
whenever Q(g) - R(g). 

PROOF. Choose local coordinate charts and apply the previous result to P 
and Q - R. 

3.2. Embedding surfaces of negative curvature. 
3.2.1. EXAMPLE. Consider a compact surface M with smooth boundary 

embedded in R3 with strictly negative curvature. In this case the second 
fundamental form btj has two characteristic directions in which it is zero. The 
characteristic curves of M are the curves in the characteristic directions of btj. 

3.2.2. DEFINITION. We say M is in proper position if dM has two compo­
nents and each characteristic curve starts in one boundary component and 
ends in the other without being tangent to the boundary. Note that if M is in 
proper position so is any nearby surface M. If y = f(x) is a positive convex 
function on a < x < b and we revolve its graph around the jc-axis the resulting 
surface of revolution is in proper position. We will prove the following result. 

3.2.3. THEOREM. Let M be a compact surface with boundary of strictly negative 
curvature in proper position. Then (A) any small isometric motion of one 
boundary curve extends uniquely to a small isometric motion of the whole surface, 
and (B) any metric close to the given one also admits an isometric embedding 
close to the given one, and (C) the embedding of the new metric is uniquely 
determined by the embedding of one boundary component, which may be any 
isometric embedding close to the given one. 

PROOF. First observe that we can orient each characteristic curve so it goes 
from one boundary component d+ M to the other one 3~M. At each point 
there is the curve going to the left and the one going to the right. By continuity 
each curve is a left or right going curve at all its points. The left going curves 
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give a diffeomorphism between M and 8+ M X I where / is an interval, and so 
do the right going curves. Thus M is an annulus. 

We can choose left and right unit vector fields y ' and z' on Af tangent to the 
left and right going characteristic curves. Then we have 

gijyY = i> gijzv = !> 

bijyy = o, btjzV = o, 

and if /i/y is the measure tensor then 

Vu?*' > o. 

3.2.4. LEMMA. We can find a weight function p on M such that p = 0 on 9+ M 
andp — 1 ond~ Af, and we have 

y%p>0 and z%p>0 

everywhere on M, so that p is strictly increasing along the characteristic curves. 

PROOF. Given any point in Af, follow forward along the left and right going 
characteristic curves to d~M, and let s~ be the distance separating the 
endpoints along 8~ Af. (To make s~ continuous it may be necessary to count 
the distance as though it were on the universal cover of M, in case we go 
around d~ M several times. Can this ever really happen?) Likewise follow back 
along the characteristic curves and let s+ be the separation on 9+ M. Then put 

2 s+ 

p — — arctan —r. 
m s 

If we move in the forward direction along either a left or right going 
characteristic curve, it is clear that s* will increase and s~ will decrease. Hence 
p has the required properties. We do not actually need the part that p is 
constant on the boundaries, but we include it anyway. Note that the converse 
holds; if p is constant on the boundary components and strictly increasing 
along the characteristic curves then M is in proper position. Note also that for 
a surface of revolution around the x-axis we could use/? = x. 

We wish to transform our variational problem into a symmetric system. To 
accomplish this we introduce the tensor cljk which is completely symmetric in 
all three indices given by 

We can then define a linear transformation L of the bundle L2
S{TM) of 

symmetric bilinear forms into the bundle TM of tangent vectors by letting 
L(hJk) = vl where vl = cijhhjk. 

3.2.5. LEMMA. The linear transformation L is surjective with kernel given by 
the one dimensional subbundle B spanned by the second fundamental form btj. 
Hence L gives an isomorphism of the quotient bundle Q = L\(TM)/B onto TM. 

PROOF. Since bjky
jyk = 0 and bjkz

jzk = 0 we have cijkbjk = 0. Hence B is in 
the kernel. Now a basis for L\(TM) is given by the bilinear forms 

yjyk> zjzk> yjZk + yk
zj 
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where y} — gjty
l and zy — gjtz

l are the dual basis, and bjk is a multiple of 
yjzk + ykZj. We shall show that L is injective on the subspace spanned by y^yk 

and ZjZk. Indeed 

cljkyjyk=
z yl and cljkZjZk — zl. 

Since y ' and z' are linearly independent, the lemma follows. 
Let 9(M) be the Fréchet manifold of embeddings of M into R3, G{M) the 

Fréchet space of symmetric bilinear forms on M and @(M) the open subset of 
G(M) of Riemannian metrics. Similar definitions apply to §(d+ M), G(3+ M) 
and ê(9+ M). We define a complex of smooth tame maps P and Q 

<5(M) ^ S ( M ) X ^(d + M)^G(d+M) 

by letting P( ƒ«) = (giJ9 h
a) and g(/za) = ktj where ƒ a is an embedding of M 

into #3 , 

is the metric induced on M by the Euclidean metric gap on Z£3 via the 
embedding ƒa, ha = fa \ d+ M is the restriction of the embedding to 8+ M, and 

is the difference between the metric induced on 9+ M by the embedding ha of 
8+ M into JR3 and the metric obtained by restricting the metric gtj on M to the 
boundary component d+ M. Note that QP — 0. We want to show that P is 
surjective and the image of P fills out the null space of g in a neighborhood of 
a proper embedding. This says that for any metric gtj on M near the given one 
and for any embedding ha of 9+ M near the given one which induces the same 
metric on 8 + M as gtj there is a unique embedding ƒa near the given one which 
induces the metric gtj on M and agrees with ha on 8+ M. Both assertions follow 
from the following lemma by the Nash-Moser theorems for injective maps and 
for exact sequences. 

3.2.6. LEMMA. The linearized sequence DP and DQ is a short exact sequence 
which admits a smooth tame splitting by maps VP and VQ so that 

VP o DP = / , DP o VP + VQ o DQ = ƒ, DQoVQ = I 

in the diagram 

DP DQ 
0 ^ T$(M)*±T§(M) X Tf(d+M) *±TG(d+M) -> 0. 

VP VQ 

PROOF. We let/ a , giJ9 h
a, and ktj denote tangent vectors at ƒ", giJ9 ha and kÉJ 

respectively. Near 3 + Mwe choose coordinates xl and x2 so that M is given by 
xl > 0. Then J*1 is the coordinate function on 3 + M and ktj has only the 
component ku. Since the boundary is not characteristic, we know bu ¥= 0 in 
such coordinates. The formulas for DP are 
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and the formula for DQ is 

£u=2ga/fllh"dlV-êu\3
+M. 

We shall show that for all gtj and ha with ku = 0 there is a unique ƒ " which 
solves the equations. 

As before we decompose ƒa into its tangential and normal components. 
Instead of the tangential vector components & we use the dual vectors 
vt = g(jV

J lowering indices. Thus we let 

fa = giJvfijf° + wna 

where Ü,- are the tangential part and w the normal part of fa. Likewise we let 

h« = gij^dj/" + sna 

where rt is the tangential part and s the normal part of ha. Then as before the 
equations for DP become 

dtVj + djVt -h IbijW = gtJ on M, 

vi\d
+ M = rt and w\d+ M = s 

while the equations for DQ become 

28,r, + 2 6 1 1 i r - g 1 1 | a + M = £ u . 

Given giJ9 rt and i' solving the equations for DQ, we must show that there is a 
unique solution for vt and w of the equations for DP. Our procedure is the 
following. Given gtj and rt we let t5, be the solution of the equations 

pity+8,0, = fey mod6/7, 

We will show this solution exists and is unique. We can then solve for w 
algebraically with 

dtVj + djvt + IbijW = gtj. 

We take the fa determined by this vt and w to b e / a = VP(giJ9 ri9 s). Note it is 
independent of s. If ku — 0 then we will automatically have w\d+ M = s. 
More generally we can define the map 

(gu,ri,s) = VQ(ku) 

by letting 

s = ku/2bu 

and putting gtj = 0 and ft = 0. It is easy to check that this gives a splitting. 
We can transform the equations (*) into a symmetric system using the 

transformation L defined before. Put 
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Then L{gtj) — ïk gives an isomorphism of the quotient bundle Q = L2
S{TM)/B 

onto the tangent bundle TM. The equations (*) are equivalent to the equations 

[lciJk*fij = ïk on M, 

The equations define a first order linear operator from t5 • E T*M into the dual 
bundle lk E TM. The matrix of the symbol at a cotangent vector f, is just 
2c'JkÇi9 as we see by replacing 9, by £., and this is clearly symmetric in y and k 
since cijk is fully symmetric. Therefore we have a symmetric system as defined 
before. 

3.2.7. LEMMA. If p is a function with yldtp > 0 and zld(p > 0 f/œ/î /? is a 
positive weight function for the symmetric system defined by 

provided yl and zl span the tangent space at each point. 

PROOF. We must check that ciJkdtp — mjk is a positive-definite matrix. Let 
Xj be any nonzero covector. Then 

ciJkdtpXjXk= y%pyJXj.ykxk + z%pzJxjZ
kxk. 

Nowy%p and z'8,/? are positive, and if yj and zj span the tangent space then 
eitheryJx- or zJXj is not zero. It follows that clJkdipxJxk > 0. 

Finally we must check that if vi is an inward pointing normal covector at the 
boundary then ciJkvt is positive-definite on 3 + M and negative-definite on 
3~ M. On 3 + M we know that yivi > 0 and zlvt > 0, so as before if xt ^ 0 then 

cljkviXjXk = yiviy
jxjy

kxk + zlviz
jxjz

kxk > 0 

since >>y and zj span the tangent space. The inequality reverses on 3~ M since 
/>,. < 0 and zivi < 0. 

It follows now by the theory of symmetric systems in §11.3.4 that the 
equations (**) have a unique solution v- which is a smooth tame function of Ve 

and the coefficients cijk. Then the splitting maps VP and VQ are smooth tame 
functions of the embedding ƒ a and the data giJ9 h

a for VP and ktj for VQ. This 
proves the theorem. 

3.3. The implicit function theorem with quadratic error. Our other generaliza­
tion of the Nash-Moser theorem is an implicit function theorem with quadratic 
remainder term of the sort introduced by Zehnder [24]. 

3.3.1. THEOREM. Let i% G and H be tame Fréchet spaces and let Abe a smooth 
tame map defined on an open set U in F X G to H, 

A: UCFXG->H. 

Suppose that whenever A(f, g) = 0 the partial derivative DfA(f, g) is surjec-
tive, and there is a smooth tame map V(f, g)h linear in h9 

V:(UCFXG)XH^F, 
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and a smooth tame map Q(f, g){h9 k} bilinear in h and k, 

Q: (U Ç F X G) X H X H -* F9 

such that for all {f, g) in U and all h EL H we have 

DfA(f, g)V(f, g)h = h + Q(f, g){A(f, g), h} 

so that V is an approximate right inverse for DfA with quadratic error Q. Then if 
A(f09 g0) = 0 for some (f09 g0) E U9 we can find neighborhoods off0 and g0 such 
that for all g in the neighborhood of g0 there exists an f in the neighborhood off0 

with A(f9 g) = 0. Moreover the solution f — B(g) is defined by a smooth tame 
map B. 

PROOF. We could prove this by a slight generalization of our argument for 
the inverse function theorem, but to spare the reader the tedious details we 
merely reduce it to an application of the theorem on near-projections in [4, 
§2.1]. We may assume f0 = 0 and g0 = 0. 

3.3.2. LEMMA. The map 

Hf, S> *) = ( / - Hf> g)Af> g)> g* h ~ A(f, g)) 
is a near-projection in a neighborhood of (0,0,0). 

PROOF. We let 

àf=V(f9g)A(f9g), Ag = 0, àh=A(f9g). 

Using the formula for the quadratic error it is easy to compute 

/)/>(ƒ, g,A)(A/,Ag,AA) = (fc,0,/) 

where 

k = V(f, g)Q(f, g){àh, Ah} - DfV{f, g){Af, Ah}, 

l=Q(f,g){Ah,Ah} 

so that k and / are quadratic in A/, and Ah. This proves P is a near-projection. 
It follows that the algorithm 

fn+l=fn + SnV(fn9g)A(fn9g)9 

gn+x = g, hn+l =hn + SnA(fn9 g) 

induced by the near-projection with initial data f0 = 0, g0 = g, and h0 — 0 
converges as n -» oo. The fn converge to a solution ƒ of A( ƒ, g) = 0, and the 
solution ƒ is a smooth tame function of g. 

If instead V( ƒ, g) is an approximate left inverse for DfA(f9g) with a 
quadratic error term, then the solution of A( ƒ, g) = 0 for a given g may not 
exist, but if it does it is unique. In particular we have the following result. 

3.3.3. THEOREM. Let F9 G and H be tame Fréchet spaces and 

A: UÇFX G^H 

a smooth tame map with A(f09 g0) = 0. Let 

V: (UCFX G) XH^F and Q: (U C FX G) X H X H -> F 
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be smooth tame maps with V(f9 g)h linear in h and Q(f, g){h, k] bilinear in h 
and k, such that for all(f, g) E U and all h 

DfA(f, g)V(f, g)h = h + Q(f, g){A{f, g), h). 

Then we can find neighborhoods of f0 and g0 such that if ƒ, and f2 are in the 
neighborhood of f0 and g is in the neighborhood of g0 with A( fl9 g) = 0 and 
A(f2,g) = 0thenfl=f2. 

PROOF. By Taylor's theorem with integral remainder we can find a smooth 
tame map 

B(fu f2, g){h, k) = ƒ !(1 - t)D}A{{\ - /)ƒ, + tf2, g){h, k) dt 

such that 

A ft, g) = A(fu g) + DfA(f„ g)(f2 - ƒ , ) + £ 

where 

E = B(fl,f2,g){(f2-fl),(fi-fi)}' 
We can write 

h -ft = V{ ƒ„ g)DfA(fi, g)(f2 ~ ƒ,) + Q(fu g){A{f, g), h ~ ƒ,}• 

Now if A( ƒ„ g) = 0 and A(f2, g) = 0 then 

fi-f = -V{f,g)E. 

Then taking a suitable degree r and base b for our tame estimates we have 

\\h-h\\b^c\\h-u\\\+r 

when f and f2 lie in a neighborhood of f0. By interpolation 

l l / 2 - / l l l î + r < C I I / 2 - / I | | 6 + 2 r | | / 2 - / 1 | | t . 

For any e > 0 we have II f2 — f II b+2r < e when fx and f2 He in a small enough 
neighborhood of f0. This makes 

l l / 2 ~ / i l U < C 6 | | / 2 - / 1 i u 

with the constant C independent of e > 0. Taking e < \/C we get || f2 — f \\ b 

= 0sof{ =f2. 
There is an interesting global version of this theorem for manifolds and 

vector bundles, in which the quadratic error comes from the choice of a 
connection on the vector bundle. 

. 3.3.4. THEOREM. Let $ and § be smooth tame Fréchet manifolds and let °Vbe a 
smooth tame vector bundle over Wwith a smooth tame connection V. Let P: <&-> § 
be a smooth tame map of manifolds and let Q: &-* 'Vbe a smooth tame section of 
the vector bundle. Let T<3 be the tangent bundle to § and let P*T§ be the 
pull-back of the tangent bundle to § by the map P. Then we have smooth tame 
linear vector bundle maps of bundles over ®j 

DP: T<5-+ P*T§, DTQ: T<$'-» T 
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where DP is the derivative of P and DTQ is the covariant derivative of the section 
Q with respect to the connection T. Suppose that 

DP X DTQ: T$-+ P*T§ X T 

is a smooth tame linear vector bundle isomorphism of bundles over <$ with a 
smooth tame inverse V. Suppose moreover that for some f0 G ®j we have 
P(fo) = 8o and Q(fo) = 0- Then we can find neighborhoods of f0 and g0 such 
that for all g in the neighborhood of g0 there exists a unique f in the neighborhood 
°ffo wüh P( f ) ~ S and Q(f) — Q- Moreover the solution f' = S(g) is defined by 
a smooth tame map from a neighborhood of g0 to a neighborhood of f0 with 

S(g0)=fo-

If DP X DTQ is merely surjective with a smooth tame right inverse, then the 
solution exists in the neighborhoods and is given by a smooth tame map S but 
it may not be unique. On the other hand if DP X DTQ is merely injective with 
a smooth tame left inverse, then the solution may not exist, but if it does it is 
unique in the neighborhoods. 

PROOF. We compute the local representatives. Locally 5"is an open set Uin a 
Fréchet space F and G is an open set U in a Fréchet space G, while Tis locally 
a product U X H for some Fréchet space H. Locally P is given by a map 

P: UCF^ ÜQG 
and Q is given by a map 

Q: UCF->H. 

The connection T is given locally by a map 

T: (UCF) XFXH^H 

where T(ƒ){(ƒ', h)} is bilinear in f' and h. Locally DP(f)f is just the 
derivative of P, while 

DrQ( ƒ )ƒ' = DQ{f)f' + r ( ƒ){ƒ' , Q{ ƒ )} 

where DTQ is the covariant derivative of Q with respect to the connection T 
and DQ is the ordinary derivative of Q in our coordinate chart on °Y. We 
define a map 

A: UX ÜQFX G -* HX H 

by letting 

A(f,g) = (P(f)-g,Q(f)). 
Then 

DfA{f, g)f' = (DP(f)f', DQ(f)f') 

and hence 

D,A{f, g)f' = DPX DrQ(f)f' - (0, T( ƒ){ƒ' , Q( ƒ )}). 

If DP X DTQ is invertible then its inverse provides an approximate inverse for 
DjA with a quadratic error term arising from the connection term 
F( ƒ){ƒ', Q( f )}, since Q( ƒ ) is just the second term in A( ƒ, g). If we have only 
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a left or right inverse for DP X DTQ then we get only a left or right 
approximate inverse for DfA with a quadratic error. We can now apply our 
previous results. 

3.4. A free-boundary problem, 
3.4.1. EXAMPLE. We consider a free boundary problem. (See Schaeffer [19] 

and Acker [1], who proves this result by other techniques.) Let B be a closed 
curve in the plane. We seek another closed curve C outside of B and a smooth 
function ƒ on the closed annular region A between B and C with 

f A / = 0 o n ^ , 
/ x J / = 1 on£, 
W | / = 0 onC, 

[df/dn+1=0 onC 

where df/dn is the outward normal derivative. Note that since the outer 
boundary C is free or undetermined we can impose an extra boundary 
condition on C. We prove the following result. 

3.4.2. THEOREM. For every smooth convex curve B in the plane there exists a 
unique solution of the free boundary problem (*). The curve C is also smooth and 
convex and the function ƒ is smooth. 

Note that if B is not convex the solution may fail to exist, as when B is a 
horseshoe. We conjecture that the same result holds in Rn. The inverse 
function theorem part of the proof goes through there, but our a priori 
estimates come from conformai mapping. 

Our boundary value problem has the following interesting physical interpre­
tation. Imagine a perfect fluid flowing around an obstacle in the plane with 
convex boundary B. We look for a flow which is at rest outside of an annulus 
A with a jump discontinuity in the velocity on the outer boundary curve C 
which is to be determined. Suppose the fluid has unit density. We can write the 
velocity v in terms of a harmonic stream potential function/, so that v = curl ƒ 
and A ƒ = 0 in A. Since v is tangent to the boundary curves B and C we must 
have ƒ constant on B and C. If the flow is stagnant outside C the pressure is 
constant there. Then particles on the boundary curve C experience only a 
normal force from the pressure, so the speed | v | is constant on C. Since ƒ is 
constant on C, | v \ — \ df/dn | where df/dn is the normal derivative. Thus 
df/dn is constant on C also. The difference between ƒ on B and C is the mass 
flow rate across any curve cutting A from B to C, which we call the circulation. 
By choosing our units of length and time we can make the velocity on C and 
the circulation both equal to 1. This gives our equations (*) for the free 
boundary problem. Thus there exists a unique flow around any convex 
obstacle in the plane which is stagnant outside a compact set and has an 
arbitrarily given outer velocity and circulation. Physically it is hard to realize 
this solution for long due to viscosity. 

PROOF. We start by using the inverse function theorem to show that the set 
of curves B for which we can solve the free boundary problem (*) is open. Let 
& be the Fréchet manifold of all annular domains in the plane with smooth 
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boundary, and likewise let 9> and 6 be the Fréchet manifolds of all boundary 
curves B and C. Then fi is the open subset of $ X Q consisting of all pairs 
(B, C) with B inside C. This gives a smooth tame projection map P: & -» $ . 
Let S°°((£) denote the Fréchet vector bundle over & whose fibre over a region 
A G fi is the Fréchet space 6°°(A) of smooth functions on A. Likewise Q°°(B) 
and C°°(S) are Fréchet vector bundles over % and (2, or over fi by pull-back. 
There is a linear vector bundle map 

L: e°°(&) -> e°°(fi) x e°°(®) x e°°(e) 
of vector bundles over & defined by 

Lf=(bf,f\B,f\C). 

Since the Dirichlet problem is always elliptic and invertible, we see that L is a 
smooth tame isomorphism. Taking / = L - 1 ( 0 , 0 , 1 ) defines a smooth tame 
section S of the vector bundle Q°°(&) over &9 where for each A G fi the 
function ƒ = S(A) is the solution of A ƒ = 0 on A, ƒ = 0 on B and ƒ = 1 on C. 

Using S we can define a smooth tame section Q of the bundle 6°°(S) over 
fi, by letting Q(A) = k where 

k = df/dn + 1 on C 

and ƒ = S(>4). Note that the free boundary problem (*) has a solution on A 
exactly when Q(A) = 0. 

3.4.3. LEMMA. If% is convex and the free boundary problem (*) has a solution 
for B, then it also has a solution for all B near B. If A is an annulus with inner 
boundary B and Q(A) = 0, then for every curve B near B there exists a unique 
annulus Â near A with B the inner boundary of A and Q(Â) = 0. 

PROOF. We use the Nash-Moser implicit function theorem. The bundles 
6°°(&) and C°°(©) and G°°(<2) all acquire connections as explained previously. 
Computing the covariant derivative of Q using the connection on Q™(Q\ we 
must show that 

DP x DQ: m^T%x e°°(e) 
is a smooth tame linear isomorphism of vector bundles over &. Now Ta = T% 
X TQ since fi is an open subset of % X 6, while T% = e°°($) and T6 = 
S°°(C) using the unit normal vector fields to trivialize the normal bundle. 
Since P: & -> ® is projection on the first factor, so is DP: Ta -» T%. Hence it 
suffices to invert the restriction of DQ to TQ = 600'((3). 

We shall now compute 

z)ô:eoo(e)^eoo(e). 
Let £ G 6°°(6) denote an infinitesimal variation of the outer boundary C in 
the direction of the outward normal and let ƒ = DS(h90) G S°°(fi) be the 
induced variation on the function ƒ, keeping the inner boundary B fixed. The 
variation of ƒ on C is the sum of two terms, one due to the variation of ƒ and 
one due to the variation of C, and in order to keep ƒ = 1 on C we must have 

f+(df/dn)h = 0. 
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Since df/dn + 1 = 0 on C we get ƒ = h. Thus ƒ is the solution of the Dirichlet 
problem 

(1) 

A / = 0 o n ^ , 

f=Q on B, 

f=h onC. 

Since k = df/dn + 1 on C, the variation kink will be the variation in df/dn. 
This has three parts, one due to varying ƒ, one due to varying the boundary, 
and one due to varying the normal direction. We get 

9" dn2 

since V/is perpendicular to the boundary and Vh is taken along the boundary 
we can drop the third term. For the second term we observe that when ƒ = 0 
and df/dn + 1 = 0 on C and A/ = 0 in A then d2f/dn2 = m where m is the 
curvature of C. (In higher dimensions m is the near curvature, the trace of the 
second fundamental form.) Then 

(2) k = df/dn + mf 

using ƒ = h on C to eliminate h. The operator DQ(h) = k is obtained by 
solving (1) for ƒ and finding k by (2). To invert DQ, we must solve the elliptic 
boundary value problem 

f A / = 0 o n ^ , 

(3) j / = 0 on B, 
[df/dn + mf=k onC 

and take h=f\C. The above problem differs by the lower order term mf from 
Laplace's equation with Dirichlet conditions on B and Neumann conditions on 
C. Hence it has index zero, and it is invertible if and only if its null space is 
zero. 

3.4.4. LEMMA. If C is convex then the elliptic system (3) is invertible. 

PROOF. This follows from the following energy estimate when k = 0, which 
is obtained by integrating by parts in /A/. 

ff\vf\2+fmp = 0. 
If C is convex then m > 0 and v / = 0, so ƒ = 0. 

The proof of Lemma 3.4.3 will be complete as soon as we make the 
following observation. 

3.4.5. LEMMA. If the free boundary problem (*) admits a solution with a convex 
inner boundary B then the outer boundary C is also convex. 

PROOF. By the theory of conformai mapping the region A can be mapped 
smoothly and conformally onto a standard annulus. Passing to the universal 
cover we get a conformai map of the strip 0 < v < 1 in the m>plane onto the 
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annulus A in the xy-plane with v = 0 mapping onto C and v = 1 mapping 
onto 5 and such that the map is periodic with some period p in M, such that 
u -* u+ p corresponds to going once around the annulus. In two dimensions 
Laplace's equation A ƒ = 0 is invariant under conformai transformations so we 
see that v — f(x, y) is our solution function and u is the conjugate function. 
The flat metric in the Jty-plane pulls back to a periodic conformally flat metric 
in the wt>plane 

ds2 = dx2 + dy2 = e~2g(du2 + dv2) 

where g is a smooth function of u and v periodic in u with period p. Since 
| v / 1 2 = 1 on C we must have g = 0 along t> = 0. A basis of unit vectors in the 
g-metric is given by 

T=egd/du, N= egd/dv 

where T is tangent and N normal to the level curves f — v — constant. Since N 
is an inward pointing normal we have T - N = -mT where m is the curvature 
of the level curve. It is easy to compute 

m = e8dg/dv. 

If B is convex then m > 0 along v = 1 and hence dg/dv > 0 along v — 1. The 
metric is conformally flat if and only if A g = 0. It now follows from the 
maximum principle that g > 0 and dg/dv > 0 on the whole strip. (Hint. The 
function g has its maximum on the boundary, and it isn't along v = 1 by the 
inequality. Also A(3g/3t>) = 0 and (dg/dv)(dg/dv) = -d2g/du2 = 0 along 
v — 0 so we can apply the same argument to dg/dv.) Therefore m > 0 in the 
whole strip, so all the level curves of ƒ are convex, including the outer boundary 
C where ƒ = 0. This completes the proof of Lemma 3.4.5 and our application 
of the inverse function theorem. 

To finish the proof we need a priori estimates on the solution ƒ and its 
derivatives, which we shall briefly sketch. Let M = maxBm be the maximum 
curvature of the given inner boundary B. We make estimates in terms of 
constants C(M) depending only on M. 

3.4.6. LEMMA. We have estimates 

max g < C(M) and maxw<C(Af ) . 

PROOF. We know Ag = 0 on 0 < v < 1 and g = 0 on v = 0 and egdg/dv = 
m < M on v — 1. Since g ^ O w e have dg/dv < M on v — 1 also. As before 
d2g/dv2 - 0 on v = 0 and A(3g/3i?) = 0 o n 0 < i ? < l . Then by the maxi­
mum principle dg/dv < M on all of 0 < v < 1. It is then easy to bound g and 
m = egdg/dv by constants C(M) depending on M. Note that the estimate 
0 < g < C(M ) gives estimates on the maximum and minimum width of the 
annulus A in terms of the maximum curvature M of the inner boundary 2?, 
while the estimate 0 < m < C(M) shows the outer boundary C is convex and 
estimates its maximum curvature in terms of M. 
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We can also estimate the period p. Note that p is just the perimeter of the 
outer boundary C, so p is at least the perimeter of B, which in turn is at least 
2m/M. On the other hand 

area A = I I e2g dudv> p 

and we can estimate the area of A in terms of the diameter of B and the 
maximum width of A. Hence p can be estimated above and below by the 
maximum curvature MofB and the diameter of B. 

Now we can estimate higher derivatives. Let II ƒ11 „ denote the supremum 
norm of ƒ and its derivatives of order at most n. Likewise we define 11B11 n using 
a coordinate chart on B in a neighborhood of some B. 

3.4.7. LEMMA. We can make an estimate for n > 2, 

Wf\\n<C{\\B\\m) 

where C(\\B\\n) is a constant depending only on || B11 n and n, and the estimate 
holds for all B in a neighborhood of B. 

PROOF. Since n > 2, \\B\\n estimates the maximum curvature M of B, and its 
diameter, so our previous estimates apply. If D is any partial derivative then 
A/y = 0 in A so Df attains its maximum on B or C. First we estimate on C in 
our new coordinate system uv where ƒ = v. Then estimating II ƒ II n reduces to 
estimating || g || „_ x. Since Ag = 0 on 0 ^ t> < 1, g = 0 on t> = 0, and g ^ C(M) 
on 0 < v < 1, while the period p is bounded above and below, it is easy to 
estimate II g \\ n on v — 0 in the usual way. 

The same estimate applies on 0 < v < 1 — e for any e > 0. We can choose 
8 > 0 smaller than our estimate for the minimum width of A. Then the curve 
Bd at distance 8 from B lies in A9 and in 0 < ƒ < 1 — e for e > 0 small enough. 
We know A ƒ = 0 between B and BSif= 1 on B and all the derivatives of ƒ are 
estimated on B8. Then it is easy to derive estimates for the derivatives of ƒ on 
B. One way to do this is to use a construction like our coordinate chart on & to 
pull back each annulus As, which will be a smooth tame function of B. The 
pull-back of ƒ to As satisfies the Laplace equation in the variable metric and we 
can estimate the Dirichlet boundary data, so the tame estimates on the higher 
derivatives of ƒ we proved earlier will hold. To estimate the Cn norm of ƒ we 
use the Cn+a norm for 0 < a < 1. This requires the cn~2+a norm of the 
induced metric, which can be estimated by its Cn~l norm. This in turn requires 
the Cn norm of the boundary curve B. _ 

Next we derive estimates for the boundary curve C Pick a point 0 inside B 
and take it as the origin for polar coordinates r and 6. For all B in a 
neighborhood of B the origin 0 lies inside B also. Write B as the graph of 
r — b{6) and C as the graph of r — c(0). Since B and C are convex and 
enclose the origin 0, the functions b(0) and c(0) are single-valued and smooth. 
The norm 11B \\ n of the last lemma is equivalent to 11 b 11 n. 

3.4.8. LEMMA. We can estimate for alln>2 

IWI„*c(||*||J 
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where C(\\b\\n) is a constant^ depending only on II b || „ and the estimate holds for 
all B in a neighborhood of B. 

PROOF. We know that | v / | = e~g and g < C(M) < C(||6||2), so | vf \> 
e(\\b\\2)> 0. Also the maximum and minimum values of c(0) are bounded in 
terms of \\b\\2 since the width of A is. It is now an easy consequence of the 
implicit function theorem in finite dimensions to write an nth derivative of 
c(0) in terms of nth derivatives of ƒ along C. Combining with the previous 
lemma we get our estimate. 

3.4.9. LEMMA. Let Bt be a smooth path of convex curves in B parametrized by t 
for 0 ^ / < 1. Suppose for t = 0 the free boundary problem has a solution f0 

which is smooth on an annulus A0 E &. Then we can find a unique smooth path 
At in â and a path ft G Q°°(ât) of sections over At which solve the free boundary 
problem and such that At has inner boundary Br 

PROOF. The inverse function theorem supplies us with the smooth paths At 

and ft for 0 < t < e. If we can't continue it to t = 1, there will be^a maximal co 
such that the smooth solution exists on 0 < t ^ co. We take B = Bu in the 
previous lemmas. Then for all t in co — 3 < t < co for some 8 > 0 we have 
uniform estimates on 11 ft\\n and lk,ll„, where Bt and Ct are the graphs of 
r = bt{6) and r — ct(0) in polar coordinates about some point 0 inside Bu. 
Then for some sequence tj -> co we will have Ct. -> Cw and ƒ,.-»ƒ„ on the 
annulus A^ between i?w and Cw, by Ascoli's theorem. (After the Ct converge to 
Cw, we may use our coordinate chart on & around Au to pull the functions ft 

on At, back to A^, and the pull-backs f* still have uniform bounds for \\f*\\n 

on Au.) It is immediate that /w solves the free boundary problem on Aœ with 
inner boundary Bu. By the implicit function theorem we get a smooth path ƒ! of 
solutions on a smooth path Ât of domains which agrees with fu and Au at 
/ = co, and is the unique solution in a neighborhood of/w in 6°°(éE). Since the 
ƒ, converge to /w in G°°(éB), the ft and fr must agree when y is large enough. 

Hence ft—ft for all t near co, and the solution extends past co. This gives a 
contradiction if co is maximal. 

3.4.10. LEMMA. When B is a circle there exists a unique smooth solution to the 
free boundary problem. 

PROOF. If B is the circle r = b in polar coordinates then C is the circle r — c 
where c is the unique solution of the equation 

ce~x/c = b 
and ƒ is the function 

/ = l o g ( c / r ) / l o g ( c / * ) . 

(Note the function y = xe~~l/x has y' = (1 + \/x)e~x/x > 0 f or 0 < JC < oo 
and y -> 0 when x -> 0 whiles -> oo as x -> oo.) 

To see that the solution is unique, we look at the associated metric function 
g introduced in Lemma 3.4.5. We know that g is periodic in the strip 0 < v < 1 
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and satisfies Ag = 0 on the strip, while g = 0 along the boundary v = 0. On 
v = 1 we have 

egdg/dv = \/b 

since the curvature of B is \/b when B is a circle of radius b. [Note that in 
general we do not know the curvature as a function of u on v = 1 because the 
diffeomorphism attaching the line v = 1 to the inner boundary B is unknown, 
but when B is a circle the curvature is constant and this doesn't matter.] Then 
we can differentiate with respect to u to get 

A ( | £ ) = 0 o n 0 < i > < 1, 

{ -£- = 0 on v = 0, 
ou 

\'gir(ir)+i;ir = 0 ont3 = 1-
[ ov \ou ) b ou 

It now follows from the maximum principle that dg/du = 0. [Note that dg/du 
has its maximum on the boundary, and it isn't on v = 1 since there e8 and 
(d/dv)(dg/du) and dg/du would all be positive. One needs to throw in an e.] 
Then g is a function only of t>, and we have the ordinary differential equation 

id2g/dv2 = 0 on 0 < v < 1, 
s g = 0 on v = 0, 
[egdg/dv = \/b on t> = 1 

whose only solutions are of the form g = av. Since a ea = & we see that Ö is 
uniquely determined. The strip with metric ds2 = e~2g(du2 + dt>2) must map 
isometrically onto the annulus ^4, and such a map is unique up to a rotation 
which leaves ƒ = v invariant. Hence the solution is unique when B is a circle. 

It is now easy to complete the proof that the solution exists and is unique for 
any convex 2?, using Lemmas 3.4.9 and 3.4.10. We can join any convex curve to 
a circle through a path of convex curves. By Lemma 3.4.7 the solution for the 
circle continues to a solution for B. If there were two distinct solutions for B, 
we could continue them back along the path by Lemma 3.4.9 to two distinct 
solutions for the circle, contradicting Lemma 3.4.8. This proves the theorem. 
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