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Historical introduction. By the first decade of the twentieth century, the 
theory of the multiplier algebra of a Riemann matrix emerged as the principal 
part of the closely associated theories of singular correspondences between 
algebraic curves and algebraic correspondence on an abelian variety. A. A. 
Albert, in a series of papers during the 1930's, systematically characterized 
and classified such multiplier algebras. Although, interest shifted to more 
abstract problems in algebra theory, the theory of the multiplier algebra 
found its way into the applications of theta function theory to problems in 
arithmetic, most prominently evidenced by the work of C. L. Siegel in the 
1950's. In more recent times, A. Weil, G. Shimura and D. Mumford, to name 
just a few, have found new applications for this theory. To some extent, 
already, in Albert's work and especially in work done after 1940, it is 
H. Weyl's reformulation of this theory in more representational-theoretic 
terms which is considered. 

Our purpose in this work is two fold. Firstly, we will present the existence 
part of Albert's work using nilpotent algebraic group theory. The relationship 
between nilpotent algebraic group theory and abelian variety theory is not 
new to this work and goes back to the works of Cartier [10] and Weil [38] in 
the 1960's. Here, however, the multiplier algebra will be used to define a new 
collection of 2-step nilpotent algebraic groups. By 'new', we mean specifically 
in their relationship to the multiplier algebra. Our methods will be coordinate 
free and in this way the inherit identification of vector space with its dual and 
the accompanying matrix calculations so usually evident in this theory will be 
replaced by a study of those bilinear forms which lie at the heart of this 
theory. These bilinear forms will, in turn, be the building blocks of the 
nilpotent algebraic groups. The second purpose of our approach rests on the 
authors faith that the group theory binds in a natural fashion the various 
components surrounding the theory of Riemann matrices. 

It may be argued that the history of the 'Riemann matrix problem' 
precedes Albert's work by a century. During most of this time, it must be 
admitted, the algebraic nature of both the problem and its eventual solution 
as well as its critical importance to the above-mentioned theories were not 
clearly perceived. The idea that the analytic and geometric problems raised 

Received by the editors November 1, 1980. 
1980 Mathematics Subject Classification. Primary 01A55, 01A60, 16A46, 22E25. 
!Both authors supported by NSF Grants. 

© 1981 American Mathematical Society 
0002-9904/81/0000-0502/$! 3.50 

263 



264 L. AUSLANDER AND R. TOLIMIERI 

by these theories would be so served by the techniques of 'pure' algebra is a 
creation of the early 20th century. Conversely, the ideas and questions raised 
by these theories inspired certain aspects of the rapid development of this 
pure algebra theory. This mathematical synergism is not unique to our 
situation, of course. The remainder of this section will outline this history 
which despite the preceding discussion will be, implicitly at least, from a 
modern point of view (modern > Albert's work). Moreover, this history will 
be fashioned as if Albert's work were its goal. This bizarre notion of 
mathematical activity, leaving by the wayside any serious discussion of theta 
function theory as well as any consideration of aspects of this theory 
tangential to our purpose, has the obvious advantage of making the line of 
ascent to Albert's accomplishments discernible, if not totally accurate. We 
apologize, in advance, for what has been omitted. Finally, we wish to record 
our indebtedness to the work of S. Lefschetz [18] which duly records the 
events up to 1928 and from which we will freely borrow and to A. Weil who 
set us on the right direction at the very start of this project. If we have strayed 
in our task, then we must absorb all the blame. 

Below we have listed some of the most influential contributors to the 
Riemann matrix problem as well as an approximate time frame of their 
interest. Also, in regard to our list of references, they have been chosen with 
an eye towards necessity rather than sufficiency. A complete set of references 
before 1928 may be found in the previously-mentioned work of Lefschetz. 

A. Hurwitz 1883-1887 
G.Humbert 1893-1901 
C. Rosati 1913-1929 
G. Scorza 1914-1925 
S. Lefschetz 1916-1928 
A. A. Albert 1931-1935 
H.Weyl 1934-1936 

The history of the Riemann matrix begins with the study of Legendre's 
integral of the first kind 

f , dx = , o<k2<\9 
J V(l - * 2 ) 0 - k2x2) 

and with the study of complex multiplication of elliptic functions. Abel and 
Jacobi, working independently, observed that sin u could be defined as an 
inverse integral 

dx /•sin u 
I I - I 

0 V l ~ X2 

and so set out to study the properties of the functional/) defined by 

rf(u) dx F U = J 0 V(l - *2)(1 - k2x2) 

This program was the starting point of the theory of Jacobi elliptic functions. 
It led to the development of theta function theory and is characterized by 
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many beautiful functional equations whose applications to abelian variety 
theory and number theory form one of mathematics sparkling achievements. 
The basics of this latter theory can be found in Whittaker and Watson [41] 
and with emphasis on its applications to Riemann surface theory in Rauch 
and Lebowitz [21]. 

It is easy to see that the function/(w) defined above, is well defined for real 
M. By a series of formal steps, involving the 'periodic' nature of f(u) and 
applying Euler's addition theorem for Legendre's integral of the first kind, 
Abel and Jacobi extended the domain of f(u) to the complex plane. The 
complete understanding of the power and generality of their technique, 
making full use of the underlying complex analysis, required a new idea. This 
idea was introduced and developed by B. Riemann and was his principal 
reason for defining the notion of a Riemann surface. Essentially it makes 
sense out of the problem of integrating a multi-valued function of a complex 
variable like 

, k complex 
V(l - z2){\ - k2z2) 

over paths in the complex plane. 
Following Riemann, an algebraic curve C defined by F(z, w) = 0 can be 

represented by a compact Riemann surface S on which the relation F(z, w) = 
0 defines w = w(z) as a single-valued analytic function, except perhaps at a 
finite number of points (the branch points) where it can at worst have a pole. 
There are many excellent texts for the theory of Riemann surfaces and we 
will use the elementary parts of that theory without further reference. In 
particular, the complex integral, along with the standard Cauchy theory, 
extends unscathed to S. Loosely speaking, the ambiguous relationship 
(single-valued is nice) between w and z defined by the equation F(z, w) = 0 is 
clarified at the expense of having to deal with the topology of S. Since a 
birational transform C -> C' of algebraic curves determines a homeomor-
phism S —> S' of corresponding Riemann surfaces, up to birational equiva­
lence on C, S is determined up to topological equivalence. The general theory 
of compact Riemann surfaces implies we may take S to be a sphere with g 
handles. This integer g is a birational invariant and is called the genus of C 
and S. 

Denote the fundamental group of S by irx. As is standard, we will identify 
any closed oriented curve on S with an element in TT19 relative to homotopy 
and call such a curve a cycle. From the model of S as a sphere with g handles, 
it follows that 771 can be generated by 2g cycles. The first homology group 
H(S, Z) of S with coefficients in Z can be taken as ^ / { T ^ , TTI). H(S, Z) is a 
free abelian group on 2g generators. The composition in H(S, Z) will be 
written additively and any set of 2g generators is called a homology basis. 
Special homology bases were studied by Riemann, which he called normal. 

The holomorphic differentials on S play the same role that analytic 
functions f(z) or more precisely holomorphic differentials f(z) dz play over 
domains of C, i.e., we integrate them over curves. For a precise definition as 
well as proof of the next result see Rauch and Farkas [22, p. 130-132]. 
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The dimension of the space of holomorphic differentials on a compact Rie-
mann surface of genus g equals g. 

If dv is a holomorphic differential on S then any integral of the type f*o do 
over some path on S from P0 to P is called an abelian integral of the first 
kind. For a cycle a of S, the integral fa dv is called the period of dv as to a. It 
is a birational invariant of C. Let av . . . , a2g be a homology basis for S and 
dvl9 . . . , dvg a. basis of the homomorphic differential on S. Form the matrix 
R = { ^ } where Rjk = f^ dvp 1 < j < g, 1 < k < 2g. We call /* a /rerio/ 
matrix of S\ Clearly, it depends upon the choice of bases. If a'v . . . , <x'2g is 
another homology basis and dv\, . . . , */c£ another basis of holomorphic 
differentials then the relationship between the corresponding period matrices 
R' and R is described as follows. 

«5 = 2 aSkak> ask G z 

k 
Writing 

dv'r = 2 ^d ty , Arj G C 
y 

we have 

*Vj = L̂ askArjRjk 
j,k 

and i?' = v4/to. In general, any two 2g X g matrices X and Y will be called 
equivalent if ^ = y 3 ^ where J? is a nonsingular g X g complex matrix and b 
a 2g X 2g unimodular matrix. If we simply require that b be a rational 
nonsingular matrix then X and Y are called isomorphic. Thus, the period 
matrices of an algebraic curve determines an equivalence class of matrices. 

If R is a period matrix of an algebraic curve then there exists a rational 
alternating matrix C such that 

(Ï) RCR'^ 0, 
(ii) iRCR' is a positive definite Hermitian matrix. 

In general, any 2g X g complex matrix satisfying these conditions is called a 
Riemann matrix and these conditions are known as Riemann's period rela­
tions. The matrix C is called a principal matrix of R. When C = [_?g

 lg] these 
conditions were given by Riemann [23] as exactly the conditions to be 
satisfied by the period matrix of an algebraic curve taken with respect to a 
'normal' homology basis and a 'normalized' basis of holomorphic differen­
tials. Baker [8] was the first to explicitly write down conditions (i) and (ii) but 
in a different context. 

The first proof that the period matrix of a compact Riemann surface is a 
Riemann matrix was due to Poincaré. 

The Riemann matrix appears also in the theory of abelian varieties. This 
theory has its roots in the Riemann-Weierstrass theorem of the algebraic 
relation between p + 1 periodic meromorphic functions with the same peri­
ods. The explicit concern with the underlying geometry begins with the work 
of Humbert [12, 13, 14]. Although, he treats primarily the case of hyperelliptic 
surfaces, his point of view prevails in the later work of G. Scorza, C. Rosati 
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and Lefschetz. Generally speaking his techniques are applicable to the period 
matrices of compact Riemann surfaces having a meromorphic function with 
precisely two poles, counting multiplicity. For the special case of genus 2 
Riemann surfaces and for the n = 2 case of the theory we are about to 
discuss Humbert achieves, if one reads carefully, a complete understanding of 
Riemann matrices and their multiplier algebras. His techniques, depending so 
deeply on the low dimensionality, do not appear to generalize but in his 
program one sees the beginning attempts to free the theory from its geometric 
origins. 

Suppose now that L is a lattice in C and II = C / L is the corresponding 
complex torus. Let rx, . . . , r2n be an integral basis for L and form the 2n X n 
complex matrix 

R = {>-, , . . . , r2n) 

called the period matrix of L. In general, R is not a Riemann matrix when 
n > 2. A meromorphic function f(z) on Cn is called an abelian function for L 
if it admits as periods all the elements of L, i.e., f(z + /) = /(z), / G L and 
z E C. The complex torus II is called an abelian variety if there exists some 
abelian function ƒ whose set of periods is exactly L. This condition has 
important geometric implications as to projective embeddings of II and 
analytic implications in connection with the field ?F(L) of abelian functions 
for L. Somewhat surprising perhaps is that an equivalent algebraic condition 
exists; namely, 

II is an abelian variety if and only if the period matrix R of L is a Riemann 
matrix. 

In this generality the result is essentially due to Scorza [32, 33]. Beginning 
in 1914, he initiated a comprehensive study of abstract Riemann matrices and 
general abelian varieties. This result however has a long history which as we 
have mentioned includes works of Baker and Poincaré. Its proof relies deeply 
on the theory of '«-dimensional theta functions'. 

The period matrix of an algebraic curve is always a Riemann matrix while 
the condition that a period matrix of a lattice be a Riemann matrix picks out 
exactly those complex tori having an interesting function theory, i.e., abelian 
variety. Since not every Riemann matrix is the period matrix of an algebraic 
curve, it would appear that the theory of abelian varieties is more general. We 
will now see that this is indeed the case. On a compact Riemann surface S of 
genus g choose a point P0. Let al9 . . . , a2g be a homology basis and 
dvv . . . , dvg a basis of holomorphic differentials. Consider the corresponding 
period matrix R and let L be the lattice in C1 having R as its period matrix. 
To each point P in S set 

j(p) = (fPdol9 . . . , fdvX 

The mapping P->j(P) is not single-valued but induces a single-valued 
injective holomorphic mapping of S into II = C8/L. The abelian variety II is 
denoted by J(S) and is called the Jacobi variety of S. This result was 
formulated by Jacobi and proved by Riemann. Several authors refer to 
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Riemann's work along these lines as the Jacobi inverse problem theory. Its 
proof, along with other related results (see [22]) is one of the important 
achievements of theta function theory. Since the Jacobi variety J(S) has the 
same class of associated Riemann matrices as S itself, the overlap in research 
involving Riemann matrices of S and of arbitrary abelian varieties is great. 

As yet, we have not discussed the multiplier algebra of a Riemann matrix. 
We shall turn to this now. Let R be a 2g X g Riemann matrix. In the future 
we will say that R has genus g regardless of how it comes about. The 
terminology, in what follows, is by now standard; however, this was not 
always the case. This is by way of a warning to those who consult the 
literature before 1935. In fact, the changes in terminology of times betray the 
changes in attitude toward the theory. We will call a 2g X 2g rational matrix 
M, not necessarily nonsingular, a multiplier of R if there exists a complex 
g X g matrix K such that KR = RK. We call K the multiplication correspond­
ing to M. It is clearly uniquely determined by M. In fact, the set of multipliers 
of R and the set of multiplications of R are isomorphic finite dimensional 
rational algebras. 

In the terminology of associative algebra representation theory the multi­
plier algebra defines a rational representation and the algebra of multiplica­
tions defines a complex representation of one and the same abstract associa­
tive algebra. In particular, when M = si, s E Q, then K = si as well, where / 
denotes the identity matrix. In this case we say that we have ordinary 
multiplication. Otherwise, we have complex multiplication. Observe we have 
already considered special multipliers in connection with the equivalence 
class of period matrices of an algebraic curve. 

The study of multipliers in connection with problems arising out of the 
theory of algebraic correspondences of general algebraic curves was initiated 
by A. Hurwitz at the end of the 19th century. Beginning with [15] where he 
investigated the (singular) correspendences on a special algebraic curve of 
genus 3 occurring in the study of modular equations and in [16, 17] he 
established the importance of multipliers as concrete linear models of alge­
braic correspondences, thereby allowing tools from linear algebra to play a 
part. Although he does not appear to be greatly interested in the algebraic 
structure of the algebra of multipliers, he did consider sets of multipliers and 
the concept of linear independence of sets of multipliers. He showed, in 
particular, that the set of multipliers corresponding to a Riemann matrix 
coming from an algebraic curve of genus g has dimension < 2g2. 

Suppose C is an algebraic curve of genus g and S its Riemann surface. An 
(m, «)-algebraic correspondence on C is an algebraic transformation T of C 
into itself such that to each z in C, T makes correspond n points wv . . . , wn 

in C and each w in C comes from m points zx, . . . , zm in C. On S, we will 
describe the transformation T by p -» qx, . . . , qn. Choose a homology basis 
« ! , . . . , a2g and a basis of holomorphic differentials dvx, . . . , dvg. Asp varies 
over (Xj the corresponding points #!,...,<?„ describe paths whose sum we 
denote by ^kaJkak. The matrix a — {ajk} describes the transformation of 
cycles under T. Also, if ƒ is a holomorphic function defined on an open subset 
of S, then the function g defined by g(p) = 2y/(g,) is also holomorphic on 
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some open subset of S. The mapping ƒ—>g induces a mapping of the 
holomorphic differentials, say 

J 

The matrix A = {Ajk} describes the transformation of the holomorphic 
differentials and it is easy to see that AR = Ra. Thus, T determines a 
multiplier a as well as its corresponding multiplication A. Those T which 
determine complex multiplications are called singular correspondences. There 
is a converse to this construction depending on the theory of the Jacobi 
inverse problem. In fact, in terms of a notion of equivalence for algebraic 
transformations due to Serveri, one can establish a one-to-one correspon­
dence between the multipliers and the equivalence classes of algebraic trans­
formations. 

The theory of complex multiplications of abelian varieties also leads to the 
multiplier algebra of Riemann matrices. Let L be a lattice in Cn such that 
A = Cn/L is an abelian variety. Then, the period matrix R of L is a Riemann 
matrix. The principle of complex multiplication for elliptic functions for­
mulated by Abel can be generalized as follows. If F is an abelian function for 
L and A is an n X n nonsingular complex matrix then F(A~l) is an abelian 
function for the lattice L with period matrix AR. Let ^(L) and ^(L') be the 
fields of abelian functions for L and L', respectively. A necessary and 
sufficient condition that the elements of ^(L) depend algebraically on those 
of ¥(Lf) and vice versa is that L and L' be commensurable, i.e., L n L' is of 
finite index in both L and L'. In terms of the period matrices, this is 
equivalent to the existence of a In X In rational nonsingular matrix a such 
that AR = Ra. Thus, if we drop the conditions of nonsingularity for A and a 
we come to the definition of multiplier and multiplication previously given 
fori?. 

The properties of a Riemann matrix R are of course closely related to the 
properties of its multiplier algebra. Almost simultaneously, from 1914 on­
wards, Scorza [35] in connection with complex multiplications of abelian 
varieties and Rosati [27, 29, 30] in connection with singular correspondences 
of algebraic curves, studied the theory of Riemann matrices and their multi­
plier algebras. As we have indicated, Humbert had previously studied this 
theory for Riemann matrices of genus 2. Somewhat later Lefschetz sum­
marized in [18] Scorza's and Rosati's results as well as providing a history of 
this theory up to that time. Also, although his interests were more in line with 
applications to geometry and analysis, in [19], a work for which he won the 
Bordin prize in 1919, he provided the most complete classification theory of 
Riemann matrices and their multiplier algebras up to that time. His interests, 
as the title would imply, were the study of certain numerical invariants 
connected to Riemann matrices. We will now outline in greater detail the 
ideas prominent during this period from 1915 to 1930. This will be important 
if we want to clearly understand what changes Albert brought to the theory. 

Scorza [33] was the first to study the properties of abstract Riemann 
matrices. Along with Rosati, he studied certain numerical invariants which 
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provided information about the space of multipliers. Equally important, he 
continued the study of the problem of reducing a Riemann matrix R into its 
'pure' components. Poincaré was the first to see the importance of this 
problem and in fact proved the main results when the Riemann matrix comes 
from an algebraic curve. 

Also, although linear algebra techniques were coming into their own, 
Scorza relied on projective geometric techniques for many of his early results. 
A decade later Albert gave a simpler proof. A Riemann matrix R is called 
impure if it can be written 

R = * i 

0 
0 

R? 

where Rx and R2 are Riemann matrices of genus less than the genus of g of R. 
The decomposition theorem is as follows. 

Every Riemann matrix R can be written 

R = 

Rx 

0 

0 

*? 

where all the Rj are pure, i.e., not impure and any two are either identical or 
nonisomorphic. 

The importance of this result to the study of the multiplier algebra of R is 
that we may reduce the problem to the study of pure Riemann matrices and 
in this case the associated multiplier algebra is a division algebra. We will 
have more to say about this result in the next section. 

Scorza [34] and Lefschetz [19] studied the important problem of classifying 
a Riemann matrix of a given genus according to the existence of certain 
multiplications. The linear algebra and elementary field theory techniques 
introduced by Scorza and fully exploited by Lefschetz would eventually 
betray the algebraic nature of the classification problem. Later we will discuss 
Rosati's fundamental contribution as well, which although known at this time 
belongs truly to another period. 

Consider a Riemann matrix R of genus g and suppose a is a multiplier of R 
and A is its corresponding multiplication. Thus, AR = Ra. Let M be the 
multiplier algebra of R. Since A and a are matrices we may consider their 
respective characteristic equations: 

<j>(s) = det(^ - xl) = 0 and F(x) = det(a - xl) = 0. 

Many of the linear algebra techniques which are by now so well known 
were at the time of Lefschetz only several decades old and their application to 
the Riemann matrix theory, already implicit in the work of Humbert, was an 
important contribution of firstly, Scorza and later, Rosati and Lefschetz. 

It is standard that F(a) = 0 (Cayley-Hamilton), and so if ƒ is the minimal 
polynomial of a then ƒ divides F and they have the same roots. Suppose that 
R is pure, for the moment. Then ƒ is always irreducible, and F = ƒr, for some 
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integer r. Since the degree of F is 2g, the degree of ƒ, say q, must divide 2g, 
i.e., qr = 2g. If h is the dimension of the multiplier algebra, then we must also 
have, by purely linear algebra techniques, that q divides h. The history of the 
integer h, as an invariant of R, is interesting and was introduced into the 
theory in a less geometric fashion. For a Riemann matrix R, the dimension of 
the space of all rational 2g X 2g matrices C satisfying RCR' = 0 was called 
by Scorza [32] the index of multiplication of R. This index of multiplication 
was just one of the several discussed by Scorza. In an early fundamental 
result, he proved that h was equal to the index of multiplication of R. 

Lefschetz [19] made a detailed study of the following problem. 
If ƒ is an irreducible polynomial and r is an integer then classify those 

Riemann matrices R which admit a multiplier whose characteristic polynomial is 
fr(x) = 0, for some integer r. 

In particular he studied the case when ƒ had all real roots and the case 
when ƒ had totally complex roots. This continued a program of study initially 
considered by Scorza. Later we will see that these results inspired Albert as 
well. Although we will not discuss Lefschetz's classification theory in any 
detail, we should point out that this achievement was a crown jewel in the 
theory of 'applied' linear algebra and field theory, especially Galois theory. 
Its influence on Albert's work cannot be overestimated. It predestined the 
nature of Albert's results and in doing so exerted an important influence on 
the theory of associative algebra. 

The theory of associative algebra had made substantial progress during the 
early part of the 1900's. Its techniques founded by J. H. M. Wedderburn and 
developed by Albert, R. Brauer, H. Hasse and E. Noether, to name just a few, 
would finally bring about a solution of the multiplier algebra classification 
problem. From what we have written, it would almost appear as if mathe­
matical theories rise and fall as Gibbon's Rome. We have an immediate 
contradiction. The first topic of associative algebra theory, which we consider 
is due to Rosati [28, 31], was known to Lefschetz (bottom of p. 383 of [18]) 
and constituted an important tool in the theory of singular correspondences. 
We will introduce it as Albert considered it (see [4]). Suppose R is a pure 
Riemann matrix. Then the multiplier algebra D of R is a rational division 
algebra of finite dimension. The center k must therefore be a number field. 
The dimension of D over its center k must be of the form n2, n an integer, 
and we call n the degree of D. Thus D is an example of cinormal rational 
division algebra. It also admits a positive involution. For if C is a principal 
matrix for i?, then the mapping X -» C^C, determines a positive involution 
of D and is called a Rosati involution. Denote it by y. Albert [1] made a 
complete study of normal rational division algebras admitting a positive 
involution. The following results, however, are due to Rosati [24, 25]. An 
element x in D is called y-symmetric if y{x) = x and y-skew-symmetric if 
y(x) = -x. Rosati showed that if x is symmetric (with respect to any Rosati 
involution) then the roots of its minimal equation are all real while if x is 
skew-symmetric these roots are purely imaginary. Albert [2] gave simpler 
algebraic proofs of these results and proved converses as well. 

We come now to Albert's work. Consider, as above, the multiplier algebra 
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D of a pure Riemann matrix R and let k be its center. Using a Rosati 
involution, Albert [2] was able to distinguish two separate classes of multiplier 
algebras. Firstly, y defines an automorphism of k. If y acts by the identity 
mapping on k we say D is of the first kind while, otherwise, we say D is of the 
second kind. These definitions are independent of which Rosati involution is 
considered. For D of the first kind, the center k must be a totally real number 
field. If D is of the second kind, then A: is a quadratic totally imaginary 
extension of a totally real field k0 and we may write k = k0(x) where 
y(x) = -x. As innocent as this result appears it is a 'global' result and for this 
reason is crucial in understanding Albert's philosphy. 

Albert [3] showed that if D was of this first kind then it is either a totally 
real field or a generalized quaternion algebra over a totally real field. It is 
important to understand that Albert is now working at building a theory 
within abstract associative algebra theory, although its application to the 
Riemann matrix problem is never far removed. Suppose then, for the mo­
ment, we consider D as any normal division algebra over a number field k of 
degree n. Using the important invariant of the exponent (see [1, p. 76]), Albert 
proved the next result (in a slightly different language). 

If D admits an involution of the first kind, then D has degree one or two 
over its center. 

This result appears weaker than Albert's main result in [3] but, in fact, they 
are (not trivially) equivalent and at any rate sufficient for our purposes (see 
[1, Chapter 10]). 

The next natural problem to consider is which generalized quaternion 
algebras over totally real fields are in fact the multiplier algebra of Riemann 
matrices of the first kind. Albert does more, as we shall see, and studies how 
the degree of the center of such an algebra is related to the genus of the 
Riemann matrix. 

In [2], Albert refined a result of Scorza in connection with the relationship 
between the multiplicity index h and the genus g of a Riemann matrix. Scorza 
had showed that h < 2g while Albert proved h divides 2g. This restriction 
between the numerical invariants of a Riemann matrix provided sufficient 
capital, in light of the preceding result, to completely classify and construct 
the multiplier algebras of the first kind. These results are found in [4, 5]. We 
list these results essentially as Albert first stated them. 

(I) Let k be a totally real number field of degree t over Q. Then there exists 
a Riemann matrix of genus g having k as its multiplier algebra if and only if / 
divides g. 

(II) Let D = K(#, b) be a generalized quaternion algebra over a totally real 
field of degree / over Q (see §6 of this work for the notation). Then, if a and b 
are totally positive, there exists Riemann matrix of genus g with D as its 
multiplier algebra if and only if It divides g. 

(III) Let D = K(a, b\ where a and b are totally negative. Then, there exists 
a Riemann matrix of genus g having D as its multiplier algebra if and only if 
g 7*= 2/ and It divides g. 

(IV) The above list, (I)-(III), exhausts all the multiplier algebras of the first 
kind. 
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In fact, Albert considered more general versions of these results and dealt 
with Riemann matrices over number fields. 

The case of multiplier algebras of the second kind proved to be more 
difficult to handle. It required a greater input of associative algebra theory 
(some yet to be built). The following discussion will necessarily be brief. In 
retrospect, there were two ideas missing in the early 1930's. First there was 
needed information about the relationship between rational division algebras 
admitting involutions and cyclic algebras. The class of cyclic algebras was 
introduced by Dickson (1906). Their definitions may be found in the main 
body of this work. The general theory of cyclic algebras had been built before 
Albert's work by Brauer, Hasse [11], and Wedderburn [37]. The important 
result is found in Brauer, Hasse and Noether [9] which implies that every 
rational division algebra is a cyclic algebra over its center. If D is a rational 
division algebra of degree n over its center k, then a cyclic extension of 
degree n, K of k, can be chosen in D which 'splits' D over k9 in a manner 
made precise in §7. Albert studied rational division algebras admitting 
positive involutions of the second kind and showed how this splitting field K 
could be specially chosen with respect to the involution. The complete theory 
can be found in [1], The second topic which would eventually play a role was 
the notion of crossed products and the related idea of factor sets [1, 40]. The 
latter had already found its way into the general theory. 

In [6], Albert went directly to the problem at hand. In terms of cyclic 
algebras and positive involutions, he defined a new type of algebra by a set of 
conditions which he numbered (19)-(29). We will denote these conditions by 
*. Then he proved the following result. 

The multiplication algebra of any pure Riemann matrix of 
•v^ the second kind is an algebra satisfying * and any division 
^ ' algebra satisfying * is the multiplication algebra of some 

pure Riemann matrix of the second kind. 

Observe that this result is not as specific as those given in (I)-(III) since no 
mention is made of restrictions upon the relationship between genus and 
degree. Additional information can be found in Siegel [36]. Loosely sum­
marizing Albert's work, we may say he studied division algebra over Q with 
positive involution, characterized them, and showed that except for certain 
exceptions they could be realized as the multiplier algebras of some Riemann 
matrix. 

The final works we consider are due to Weyl [39, 40]. Although they come 
after Albert's original solution, they determined subsequent rethinking and 
reformulation of Albert's work, by Albert himself [7], by Siegel [36] and in 
much of what could be called the current point of view. It will certainly be 
critical for us. Generally speaking the philosophy behind Weyl's reformula­
tion is transparent. Consider again the development of Riemann matrices 
from the point of view of abelian varieties. There one begins with a complex 
vector space Cn and studies lattices Lof C . The period matrices R of these 
lattices may or may not satisfy the Riemann period relations but when such 
an R does, then the complex torus CP/L is an abelian variety and we study 
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its multiplier algebra. In Weyl's approach the original situation is reversed. 
Now a lattice L, usually Z2", is specified in R2n and one considers complex 
structures / on R2w and the resulting complex torus II = (R 2 w /L, / ) . For 
more details on these concepts see §2 of this work. Loosely speaking / plays 
the role of R and has the advantage of being a real matrix. The multiplier 
algebra of / is defined as the collection of all In X 2n rational matrices 
(L = Z2n) which commute with J. Thus the unsymmetric condition for a 
multiplier in the pre-Weyl theory gives way to a symmetric condition. We will 
now describe the Weyl reformulation. 

Suppose R is a Riemann matrix and C is a principal matrix for R. Let 
£2 = [j^]. The defining conditions for C can be rewritten as 

/S2C£2+ = 
H 0 

0 -H 

where H is a positive definite Hermitian matrix. It follows that 12 is nonsingu-
lar. Let 

/ = 12" -iEn 0 
0 iEn 

where En is the n X n identity matrix. Then Weyl proves the following result. 
(i) / is a real 2n X 2n matrix, 
(iï)J2=-E2n, 
(iii) CJ is a positive definite symmetric matrix. 
Conversely, if / ' is any matrix satisfying these conditions for some rational 

alternating In X In matrix C' then J' comes from a Riemann matrix R' 
which has C' as a principal matrix. Moreover, R' is uniquely determined up 
to left multiplication by a complex n X n matrix. 

REMARKS. Conditions (i) and (ii) above define / a s a complex structure on 
R2n. If / satisfies (i) and (ii) then the existence of a rational alternating 
In X In matrix C is exactly what is needed to make (R2w/Z2n, / ) into an 
abelian variety. 

Finally, in the notation leading up to the theorem, the multiplier algebra 
M of R is the same as the multiplier algebra of / . 
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1. Algebraic preliminaries. We will consider solely fields K of characteristic 
0, namely the rational field Q, the real field R, the complex field C or an 
algebraic number field f. All vector spaces and algebras over K will be finite 
dimensional. 

A. Weil in his Acta paper [6], Sur certaines groupes d'operateurs unitaires, 
firmly established the relationship between abelian variety theory and nilpo-
tent group theory. This work has been continued in several directions and by 
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this time it is apparent that these two theories are closely interwoven. For a 
discussion of these ideas most suitable for this paper see [2]. In this work we 
will discuss what the authors believe to be a basic connection between these 
theories, involving on the one hand the multiplication algebra of an abelian 
variety and on the other certain nilpotent groups and homomorphism built 
from these multiplication algebras. In the next section we will recall some of 
the theory of abelian varieties and their multiplication algebras as well as 
describe the problems and methods of this work. Here, we will assemble some 
general results on the nilpotent groups which occur in abelian variety theory. 

Let 5Ï be an associative algebra over K of the form 

5Ï = K' i e a 
where 1 is the identity of 5Ï and 91 is its radical. Consider the subset 
TV = TV(9l) of 5t given by 

TV = (1 + a : a E 91}. 

TV is a subgroup of the multiplicative group of units 51* of 5Ï which may be 
seen as follows. The product of 1 + a, 1 4- /? in TV is given by (1 + a)(l + /3) 
= 1 + (a + /? + a/3) which is again in TV and if 91*+1 = (0) then the 
multiplicative inverse of 1 + a in TV is given by (1 + a)~l = 1 — a 
4- . . . + (_!)*#* which is also in TV. 

For any ideal 5 of 91 we set 

N(i) = {1 + a : a G 5} 

and arguing as above N($) is a normal subgroup of N = JV(<31). Also, it is 
easy to see that 

N(<&/$) = N(9l)/N(S). 

The group TV = A^(9l) has a faithful representation p in GL(2l), the nonsin-
gular ^-linear endomorphisms of 51 defined by setting 

p(l + a ) ( / 8 ) - ( l + a)j8 

where 1 + a E TV and fi G 51. Since 91 is solvable, a basis for 5t over K may 
be chosen so that the corresponding matrix representation, also denoted by p, 
satisfies p(N) c U(m, K) where m = dim^ 51 and t/(m, K) is the group of 
upper triangular unipotent matrices. In particular, N must be nilpotent. In 
fact, TV is a ^T-nilpotent algebraic group in the sense of the following 
definition. 

DEFINITION. A group G is called a AT-nilpotent algebraic group if there is a 
faithful matrix representation 

q: G-> U(K,m')9 m' G ZJ , 

such that q(G) is a i^-algebraic variety in U(K, m'). 
The product rule for TV considered above shows that p(TV) is the set of 

zeroes in U(K, m) of a system of linear equations over K. 
We shall be especially interested in 2-step nilpotent groups G, namely, 

groups where [G, G] is central. If G is a 2-step AT-nilpotent algebraic group it 
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is easy to see that G satisfies an exact sequence 

0-» Vx-> G-* F 2 -»0 

where Vl9 V2 are vector spaces over K. 
We will now apply the above construction to two especially relevant 

examples. 
EXAMPLE. 1. Let F be a vector space over K and consider 21 * A(F), the 

exterior algebra of F. Then 

A ( F ) = IT- 1 0 9, 

where <3l = 2 l > 0 A'(F) is the radical of A(F). Hence, we may form the 
A'-nilpotent algebraic group N(A(V)). 

EXAMPLE 2. Let $ = 2 / > 2 A'(F) C SI, the notation being as in Example 
l.Then § is an ideal of A(F) and we may form 

The group %{V) will be extremely important for this work. An explicit 
description of %{V) can be given as follows. As a set %(V) = F X ( F A V) 
and the group law of composition is given by 

(vl9 wx){v2, w2) = (vx + v2, wx + w2 + vx A t>2) 

where t^, v2 £ V and Wj, w2 E F A ^ . 
^ F) is a 2-step nilpotent algebraic group with center (0, w), w G F A >̂ 

and is called the free 2-step üf-nilpotent group of F. The reason for the name 
'free' is the following. We will identify F with 

%(V)/{%(V),%{V)} 

in the obvious way. If G is a 2-step A'-nilpotent algebraic group and 

F: V-+G/[G,G] 

is AT-linear then there exists a homomorphismƒ: %(V) -» G whose kernel is a 
A'-algebraic group and which makes the following diagram commute: 

%(V)^G 

V^>G/[G9G] 

In particular, every AT-linear mapping X of F determines a unique homo­
morphism, also denoted by X, of ^2(F) . 

There are certain homomorphisms of ^ ( F ) that will play an essential role 
in our theory. We will digress to introduce some necessary notation. Let F 
and W be vector spaces over K. We use Hom( F, W) to denote the space of 
^-linear maps from F into W and, in particular, let F* = Hom( F, A"), the 
dual of F. We will implicitly identity F and F *. For T G Hom(F, W) we let 
T* G Hom( JF*, F*) be the dual of the transformation T defined by T*(F)(v) 
= F(r(ü)),ü G F and F G JF*. 
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Let Bil(F) denote the space of bilinear forms B of V, B: V X V-*K.We 
will identify Bil(F) with Hom(F, V*) as follows. For B G Bil(F) put L(B) G 
Hom(F, V*) where L(B)(v)(w) - B(v9 w)9 v9 w G V. Since L(5) G 
Hom(F, V*) we have L(5)* G Hom(F, V*) under the canonical identifica­
tion of V and V**. We say that £ is alternating if L(B)* » -L(B) and 
symmetric if L(5)* = L(B). These definitions are identical with the usual 
matrix definitions. In the same way, we say B is nonsingular if L(B) is 
nonsingular. The space of alternating bilinear forms will be denoted by 
Alt( V) and the space of symmetric bilinear forms will be denoted by Sym( V). 
Then, clearly, 

Bil(K) =Al t (K)0Sym(K) . 

The nonsingular bilinear forms are denoted by Bil*(F) and Alt*(K) = Alt(K) 
H Bil*(F), Sym*(F) = Sym(F) n Bil*(K). 

Let %(V) again denote the free 2-step A'-nilpotent group over V. Its center 
is V A V. The dual of V A V can be identified with Alt(F). For A G Alt(K) 
we let 1(A) G ( F A V)* denote the unique element making the following 
diagram commute: 

V X V^XvA V 
lA * 1(A) 

K 
Now for A G Alt(F) we may define a group structure N(A) on the set 

V X K whose law of multiplication is 

(t>!, a\)(v2, <x2) — (vx + v2, «! + a2 + A(vx, v2)) 

where vl9 v2 G V and al9 a2 G K. Then N(A) is a 2-step A'-nilpotent algebraic 
group whose center contains {(0, a) : a G K) and N(A) modulo its center is 
abelian. Moreover, we have the surjective homomorphism P = PA, 

P: $2(v)^N(A)9 

given by P(v, w) = (v, l(A)w) where v G V9 w G V A V. The following dia­
gram is commutative: 

%(V)^N(A). 

i 
%(V)/[%(V), %(V)} = Vid-TV=N(A)/[N(A),N(A)] 

Also, P is a homomorphism of ^-algebraic groups. 
We will call such morphisms P of %(V) polarizations of V and denote the 

set of polarizations of V by Pol( V). Clearly, the mapping A -> PA is a 
bijection between Alt(F) and Pol(F). 

If A G Mtx(V) then all the groups N(A) are isomorphic and we call the 
abstract group they define the ^-Heisenberg group over V. A given A^(^) is 
then called a presentation of the A'-Heisenberg group over V, which we will 
sometimes denote by N2m+l(K), 2m = dim^ V. Notice, the existence of a 
nontrivial element in Alt( V) implies that V has even dimension. Also, the 
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fixing of an isomorphism of the center of N2m+l(K) with K is equivalent to a 
presentation of N2m+i(K) and when this is done we will also say N2m+lK is 
oriented. 

An important special case is when K = R. In this case we make the 
following definition. 

DEFINITION. Let iV2m+1(R) be an oriented R-Heisenberg group. An auto­
morphism / of N2m+i(R) is called a positive definite CR-structure if / acts 
trivially on the center % of N2m+l(R)9 J2 = -I modulo the center and 

[g,Jg] > 0 , g &%, g e ^ + 1 ( R ) , 

where [g, h] = ghg~lh~l is the usual commutator of g and h. 
The theory of CR -structures on an oriented R-Heisenberg group has been 

studied in [5] and, loosely speaking, relative to a fixed orientation, it was 
found that the positive definite CR-structures were characterized as those for 
which a good function theory exists. 

We will now examine these concepts in relation to field extensions. Let 
K/L be a finite field extension of dimension h. Consider a vector space V 
over K and denote by V{L) the inherited vector space structure of V over L. 
If dim^ V = m then dimL V = h-m. Form %(V) and %(V(L)\ the free 
2-step nilpotent groups over V and V(L)9 respectively. The identity map 
V(L)^> V lifts to a homomorphism i: %(V(L))-± %{V). Consider any 
polarization P of V and let A be the corresponding alternating bilinear form 
of V. The trace mapping t = t r ^ : K-* L is a linear mapping of K consid­
ered as a vector space over L and hence B = t • A is an alternating bilinear 
form of V(L). Let P(L) be the corresponding polarization of V(L). Then, 
where / denotes as well the homomorphism (v9 a) -» (t>, *(«)), (t?, a) G A^(^) 
of N(A) onto N(B), we have the commutative diagram 

%{V) ^ N(A) 

V Ï' 

%{V{L)) *%> N{B) 

We say that P is an extension of P(L) determined by the extension K/L. 
A related but distinct concept, loosely called reduction of the scalars, may 

be considered in the general setting of algebraic group theory. Let G be a 
^-algebraic group and assume that the set of equations defining G can be 
chosen in the subfield L. We say in this case that G is defined over L. 
Suppose, for convenience, that G c GL( V) where F is a vector space over K. 
Since every linear transformation of F is a linear transformation of V(L) we 
have the injective isomorphism 

GL(V) -» GL(V(L)) 

which we call the isomorphism of reducing the field from K to L. Since G is a 
AT-algebraic group defined over L, we have that G c GL( V{L)) is an L-alge-
braic group. We call G the L-algebraic group obtained by reducing the field 
from K to L. 

We will now specialize to the groups consider above. Since K/L is a finite 
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extension, the associative algebra representation of %(V) is defined over L 
and hence we may consider the L-algebraic group %( V). Notice 3F2( V(L)) ^ 
%(V). Also if P is any polarization of V and A the corresponding alternating 
bilinear form of V then the group N(A) is a ^-algebraic group defined over L 
and may be considered as an L-algebraic group N(A). Notice as well that 
where B = t • A, in the notation considered above, N(A) =£ N(B). Finally, P 
defines an L-algebraic group homomorphism P of %{V) onto #04). 

2. The nilpotent groups of an abelian variety. It will be convenient to view 
complex vector spaces as follows. Let F be a real vector space of even 
dimension n = In. A R-linear mapping J of V will be called a complex 
structure if J2 = - L If / is a complex structure on V then the pair (F, / ) 
determines a complex vector space W with V = W(R) and / the automor­
phism of W given by w -* iw. 

Let (V, J) be a complex vector space and %(V) the free 2-step nilpotent 
group over V. Then, J induces an automorphism, also denoted by / , of 
%(V). 

Let ( V, J) be a complex vector space. Consider the complex torus 
(V/L, / ) , where L is a discrete subgroup of F with V/L compact. 

DEFINITION. The complex torus T = {V/L, J) will be called an abelian 
variety if it has sufficiently many meromorphic functions to separate points. 

Not every complex torus is an abelian variety. We will now discuss 
circumstances under which T is an abelian variety. Let VQ be the ô " u n e a r 

span of L. Then VQ is the unique rational vector space determined by the 
conditions L c VQ c V and V = VQ ® ô R. Every bilinear form BQ of VQ 

extends by linearity to a bilinear form B of V. The fundamental theorem of 
abelian varieties states that T = (V/L, J) is an abelian variety if and only if 
there exists an alternating bilinear form AQ of VQ such that the bilinear form 
of V 

{x,y)-+A(J(x\y\ x9y e V, 

is positive definite and symmetric. 
In [2] this result was reformulated in terms of nilpotent group theory. 

Firstly, we note that if 

PQ:%{VQ)^N{AQ) 

is a polarization of VQ then PQ determines a unique polarization P of V, 

P:%(V)-+N(A), 

where A is the linear extension of AQ to V. A polarization P of V given in this 
way will be called a rational polarization. Clearly, this depends upon a fixed 
choice of a lattice L of V or a rational subspace VQ of V with V = VQ ® ö R. 

THEOREM. A necessary and sufficient condition for T = (V/L,J) to be an 
abelian variety is that there exists a rational polarization P of V such that 

(i) The kernel of P in W2(V) is J-invariant. 
(ii) The automorphism that J induces on N(A) is a positive definite CR-struc-

ture, where A is the alternating bilinear form of V corresponding to P. 
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DEFINITION. Let V be a real vector space and L c V a lattice. A complex 
structure / on V such that the complex torus T = (V/L, J) is an abelian 
variety is called a Riemann matrix for V/L. If A = (V/L, J) is an abelian 
variety then every rational polarization P which satisfies the above theorem is 
called a /-polarization and (/, P) is called a Riemann pair for V/L. 

It should be remarked that for a fixed Riemann matrix / o f V/L there may 
be many rational polarizations P such that (/, P) is a Riemann pair. Also, if 
P is a rational polarization there may be many Riemann matrices / such that 
(J, P) is a Riemann pair. 

The abelian variety A = (V/L, J) gives rise to the collection of all rational 
polarizations P, P: ^(V)-* N(A), such that (/, P) is a Riemann pair. In 
particular, we have associated to A a collection of R-nilpotent algebraic 
groups N(A) and compact nilmanifolds N(A)/T, where A is the alternating 
bilinear form on V corresponding to such a polarization P and T is the group 
generated by L in N(A). This correspondence has played a role in [2, 5] where 
function theory on N(A)/T and theta function theory on A were studied in 
relationship to each other. However, the abelian variety A admits additional 
structure whose understanding will require the construction of polarizations 
extending those already considered in the sense defined above. In the remain­
ing part of this section we will study this addition structure. Elsewhere, we 
will apply these ideas to nilpotent group-theoretic analysis of the arithmetic of 
algebraic number fields. 

A linear mapping f of V will be called a morphism of the abelian variety 
A = (V/L, J) if ƒ • / = / • ƒ and f(L) c L. Denote the ring of all morphisms 
of A by End(A) and put 

911(A) = End(A) <g>, Q. 

We call 911 (A) the rational multiplier algebra of A. It depends solely upon VQ 

and J and not the lattice L defining VQ. Indeed, we may identify 9H(A) = 
9H(/) with the algebra of linear maps f of V satisfying ƒ • / = / • ƒ and 
f(VQ) c VQ. Denoting the abstract algebra determined by 911(A) by 9IL, it is 
obvious that 9H is a rational associative algebra and 

911 <-> 91t(A)ö c End( VQ) (by restriction) 

is a rational representation of 911. 
Consider a rational polarization P of V/L such that (/, P) is a Riemann 

pair and let A be the corresponding alternating bilinear form of V. We shall 
identify A G Alt(K) with L(A) G Hom(F, V*). Then we may regard AQ G 
Hom(Fô , Vg). The mapping 

M -* AQ1M*AQ, M G 91t(A)c, 

is a positive involution of 911 (A)Q and is called the Rosati involution of 
911 (A)Q corresponding to P. Thus, 911 is a rational associative algebra with a 
positive involution. 

Let us now state a lemma due to Poincaré that will enable us to completely 
structure 9H(A). 
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PoiNCARÉ LEMMA. Let (V/L, J) be an abelian variety and take V'Q c VQ, a 
rational subspace satisfying V' = V'Q ® e R c V is J-invariant. Then there 
eixsts VQ C VQ such that 

(0 vQ = vQ © KJ, 
(ii) V" = VQ^QRC Vis J-invariant. 
(iii) If L" is a lattice in VQ then (V" /L", J\ V") is an abelian variety. 

REMARK. The existence of VQ is equivalent to 911(A) containing a proper 
projection operator or idempotent. 

We may define VQ as follows. Let (/, P) be a Riemann pair and let G be 
the subgroup of N(A) generated by P(V'). Let Q(G) denote the centralizer of 
G. Then S(G)/% where % is the center of N(A) will be V". 

There are many technical details to verify, but this is the basis of the 
argument. (A proof of this assertion can be found in [2].) 

We say that J is g-irreducible if 911(A) has no nontrivial projections. 
Clearly, the Poincaré lemma implies V = Vx 0 • • • ® Vt where J{ V^) = Vt 

and Jt = J\Vt is g-irreducible, i = 1, . . . , /. We say that Jt and Jj are 
ö-equivalent if there exists an M E 911(A) such that M: Vi ->- Vj and MJt = 
JjM. We may group together all the Q-QqmvdXzrit J/s and change the 
indexing to write 

/' 
j = 2 miJi> mtG z +> 

i 

and call mt the multiplicity of /,.. It follows that 
/' 

9H(A) = 0 2 ^(m,-/,.) 

where 91l(^/l-) is the rational multiplication algebra corresponding to m,/, 
in the above decomposition. Now, it is easily seen that if Jt is irreducible then 
911(7,) is a representation p, of a division algebra ^ and 9H(mlJl) is the 
m, X m, matrix algebra over p , ^ , ) . 

These considerations led Albert to study those abelian variety A for which 
911 (A) is a rational division algebra admitting positive involution. In particu­
lar, he studied the following algebraic problems: 

(1) Determine the set of all rational division algebras D̂ with positive 
involution. 

(2) For each such ty determine the set of all positive involutions. 
We will pull the algebraic results out of the hat whenever we need them 

since there are many good expositions of this starting with Albert's [1]. 
Let ^ be a rational division algebra with positive involution and f the 

center of ^ . An involution a of ^ necessarily defines an automorphism of f. 
We say that a is of the first kind if o\l = identity mapping and of the second 
kind otherwise. Albert proved that <$> had to belong to one of the following 
three classes. 

(i) D̂ = I a totally real algebraic number field. In this case the only positive 
involution is the identity mapping. 
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(ii) <$) = K a quaternion division algebra central over a totally real alge­
braic number field. The positive involutions are necessarily all of the first 
kind. 

(iii) D̂ = # a cyclic division algebra whose center f is a totally imaginary 
quadratic extension of a totally real algebraic number field. The positive 
involutions are necessarily all of the second kind. 

We will now use the rational multiplication algebra 911(A) of an abelian 
variety A to 'extend' the polarizations previously considered. To be consistent 
with the notation of the following sections, we shall denote real vector spaces 
by VR and all other structures over R in a similar manner. 

Let A = (VR/L, / ) be an abelian variety and suppose its rational multipli­
cation algebra 911(A) is a rational division algebra <3)g. Denote the corre­
sponding rational representation by pQ\ tyQ —> ?JIL(A)g. Each rational 
polarizatioin PR of VR/ L such that (J, P^) is a Riemann pair determines a 
Rosati involution 

M->AQ1M*AQ 

of ?)lt(A)g, when ARis the alternating bilinear form of VR corresponding to 
PR, and hence a positive involution r of fyg. Let f0 be the fixed field of r in I. 
Then VQ has the structure of a vector space V over t0 induced by the action 
of 911 (A)Q on VQ and pQ induces a representation p of ^ considered as an 
algebra over f0 on the vector space V over f0. In the following sections we will 
prove that there exists a polarization P' of V, or equivalently, a B G Alt(F), 
such that the following diagram commutes. 

%{V) Z N(B) 
V U 

%(VQ) ^ N(AQ) 

Thus, AQ = t o B where t = tr l0/Q. 

3. Statement of program. Let D̂g be a rational division algebra with 
positive involution and pQ a rational representation of tyg on a rational 
vector space U = U(Q). We want to describe the set of complex structures / 
on UR = U(Q) ®Q R such that PQ^Q) C 9H(/) and for each such / we 
want to determine the rational polarizations PR of UR such that (/, P^ is a 
Riemann pair. As indicated above, the problem lives not over Q but over a 
totally real subfield of the center I of ^Dg. 

The plan of attack is loosely speaking that found in [4]. We will find the set 
of all polarizations PQ of U(Q) which are candidates for a Rosati involution; 
namely if AQ is the corresponding alternating bilinear form on U(Q) to such 
a polarization PQ then the mapping M-+AQM*AQ of End(U(Q)) induces a 
positive involution of ^ g . This will be done in the following steps. Firstly, fix 
a positive involution T of ^Dg. Consider the set éB^g, p c , r) of all polariza­
tions PQ of £/(ö) for which the mapping M -+AQ1M*AQ, induces a positive 
involution of ^ g coinciding with T on the center. Clearly, it is only in case (3) 
that we need introduce r beforehand. Letting <3) denote the division algebra 
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over f0 determined by 6De and p the representation of tf) on the vector space 
U over f0 determined by the action of pQ(f0) onU(Q), we set ££(<?), p, T) equal 
to the polarizations P of U such that the mapping M -^A~lM*A, M G p(D) 
induces a positive involution coinciding with r on the center. We will 
show that in a natural way &{^Q, pö , T) and &(ôD,p,r) are bijectively 
equivalent. Indeed, this correspondence is given by the last diagram of the 
preceding section. 

The problem of describing &(tf)9 p, r) depends ultimately upon knowledge 
of the group representation P of tf)* determined by p; namely 

P(8)X = p(8)*Xp(8), ô G 3)*, * G Hom(£7, f/*). 

Finally, for each PQ G éÈ^g, p e , T) we will produce one Riemann matrix 
/ = J(PK) and then all which satisfy 

(i) (/, PR) is a Riemann pair, 
(ü) PQ(%) C 91L(J). 

4. Riemann matrices whose multiplication algebras are totally real fields. The 
simplest examples of division algebras with positive involution are the totally 
real fields. Indeed, the identity mapping is the unique positive involution for 
those fields. 

For the remainder of this section, f will denote a totally real field and 
h = [£ : Q] will be its dimension considered as a vector space over Q. Recall, 
this is equivalent to the existence of h distinct isomorphisms of t into R. 
Denote these isomorphisms by Xi> • • • > Xh- Considered as an algebra over Q, 
ï has a unique irreducible rational representation, namely the regular repre­
sentation 

r. ï -»End e ( ï ) 

given by r(x){y) = y - x, x, y in f. Every rational representation p of f is the 
direct sum of copies of the regular representation r. We will write p = q • r to 
denote that p is the direct sum of q copies of r. All this is meant up to rational 
equivalence. Letting V be a g-vector space and setting VR = V ® Q R, every 
endomorphism X of V extends uniquely to an endomorphism XR of KR. In 
particular, r(f)R c End(fR) and we recall the elementary result that r(f)R is 
diagonalizable. Specifically, a basis of fR can be found relative to which the 
corresponding matrix representation of t determined by r is given by 

XiC*) 

0 XH(X) 

Consider now a fixed rational representation p = q • r of f on the vector 
space V = V(Q) over Q. The dimension of V(Q) is clearly h • q. The 
representation p of f determines a vector space structure on V over f given by 
setting 

a • t> = p(a)t>, a G f, u G V. 
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We denote the resulting vector space over f by V(ï). The dimension of V(t) is 
q. We will now solve the problem of determining all the polarizations of V(Q) 
that induce the identity involution on t We denote this set by 6B(f, p). In 
general, for an arbitrary vector space W over a field K and A G Alt( W) we 
let 7T(A) be the polarization 

TT(A): %{W)->N{A) 

of ^(W) corresponding to A. 
Let A G Alt(F(f)) and 77- = 77(A) the corresponding polarization of 

%(V(t)). Let /: f -» Q be the trace mapping of f over g defined by t(a) = 
tr(r(a)) where tr denotes the usual trace of the endomorphism r(a) of f 
considered as a vector space over Q. Then B = t ° A is an element of 
Alt(V(Q)). Denote by m' = ir(B) the corresponding polarization of %(V(Q))-
For x, >> G V(t) and a G f we have 

p*(a).*(x,.y) = B(x, ay) = /(^(x, ay)) = f(a4(x,.y)), 

£p(a)0,j>) = B(ax,y) = / ( ^ ( O A : , ^ ) ) = /(c64(x,^)) 

since A is f-invariant 

tfp(«) = P*(«)B 
and TT' = TT(B) is in (£(f, p). For IT = TT(^) in Pol(F(ï)) we put t(<n) = m' = 
TT(£), J5 = / o ^ . it follows that 

/(Pol(K(*)))cff(fc,p). 

The reverse inclusion lies deeper. To prove it, let B G Alt(F(ö)) be such that 
m' = TT(5) G #(f, p). By definition, p*(a)B = 5p(a), whenever a G f. This 
is equivalent to the condition B(ax, y) = B(x, ay), whenever a 6 ï , x , / G 
V(Q). Let vl9 . . . , vq be a basis of F(f) and consider the g-linear mappings 

Bi/, a -> £(au„ y), a G f, 1 < *,y < #. 

The nonsingularity of the trace form implies the existence of elements ^ .j G f 
satisfying 

B(avi9 vj) - *(£j«), 1 < U < ?• 

Since 2?(a;c,>>) = B(x, ay) and J5 is alternating, we have £lV = - ^ . Then for 
* = S?„! ^Ü/ andj> = 2 ? . ! ^ ^ , xi9yt G f, we have 

B(x,y)-t( S U ^ - W ) ) -

Let A G Alt(K(f)) be defined by 

A(x,y) = l 2 M * # ~ X J M ) ) -
\\<i<J<q ' 

We see that B = / ° ^4. Thus, the converse is verified and we have shown that 

0 ( ï ,p ) - / (Po l (F( ! ) ) ) . 
We can express this correspondence using the two homomorphisms 
1: %(V(Q)) -> ^(^CO) and f: iV(^) -> JV(£) discussed earlier in terms of the 
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following important commutative diagram: 

%(V(t)) 1 N(A) 
t» U IT = ir(A), IT' = TT(B), B = t ° A. 

%(V(Q)) -> N(B) 
IT 

Let p be a rational representation of I on the vector space V = V(Q) over 
Q and let ?r' = TT(B) G #(f, p). Let m = TT(A) G Pol(K(f» be the unique 
polarization satisfying the commutative diagram. We shall now construct the 
'real closure' of this diagram. Since %(V(Q)) and N(B) are rational algebraic 
groups, we may consider the group of real points of these algebraic groups 
which may be identified with ^ ( ^ R ) anc* N(BR) respectively. As always BR is 
the R-linear extension to an alternating R-bilinear form on VR. We will 
denote by 7rR the extension of m' to ^ ( ^ R ) o r equivalently mR = ^(B^. We 
saw that %(V($)) and N(A) are the f-points of rational algebraic groups. 
Hence, by reducing the field to Q, we may form rational algebraic groups 
which are isomorphic to %(V(f)) and N(A% respectively. Denote the group of 
real points of these rational algebraic groups by ^ ( H T O R

 anc* N(/1)R respec­
tively. The construction of N(A)R can be explicitly described as follows. The 
group N(A) considered as a rational algebraic group is given as a set by 
V(Q) X ï (ö) , where ï(Q) indicates we are considering f as a vector space 
over Q. Then N(A)R as a set is VR X fR and the group multiplication is given 
by the R-linear extension of A : V(Q) X V(Q) -» f(g) to AR: VRX VR -» fR. 
As before we let TTR: %(V(t))R-^ N(A)R be the extension of IT. Finally, the 
mappings p and t have unique extensions as well, which we denote by iR and 
fR, and we have the commutative diagram 

T'R K 

We are now in a position to state and solve our second problem, namely, to 
find the set of all complex structures / on VR satisfying the following two 
conditions. 

(i) pR(a)J = JpR(a), a G f, 
(ii) (/, TTR) is a Riemann pair. 

Since the polarization ITR of ^2( ^R) comes from the rational polarization *rr' of 
%(V(Q))> t n e content of condition (ii) is that J induces a positive definite 
Ci?-structure on N^B^. 

Consider p(f) acting on N(A) by the rule 

p(S)(t>, a) = (8>v98
2a), ô, a G I, v G V. 

For each 8 G f, p(8) is a homomorphism of the group N(A) because A is 
bilinear over f. Then we may consider p(f) as homomorphisms on N(A) 
considered as a rational algebraic group and hence on N(A)R. Also, pR(f) = 
qrR(ï) diagonalizes when considered as endomorphisms of the vector space 
VR with eigenvalues given by the isomorphisms x, of f into R, each with 
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multiplicity q. Let N2q+i(R9 x ) De the subgroup of N(A)R generated by the 
subspace of VR c N(A)R corresponding to x under the action of pR(f). 
Clearly, pR(F) extends to a homomorphism N2q+l(R,Xi)> this action being 
given by 

pR(8)(v, a) = («<'>©, ô(/)2a), 8<*> = x(ô) . 

It follows that the center of 7V2<7+1(R, x) is 1-dimensional by comparing this 
action with the action of pR(a) on N(A) above. 

It is now easy to see that 
(a)A^)R = n*^+1(R,x). 
(b) N2q+l(R, xd » N2q+l(R), i = 1, . . . , h. 
(c) Modulo the center of N2q+l(R,Xi% the induced action of pR(a) is 

v -> a(/)ü, where a(/) = x(a)« 
We say this decomposition of N(A)R is compatible with p(f). 
Consider the homomorphism /R: N(A)R -^ N(B)R and the decomposition 

N(A)R = n^ 2 ^ + 1 (R , Xi) compatible with p(f). The restriction of tR to 
N(R, x ) is an isomorphism of N(R, xi) into N(B)R. Consider tR on the center 
of 7V(R, x,-)- Then, under the assumption that N(B)R is oriented we may orient 
each N(Ry x)> * = 1, . . . , /* , by requiring tR to be orientation preserving. We 
will assume implicitly throughout that it has been done. 

Let / be a complex structure on VR satisfying the conditions (1) and (2) 
with respect to IT' G (£(ï, p). The endomorphisms pR(f) of VR induce homo-
morphisms of ^ ( ^ R ) which commute with the automorphism induced by / 
on %{VR) by assumption, which implies that / determines an automorphism 
of %{V(^))R. To see this, simply show that J preserves the kernel of pR. By 
assumption / also preserves the kernel of TTR and hence the kernel of 
%(V(0)R-* N(A)R as well. We are identifying all the induced actions of / 
above under the one symbol / for convenience. Thus, / is an automorphism 
of N(A)R. Write N(A)R = Uh

lN2q+l(R, x)- From condition (2) it follows from 
condition (c), recalling the isomorphisms x are distinct, that the subgroups 
N2q+l(R, Xi) are invariant under / . Let /, be the restriction of / to 
N2q+l(R9 Xi)- Since ƒ is a positive definite Ci?-structure on NiB^ it follows 
that Jt is a positive definite CR-structure on N2q+l(R, x)- Thus, every / 
satisfying conditions (1) and (2) with respect to m' can be written J = Ilty 
where /, is a positive definite CR-structure on N2q+l(R, x)> ' — 1, . • . , A. 

Conversely, if Jt is a positive definite C7?-structure onAf2<7+1(R, x) , i = 
1, . . . , h, let J = wiJf be the corresponding automorphism of N(A)R. Clearly, 
/ acts trivially on the center of N(A)R and hence preserves the kernel of /R. 
This implies we may consider / as an automorphism of ^B^. Clearly it is a 
positive definite CR-structure on A ^ n ) which by construction lifts to an 
automorphism of %( V^ commuting with p(!)R. It follows that this induced 
action on VR is a complex structure on VR satisfying conditions (1) and (2). 

We have proved that if $ denotes the set of positive definite CR-structures 
on N2q+l(R) then U.^ corresponds to the set of all complex structures / on 
VR satisfying conditions (1) and (2) with respect to TT'. 

5. Representation of involutions: quaternion algebras. Let 6D be a rational 
division algebra having a positive involution of the first kind. By the algebraic 
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theory <3) is described as follows. Let I be the center of tf). Then f is a totally 
real field and h — [f, Q] < oo. If tf) =£ I then ^ is a quaternion division 
algebra K = K(a, b) over f defined as a 4-dimensional vector space over f 
with f-basis 1, i,j, k satisfying 

i2 = a, j 2 = b, k2 = -ab, 

ij = -ji — k, jk = -kj = -biy ki = -ik = -aj 

where a, b E f. 
Let L be a subfield of K. We may consider K as a left-vector space over L 

or a right-vector space over L where the two structures coincide if L = f, the 
center of K. In all cases we shall write linear endomorphisms of K over L on 
the left. 

Consider K as a left-vector space over L and take x G K . The mapping r(x) 
of K defined by r(x)(y) = y • x9 y E K is an endomorphism of K considered 
as a left-vector space over L. We will write r(x) as rL(x) whenever we are 
considering the mapping r{x) in this way. The mapping 

rL :K-^EndL(K) 

is called the right-regular representation of K over L. It satisfies rL(x -y) = 
rL(y)rL(x), x,y E K, and hence is an algebra homomorphism over f of the 
converse algebra K° into End^(K). 

For x E K, we put NL(x) = det rL(x) and since K is a division algebra it 
follows that NL is a group homomorphism of K* into Lx. We will write 
N(x) = NL(x), whenever L is a maximal subfield of K. In particular, let Lf(/), 
and call N(x) the norm of x. Explicitly, if 8 = x + yi + zj + //c E K then 
7V(ô) = je2 - oy2 - bz2 + afo2 and hence TV maps Kx into lx. 

Consider now K as a right-vector space over L. To each x E K, we consider 
the mapping l(x) of K defined by l(x)(y) = xy,y E K, and easily see that l(x) 
is an endomorphism of K as a right-vector space of L. Considered in this way 
we write l(x) as lL(x). The mapping 

/^:K-^EndL(K) 

is called the left-regular representation of K. In this case lL(xy) = (L(^)(L(^) 

and hence lL is an algebra homomorphism over I of K into EndL(K). 
In this section and the next, unless otherwise specified, we will consider K 

as an algebra over its center f and write r and / for rt and lt respectively. 
From the theory of simple algebras it follows that rQ is an irreducible rational 
representation of the rational algebra K° and every rational representation of 
the rational algebra K° is the direct sum of copies of rQ. The same theory 
implies r is an irreducible representation of K° and every representation of K° 
is the direct sum of copies of r. The analogous results hold for lQ and / where 
K° is replaced by K. The next result holds only when K° is considered as an 
algebra over f, being a special case of a result from the theory of central 
simple algebras. Form the algebra K 0 K ° and consider the mapping (a, ft) 
-+ 1(a)r(p) of K ® K° into End(K). The result is that this mapping induces 
an algebra isomorphism of K 0 K° onto End(K). Hence, the linear span over 
f of the commuting products l(a)r(f$) is End(K). 
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Let K* = Hom(K, ï) be the vector space dual to K and consider 
Hom(K, K*). For y E K * a n d l G Hom(K, K*) put 

R(y)X = r*(y)Xr(y), L(y)X = l*(y)Xl(y). 

It is easy to verify that R is a group representation of R* on Hom(K, K*) and 
L is a group representation of (K°)x on Hom(K, K*). For the remainder of 
this section we will study the representations R and L and representations 
related to them. In the next section we will use this information to study the 
theory of Riemann matrices for the quaternion algebras. 

Let K be considered as an algebra over ï and recall the group homomor-
phism N — iVf(j): K* -* lx defined above. It is easy to see that there exists a 
unique involution o of K of the first kind satisfying the condition N(8) = 
80(8) = 0(8)8. If 8 = x + yi + zj + tk G K, then 0(8) is given by the for­
mula 

0(8) = x — yi — zj — tk. 

LEMMA 5.1. Let T = T* be in Hom(K, K*). Then the following statements 
are équivalent'. 

(I) r ( Y , y) = 7X1, \)N(y), 
(II) r*(y)Tr(y) = N(y)T, 
(III) l*(y)Tl(y) = N(y)T 

for all y G K. We have identified T with its corresponding symmetric bilinear 
form of K over I. 

REMARK. The space of all such T = T* G Hom(K, K*) which satisfy these 
conditions is 1-dimensional and relative to the basis 1, i,j, kofK over f; one 
such T is given by the matrix 

[1 0 1 

\ ~b 

[O ab\ 

PROOF. Statement (II) and (III) both specialize to statement (I), and hence 
all we need prove for the first part of this lemma is that (I) implies (II) and (I) 
implies (III). These proofs are almost identical, hence we shall simply prove 
(I) implies (II). Thus assume (I). Suppose T(l, 1) = 1 for convenience. Then 
from 

T((a + p)8, (a + 0)8) = N((a + 13)8) = N(a + /3)N(8) 

= N(8)T(a + /?, a 4- 0) 

we have upon expanding both sides that 

T(a8,p8) = N(8)T(a,P) 

or equivalently 

r*(ô)Tr(ô) = N(8)T. 

Suppose now that T = T* G Hom(K, K*) satisfies this condition. Then, if 



THE PROBLEM OF RIEMANN MATRICES 291 

8 = x + yi + zj + tk GKwe have by condition (1) 

T(8, 8) = T(l, l)N(8) = T(l l)(x2 -ay2- bz2 + abt2) 

which proves our lemma. 
We may rewrite conditions (II) and (III) in the following form: 
(lI)'r*(8)T=Tr(o(8)), 
( i n y / * ( ô ) r = Ti(o(8)). 
Let us for the remainder of this work let T denote the element defined by 

Lemma 1. We will use T to analyze the representation R of Kx on 
Hom(K, K*). Consider the subspace of K spanned by i,j, k over I and denote 
it by K_p It can be characterized as the eigenvalue 1-space of the involution 
a. Further K = f 0 K_v We can now write 

Hom(K, K*) = T- Hom(K, K) 

- T- /(K) ® r(K) = T- /(K) 0 T- /(K) ® r(K_,). 

Consider the subspace W = T- /(K). For T- 1(a) G W, we have using the 
commutativity of r and / 

R(8)(Tl(a)) = r*(8)Tl(a)r(8) = Tl(a)r(8a(8)) = N(8)Tl(a). 

Hence, 

R(8)\ W = N(8) • identity mapping. 

Now write W = WA <£) Ws, where W^ = 77(1^) and Ws = 77(f). Clearly, 
^ 5 C Sym(K), since T G Sym(K). Consider 77(a) G 77(K_!). Then since 
o(a) = - a , 

(77(a))* = 1(a)* T = Tl(a(a)) = -77(a) 

and hence ^ c Alt(K). Now consider the subspace V = 77(K) ® KK_,) and 
write V = VA® Vs where ^ = T r ^ ) and F s = 770^) ® KK.j). Arguing 
as above, it is easy to show that VA c Alt(K) and Vs c Sym(K). Consider 
VA = Tr(K_!). The action of R(8) on Tr(a) G VA is given as follows, 

R(8)Tr(a) = r*(8)Tr(a)r(8) = Tr(öaa(ö)), 

which is again in VA since a(8ao(8)) = &r(a)a(ô) = -8aa(8) G K_j, 
whenever a G K_j. Hence J^ is /^-invariant. Also, since the action of K on 
K_! given by a -> yaa(y), a G K_!, y G K is irreducible, it follows that VA is 
an R-invariant and irreducible subspace. Consider Vs = TIQL^) ® r(K_{). 
Let X = z',y, A: in the following. Since r and / commute, it is obvious, from 
what we have said about VA, that each of the spaces Tr(K_j)/(X) is /^-invariant 
and irreducible. Hence 

V=VA®VS= Tr(K_.) S TiOL,)/(X) 

where the subspaces on the right are 3-dimensional /^-invariant and irreduci­
ble subspaces. We will summarize some of the above discussion in the next 
two lemmas. 

LEMMA 5.2. Let W = 77(K) and V = 77(K) ® r(K_x). Then 

Hom(K, K * ) = ^ 0 F 
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where W and V are R-invariant subspaces satisfying 
(I) R(8) restricted to W acts as N{8) times the identity mapping on W for all 

5 6 K . 
(II) V = 0 Sx-i,,-^ Tr(K_!)/(X) where each of the subspaces of the direct 

sum is R-invariant and irreducible. 

LEMMA 5.3. Let W and V be as in Lemma 2. Then 
(i) Alt(K) = WA 0 VA, where WA = Tl(K_x) and VA = Tr(K_,) are the 

alternating elements of W and V respectively. 
(ii) Sym(K) = Ws 0 Vs, where Ws = 77(f) and Vs = 77(K_,) ® r(K_,) are 

the symmetric elements of W and V respectively. 

Clearly W = WA © Ws and V = VA 0 F5 and we have completely 
described the representation R of K* on Hom(K, K*). 

The preceding discussion generalizes as follows. Let p be a representation 
of the algebra K° over I on the vector space U over f. Consider the 
corresponding group representation P of K* on Hom(U9 U*) defined by 
setting 

P(8)X = p(8)*Xp(8), 8 e K\ X G Hom(U9 U*). 

We can write p = q- /*, r the regular representation K° and consider the 
associated decomposition, up to identifications, 

u= ©2X 
i 

where Ku = K, u = 1, . . . , q, and p(K°)|KM = r(K°). Also, then U* = 
© Sf K* and we can write 

Hom(<7, U*) = © 2 Hom(KM, KJ) © 2 #("> t;) 
M K < t > 

where B(u9 v) = Hom(Ktt, K*) 0 Hom(K0, KJ). Each of the subspace of the 
direct sum decomposition are closed under duality and P-invariant. 

Consider Sym(L^) and let S(w, v) c B(u, v) be defined by 

S(w, v) = {X 0 X* : * e Hom(Ktt, KJ)}. 

Clearly we can write 

Sym(U) = 0 2Sym(K t t) 0 ^ S(«, v). 

Using Lemma 3 and identifying K = KM we have 

Sym(Kj = Ws(u) 0 Vs(u) 

where Ws = Ws(u), Vs = Fs(w) and R(KX) restricted to Sym(K) is identical 
with P(KX) restricted to Sym(Ktt). 

Consider S (w, t>). The mapping X —» ^ 0 X* identifies 

Hom(K, K*) = Hom(KM, K*) -» S(w, v) c 5(w, Ü) 

and under this identification the restriction of P(KX) to S (w, v) coincides with 
R(KX). Hence we may write 

S(w, v) = Ws(u, v) © Fs(w, v) 
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where under the identification above W = Ws(u, v) and V = Vs(u, v). We 
have proved the following result except for some simple observations. 

THEOREM 5.1. Sym(U) = Ws(p) 0 Vs(p) where 
0 ) Ws(j>) = 2 t t Ws(u) 0 2 t t < c Ws(u, v) is the subspace of Sym(£/) on 

which P(8) acts by N(8) identity, 8 e K*. 
(2) Vs(p) = © 2MKs(w) 0 Sw < t ) Vs{u, v) is the direct sum of 3-dimensional 

P-invariant and irreducible subspaces. 

It is easy to see that dim Ws(p) = 2q2 — q and dim Vs(p) = 3(2#2 + q). 
Consider now Alt( U) which we may write as 

Alt(£7) = © S Alt(KM) 0 2 H"> v) 
u u<v 

where 9l(w, Ü) = {* 0 (-A'*) G 5(w, v): X G Hom(Ktt, K*)}. As before the 
space Alt(KM) = Alt(K) and hence we may write 

Alt(KM) = WA{u) 0 VA(u) 

where WA = WA(u) and VA = K^(«). Also the restriction of RX(KX) to Alt(K) 
is trivially the restriction of P(KX) to Alt(KM). This time the mapping X -» X 
0 (-X*) identifies Hom(K, K*) = Hom(KM, K*) with 2l(w, v) and under this 
identification the restriction of P(KX) to %(u> v) is the same as R(KX). Hence 

«(«,!>)= WA(u,v)®VA(u,v) 

where W = WA(u, v) and K = VA(u, v) under the identification. 

THEOREM 5.2. A\t(U) = fl^(p) 0 VA(p) where 
(1) 0^(p) = © 2M W (̂w) 0 2M<t5 f^(w, v) is the subspace of all A G 

Mt(U) satisfying P(8)A = N(8)A whenever 8 G K*. 
(2) ^ ( p ) = © 2 M VA(U) 0 2M < t ) ^ (w, Ü) can be written as the direct sum 

of 3-dimensional P-invariant and irreducible subspaces and is the subspace 
spanned by all the 3-dimensional P-invariant and irreducible subspaces. 

It is easy to see that dim WA(p) = 2q2 + q and dim VA(p) = 3(2q2 — q). 
We will for later applications describe Ws(p) and WA(p) in terms of 

matrices. Since WA{u) a 77(K_) and WA(u, v) a 77(K) we have that WA(p) 
consists of all matrices of the form 

0 

0 
(K*uo))> 8uv - -*(*„)> K "> t> < q. 

From W5(w) s 77(f) and Ws(u9 v) » 77(K) we have that W5(p) consists of 
matrices 

T 0 ] 

Let K be a quaternion division algebra central over a totally real field f. 
Consider a rational representation pQ of K on a vector space U — U(Q) over 
Q. Then p ö induces a vector space structure on U(Q) over f, denoted by U, 



294 L. AUSLANDER AND R. TOLIMIERI 

where scalar multiplication is given by a - u = pô(a)w, a G f, u G U. Since f 
is central, pQ induces a representation p of the algebra K over f on the vector 
space U. To each positive involution r of K of the first kind we have defined 
the sets éE(K, pô , r) c Po\(U(Q)) a Alt(C/(g)) and (£(K, p, r) c Pol(£/) s 
Mt(U). Let / be the trace mapping of f over Q. Then / induces a mapping, 
also denoted by /, from Pol((/) into Pol( £/(£))) given as follows. If A G 
Alt(t/) then /(^) = tA G Alt( £ƒ(£)). Arguing as in §4 we may show that 

/(«(K, p, T)) = <SB(K, p e , T) 

which as in §4 may be expressed by the commutative diagram 

<S2(U) i N(A) 

1> U <n = TT04) G «(K, p, T). 

wee» i w 
Hence, the problem of describing é£(K, pQ) = UT>0#(K> p ô , T) is the same 
as that of describing &(K, p) = U T > 0 #(K> P> T). 

We will first solve this problem when p is the regular representation r of the 
algebra K°. However, before doing so we will divide the quarternion division 
algebras over I into two distinct classes. The totally positive quaternions, K+, 
are those K(a, b) for which -a and -b are totally positive. The totally 
indefinite quaternions, K", are those K(#, b) for which a, -b are totally 
positive. 

For K+, the involution a, defined in the preceding section, is the only 
positive involution while for K~, a is not a positive involution. However, K" 
does have positive involutions of the form 

r(8) = u~xo(8)u M G K " and o(u) = -« . 

The complete set of positive involutions of K" can be described as follows. If 
r0 is a fixed positive involution of K~ then every other positive involution can 
be written as 

r(8) = U-1T0(8)U 

where u G K" satisfies 
1 .T 0 O) = w, 

2. r(u) has positive eigenvalues. 
We are now ready to describe &(K+, r) and éB(K~, r). 

Consider #(K+ , r). It consists of all those X G Alt(K) satisfying r*(8)X = 
Afr(a(£)) for 8 G K. Multiplying on the right by r(5) we have for such an X 

r*(8)Xr(8) - A>(öa(S)) = # ( « ) * . 

Thus, by Lemma 3 we have 

<£(K+, r)= WA = TICKLE). 

Consider now $(K~, r) — U T>0 $(K~> r, T). Let r be a positive involution 
of K" and let w G K:1 satisfy T(S) = ua(8)u~l for all 5 G KT. We claim 

0(K-, r, T) - Tr(w)/(!). 
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From o(u) = -u it follows that (Tr(w))* = r*(u)T = Tr(a(w)) = -Tr(w) 
and hence Tr(w) is alternating. If 8 G K~ then 

r*(S)(Tr(w)) = Tr(o(8))r(u) = Tr(u)r(uo(8)u~l) = Tr(w)r(r(ô)) 

implying Tr(w) G #(K-, r, r). Conversely if ^ G $(K", r, r) then ^r(w_1) is 
symmetric from 

{Ar(u~1))* = Kw"1)*̂ 4* = -MT(U-1)) = ,4KO 
and in light of Lemma 1 

r*(8)Ar(u~l) = Ar(r(ô))r(u-1) = ^ ( i r V ^ S ) ) 

implies Ar(u~l) G 77(f) proving our claim. 
We have, from the discussion just completed, that 

ffi(K-, r) c T^K:,) 

where T^Klj) is the 3-dimensional /^-invariant and irreducible space consid­
ered in Lemma 2. Now let T0 be a fixed positive involution on K" given by 
T0(8) = U0O(8)UQ1, U0 G Klj, and consider é£(K_1, r, r0) = Tr(w0)/(f) c 
T^Klj). Take y G K" and consider 

R(y)Tv(u0) = r*(y) Tr(t/0)r(y) = Tr(yMoa(y)). 

It follows that 

R(y)&(KZl9 r, r0) = «(K^, r, r) 

where T(Ô) = ü0a(o)t>ö1 and v0 = yw0a(y) is a positive involution. The last 
assertion follows from 

T(O)8 = v0a(8)völ8 = Y^y- 'SyXy-^y^y - 1 

trace(r(r(ô)Ô)) = trace(r(T0(y-1ôy)y"1ôy)) > 0 

since T0 was assumed positive. We summarize as follows. 

LEMMA 5.4. &(K+, r) = 77(K+). 

LEMMA 5.5. Let r be a positive involution given by T(8) = uo(8)u~l> u G Kr,. 
Then 

«(K", r, r) - Tr(W)/(f). 

Moreover 

Tr(Kl1)= E ^(ô)a(K-,r ,T) 
ÔGK-

w/iere R(8)&(K~, r, r) = é£(K~, r, T'), T' a positive involution. 

Consider now the general case where pQ is a rational representation of K on 
a rational vector space U = U(Q). Let, as discussed, p be the representaion 
of the algebra K over ï on the vector space U over f. We want to describe 
#(K, p). 

Assume firstly that K = K+ and hence #(K, p) = (£(K, p, a). Then (£(K, p) 
consists of all those polarizations IT = ^r(^) where .4 G Alt(£7) satisfies 

p(8)*A = ^fp(a(ô)), 5 G K. 
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This is clearly equivalent to the condition A E WA{p) and hence 

6E(K+, p) = WA(p). 

Before we interpret this result in terms of a commutative diagram we will 
make several observations. Since A\t(U) = (U A U)*, where U A U is the 
center of %{U\ we may, using duality, consider the dual of WA{p) c Mt(U) 
in U A U. Specifically 

WA(p)* = {wGUAU: WA{p)w = 0}. 

Since WA(p)* is central in ¥2(U) we may form the group 

N(K+,p)=%(U)/WA(p)* 

and we observe that IT E 6E(K+, p) if and only if 77 induces a homomorphism 
of JV(K+, p). Hence, the relationship (£(K+, pe) a (£(K+, p) a W^(p) can be 
expressed by the following commutative diagram: 

%{U) -> %(U)/WA(p)* = N(K+,p)V(4) N(A) 
V U B = IA. 

%(U(Q)) -+ JV(*) 

THEOREM 5.3. The space é£(K+, pö) w bijectively equivalent to the space of 
all polarizations m of %(U) which factor through the group N(K+,p). This 
equivalence is given in the preceding diagram. 

Now let K~ be a totally indefinite quaternion division algebra and r a 
positive involution given by r(8) = uo(8)u~l, u E K l r Let 6B(r) = 
6B(K~, p, r). Arguing, exactly as in the special case of the regular representa­
tion above we have that 

&(r) = Ws(p)p(u). 

Take y E K", then, as before the involution T' defined by T'(8) = vo(8)v~\ 
where v — yuo(y) is a positive involution of K~ and P(8)&(T) = éE(r'). 
Observe we may also write T'(8) = wr(8)w~l where w = yr(y) and T(H>) = w. 

Consider any A = Sp(u) E 6E(T), S E W;(p). Then if y E K~ we have 
P(y)A = p*(y)5'p(t/)p(y) = Sp(yuo(y)) and hence P(y)A E 5- pCK^). Since 
SpCKli) is a 3-dimensional P-invariant and irreducible subspace of Alt(U), it 
follows that 

P(y)A E 5 P ( K : I ) C VA(p\ y E K . 

In particular, 6E(T) C ^ ( p ) for all positive involutions r of K" and 6E(K~, p) 
C VA(p). 

Fix the positive involution T0 and consider 6B(T0). Since 6£(r0) = 
W^(p)p(w0), where r0(8) = t /^a^wö 1 , w e n a v e that p = dim 6£(T0) = 
dim Ws{p) = 2#2 - q. Choose a basis S^ of W5(p), /x = 1, . . . , / ? , and con­
sider the basis A^ = S^u), 11 = 1, . . . , /? . Each A^ is contained in the 
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3-dimensional P-invariant, irreducible subspace S^pÇK.j). Since dim VA(p) = 
3(2q2 — q), it is reasonable to conjecture that 

VA{P) = © i V(K=I)-

To prove this, we must show that 2£=iS'jUp(K:1) is a direct sum. We will do 
this by induction. Suppose for n <p, the sum 2£~\ S^KZi) is a direct sum 
and consider Snp(KZi). If the sum E^= 1 S^pCKlj) is not a direct sum the 
irreducibility of SvpfKZi) implies ^pCKlj) c 2 ^ 1 S>(Kli). Then for any 
Ô G Kip ô ^ 0 we have 

SA8) = Ï V(*M)' Ô, e K : i ' 

Hence Sn = 2£~i SMp(S "fy) and, since £„ = £*, it follows that 
2 ^ J Sppiô-^J = 2£~J S^oiÔ-^)). The induction hypothesis implies 8-\ 
G f, jit = 1, . . . ,/?, and hence Sn is linearly dependent on Sl9 . . . , Sn_x over f. 
This last assertion contradicts our choice of the S^ and our claim is proved. 
The next theorem summarizes some of our discussion. 

THEOREM 5.4. For every positive r ofK~ we have 

6B(K-, p, T) = Ws(p)p(u) c VA{p) 

where T(8) = uo(8)u~l, u G K^. The space VA(p) is spanned over I by 6£(K~, p) 
and is the smallest P-invariant subspace containing any éE(K~, p, T), T a positive 
involution ofK~. 

Let r be a positive involution of K" and consider 6E(r) = 6B(K~, p, r). As 
after Theorem 3, we may view 6E(T) c Alt(£/) = (U/\ U)* and consider 
#(p)* defined by 

<£(T)* = { W G [ / A ( / : #(T)W = 0}. 

Since every polarization 7i £ S ( T ) induces a homomorphism of the group 

NT(*r9p) = %(U)/&(r)* 

we have the following result. 

THEOREM 5.5. For each positive involution r of K" the space 6E(K", pö , T) is 
bijectively equivalent to the space of all polarizations IT of ^^{U) which factor 
through the group NT(K~, p). The exact relationship is given by the commutative 
diagram 

%{U) -> JVT(K-,p)=«F2(t/)/a(T)* A N{A) 
Ti |< w = w(^) . 
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Theorem 4 also implies that if NQKT, p) = %{U)/VA(p)* the following 
diagram commutes for all positive involutions r of K~. 

%{U) -> N(K-,p) 

\ i 
K(K-9 p) 

In terms of matrices, 6E(K+, p) = WA{p) has been described in the discus­
sion following Theorem 2. Consider K~ and a positive involution T of K" and 
set T(T) = Tl(u)r(u) where r(d) = uo(8)u~\ Then the elements of #(K', p, T) 
are given in the form 

\T{r) 

- . 0 

[ 0 T(r) 

6. Riemann matrices: quaternion algebras. In §5 we obtain a description of 
6B(K, pQ, T) where K is a quaternion division algebra central over a totally real 
field f with positive involution T and rational representation pQ on the 
rational vector space U = £/(6)- Let p be the corresponding representation 
over I of K on U = £/(f). We expressed the relationship between #(K, p, T) 
and 6E(K, p, r) in terms of the commutative diagram 

#2(I/) 4 7V(,4) 

T/ 4,/ w e #(K, p, T). 

W(ô)) ^ *(*) 

As in §4 we may consider the real closure of this diagram 

%{U)K 2 N(A)R=N(AK) 
T'R 4'R 

W R ) -T N(B)R=N(BJl) 

The problem is to describe for each m' G 6E(K, pö , T) the collection of all 
complex structures / on UR which satisfy 

(10 pR(a)J = /pR(a), a 6E K. 
(2') (/, TT'K) is a Riemann pair. 

As in §4 we may decompose N{A)R into a direct product compatible with the 
action of p(f). Precisely, let pR(f) = q • rR(f) and define iV89+1(R, x,) to be the 
subgroup of N^Ay^ generated by the subspace of UR corresponding to the 
'character' x, of f in R. Then 

(a')iv(̂ )R = nX,+i(R,x)-
(b') N8q+l(R, Xi) is isomorphic to N8q+l(R), i = 1, . . . , h. 
(c') Modulo the center of NSq+l(R), the restriction of pR(f) is given by the 

scalar action determined by x,, î' = 1> • • • •> h . 

(%„)), H U = - V ' i</*,»<«. 
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It follows, exactly as before, that 61 (K, p c , B\ the collection of all complex 
structures on UR satisfying conditions (1') (2'), is given by 

h 

a(K,p ô ,2?) = n$,G4) 

where §t(A) is the set of all positive definite Ci?-structures / , on N%q+l(R, xi) 
such that the induced action of Jt on UR = NSg+l(R9 X/ ) / c e n t e r commutes 
with p(K), elementwise. 

We shall now find elements in 91 (K, pQ, B). The first case we consider is 
where p e = rQ. Again, we break the discussion with two cases. 

Let K+ be a totally positive quaternion division algebra, 5 G (î(K+, re) 
and A the corresponding element in é£(K+, r), with B = t-A, where r 
denotes the right regular representation of K+ over its center f. Then we may 
write A = Tl(80), o(80) = -80. Observe that T is totally positive definite, i.e., 
T(y, y) is totally positive in ï, y ^ 0, since K+ is totally positive. Consider 
N(80) = T(80, 80). It has a totally positive square root in the algebra f ®Q R 
which, by R-linear extension, acts on UR = KR. Thus, we can define the 
automorphism J of N(A)R by 

( 5 , Y ) ^ ( — ^ = f i , A (8, y) e N(A)R. 

y^/m^ ! 
That this is an automorphism follows from the formula 

l(80)*Al(80) = N(80)A. 

Since 8Q = -N(80), J2 = -I modulo the center, and acts by the identity 
mapping on the center. Now take S e K + satisfying r(y)8 = x - W for fixed 
i = 1, . . . , h and for all y G f. To see that the restriction of / to the groups 
7V8<7+1(R, Xi) is a positive definite CK-structure, we write 8 = (8, 0) G N(A)R 

and note that 

[8,J8] = A(8, J8) =VN(80) T(8, 8) 

which is totally positive whenever 8 ¥= 0. Clearly, J commutes with r(a) on 

K 
The case of K , a totally indefinite quaternion division algebra, goes as 

follows. Let T(8) = uo(8)u~l, o(u) = -u be a positive involution of K" and 
take B G (£(K~, rQ9 r) corresponding to A G £B(K~, r, T). We may write A = 
Tr(w)/(a), a G f. Without loss of generality, we may take a = 1. Let v — u~l. 
Then r(v) = u~lo{v)u = -M-1*/-1** = -w"1 = -v and a(w-1)w_1 = r(u~l)u~l = 
N(u~l) is totally positive on f, by the assumption of positivity of r. Consider 
the mapping J of N(A)R given by 

(Ô, y) -> I " 7 ^ = = - ô, y J, (ô, y) G ^ ) R . 

It is again easy to see that J is an autormorphism of N(A)R, whose square 
J2 = -I modulo the center and induces, by restriction, to each NSq+l(R, xi) & 
positive definite Ci?-structure. 
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We will now return to the case of a general representation pQ of K on a 
rational vector space U = U(Q). Let p be the corresponding representation 
of K over f on the vector space U = U(t) over f. One of the advantages of 
introducing the groups N(A) and N(A)R for an A E $(K, p, T) is that p(F*) 
extends to a group automorphisms of N(A) and 'diagonalizes' as a group of 
automorphisms of N(A)R. We shall now see that for arbitrary K the group 
generated by some basis of K over ï also acts as a finite group of automor­
phisms of N(A)R. This in turn will allow us to find a 'Riemann matrix' for A. 

Consider K = K+ and A e 6B(K+, p). Then, since a, the standard involu­
tion on K+, is positive, we have that f or all 8 G K+, 8 ¥= 0, 8a(8) = N(o) is a 
totally positive, element in f and hence has a totally, positive square root in 
ï <S>0 R. Then f or 8 E K + the mapping 

(w, a) -* — p(8)u, a , (u, a) 
\VN(8) I 

N(A)¥ 

is an automorphism of N(A)R. The group generated by the automorphisms 
corresponding to 8 = 1, i,j, k is clearly a finite group of automorphisms of 
N(A)R. Notice as well, that, since f is central, these automorphisms induce 
automorphisms on the groups NSq+l(R, x,)-

In the case K = K and A e &(KT, p, r) not all of p(K") extends to N(A). 
However, we can do the following. Write r(8) = U0O(8)UQX, O(U0) = u0. Then 
r(w0) = -u0. Choose v0 such that o(v0) = -t;0, r(v0) = v0 and 1, w0, t>0, M0Ü0 

span K~. Then U0T(U0) = -MQ and Ü0T(D0) = v% are totally positive in ï ® g R 
and, as above, we have the automorphisms of N(A)R, 

(w, a) - ^ I POQ)M, « I, 

(w, a) -» I ——-p(Do)^. « ), 

(«, a) E N(A)R. 

Hence, the group generated by the basis 1, w0, D0, U0V0 acts on ./V(̂ 4)R as a 
finite group of automorphisms. As above the subgroups NSq+l(R, Xi) a r e 

invariant. 
Now, take any positive definite Ci?-structure Jt on NSg+x(R, x»)> ^ == 

1, . . . , h. In either case the group 0(Jt) of automorphisms of N8q+l(R, x») 
which commute with Jt is maximal compact and contains a conjugate of the 
finite group of automorphisms defined above. Thus, a conjugate of Ji9 which 
is still a positive definite CR-structure, commutes with this finite group and 
hence on NSq+l(R, xi) modulo the center with p(K). 

7. Representation of involutions: cyclic algebras. We will now study rational 
division algebras admitting a positive involution of the second kind. Such 
algebras are necessarily examples of cyclic algebras whose theory we will 
recall below. 

Let # be a rational algebra having dimension s2 over its center !. Let A' be a 
cyclic extension of f contained in ft of degree s over f and denote the Galois 
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group of K over f by G. We will call & a cyclic algebra over f and K its 
splitting field if a basis of & considered as a left-vector space over L exists of 
the form 

satisfying the next two conditions 
(i) For each a G K we haveyo/"1 G AT and the mapping 

a-*jaj-l:K-*K 
is a generator of G. 

( i i ) / -bEKx. 
For the rest of this section, & is a rational division algebra having dimen­

sion s2 over its center f and r is a positive involution on d of the second kind. 
The positivity of r implies that the fixed field f0 of T is a totally real field. It is 
well known that every rational simple algebra may be realized as a cyclic 
algebra and hence # is a cyclic algebra. We may choose a splitting field K for 
# having special properties relative to the involution r. Firstly, f is a totally 
complex quadratic extension of f0 and a c e f may be found satisfying 

(iii)f = f0(c), 
(iv) T(C) = -c. 

Now, we may choose a cyclic extension KQ of ï0 of degree s contained in # 
with the following properties. 

(v) K0 is a totally real field. 
(vi) T acts by the identity mapping on K0. 
(vii) K = K0(c) is a splitting field for the cyclic algebra d. 
We will now suppose that, once and for all, a c G î has been chosen 

satisfying (iii) and (iv) and a cyclic extension K0 of f0 has been chosen 
satisfying (v)-(vii) and a basis i,j, . . . Js~x of the left vector space # over K 
satisfying (i), (ii). We then have the following two important properties. 

(viii) r(j)j = a G K0 is totally positive. 
(ix) Nt/to(b) = NKo/to(a). 

Also, in terms of our given r the positive involutions of # which have the 
same effect on ! as T are all of the form T'(8) = ur(8)u~l where T(M) = u and 
the eigenvalues of the regular representation of & applied to u are all positive. 

Consider a rational representation pQ of #° on a rational vector-space 
U — U(Q). Then as we saw in §4, pQ determines a vector-space structure on 
U over f0, which we denote by U again, where scalar multiplication is given 
by a • u = pô(a)w, a G ô0, u G C/. Since f0 is central in #°, pô(#) consists of 
endomorphisms of U and hence pô induces a representation of the algebra # 
over f0 on £/ which we will denote by p. To each positive involution T' on # 
we have defined the sets 

#(*, Pe, T') c Poi(t/(e)) « Ait(t/(e)), 
&(», p, T') C Pol(f/) « Alt(tZ) 

and where / now denotes the trace mapping of f0 into Q, t • Alt( U) c 
Alt(U(Q)). As in §4, we can in fact show 

t(&(», p, T')) = «(*, p e , T') 
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and we have the commutative diagram 

%{U) -» N(A) 

%(U{Q)) X N(B) 

Thus, we are led to a study of the set $(#, p, T'). We will write T' ~ r to mean 
r and T' coincide on f and we are interested in the sets &(&, p, r) and 
0 ( # , P ) - U T ^ T # ( # , P , T ' ) . 

The crucial part of the study will again be the group representation P of &x 

on Hom( U, U*) defined by 

P(8)X = p*(8)Xp(8) 5 e r , l 6 H o m ( i 7 , [ / * ) . 

It is this group representation P which will be our concern for the rest of this 
section. 

Consider & as an algebra over f0. Let r and / denote the right-regular 
representation of #° and the left-regular representation of ê over f0, respec­
tively, and R and L the associated group representations of d* and #°* on 
Hom(#, #*). We will construct a 71 G Sym(#) which will play the same role 
in structuring the representations R and L as the T considered in Lemma 4.1. 
Consider a n l G Hom(#, #*). We define the conditions (r), (1) and (g) for 
such an X as follows. 

(r) r*(8)X = Xr(r(8)% 8 E #, 
(1) l*(8)X = Xl(r(8)), 8 G #, 
(g) T**T = * . 

The r G Sym(#) will satisfy all three of these conditions and will be uniquely 
determined by them. We will observe below that any two conditions (r), (g) or 
(1), (g) determines the other (1) or (r) respectively. 

Let T0: K X K->k0 be defined by 

W Y) = tr*/fo(Mr)), *, y e *. 
Since trK/ÎQ(g(8)) = trK/ÎQ(8) for all 8 G K and g G G, G the Galois group of 
K over f0, and since T G Git follows that 

W Y) = trK/îo(8r(y)) = trV f o(r(MY))) 

- W Y T ( S ) ) = r0(y, 8) 

and hence T0 G Sym(K), A' viewed as a vector space over f0. Essentially, the 
same argument shows that 

Ug(8), g(y)) = r0(fi, y), g e G, 8, y G tf, 

using the commutativity of G. Take now 8, y, a G A'. Then 

r0(8a, Y) = tr^(&«T(y)) = t r ^ ( T ( « O T ( Y ) ) ) - ^K/îo(yr(a)r(8)) 

= r0(yr(a), 8) = T0(8, yr(a)). 

We summarize the properties of T0 in the next lemma. 
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LEMMA 7.1. Let T0: K X K-* ï0 be defined as above. Then T0= T$ and 
( i ) g * r 0 g = r 0 ) g e G , 
(ii)/•*(«) T0 = Tor(T(Ô)),Ô(EK, 
(iii) i*(ô)T0 = r0/(T(ô», ô e A:. 

Condition (iii) follows automatically from conditions (i) and (ii) by noting 

T0(8a, 0) - T 0 (T(8«) , T ( 0 ) ) = 7Ur(«M«), T ( 0 ) ) by (i) 

-Ur(a),r(fi)8) by (ii) 
= r0(r(«), r(T(«)iS)) by(i) 

= r0(«, T(Ô)/3) by (i). 

We will use T0 to build T. The required conditions for T force the 
following definitions. For 0 < ft < s define 

Tli:KjOxKj"^t0 

by 

W \ #") = T0(y, S W ) ) . Y. « e K. 
Put 

r = e 2 T;. 

From T(/)/' = a E AT0 it follows that jr(j) = jaj~l. For any « E ^ w e will 
denote the conjugates of a over f by a (0 ) , . . . , a(j_1), where a = a<0). Hence 

7'T(/') = tf(1) by condition (i). It follows ihatjW) = a(1). . . a^ G K0 since 
r(jaj~x) = j(r(a))j~* = ./a/'"1 by the abelian property of the Galois group of K 
over ï0. Thus, 

W » S;"") = t r ^ a ™ . . . a^yr(8)l y,8(EK. 

THEOREM. 7.1. Let T be defined as above. Then T = T*. Further, for 
y, Ô E $ 

0) T(jyr\jôj~l) = T^ya"1, 5), 
(ii) 7XT(Y), T(S) ) ,= r(y, Ô). /fewce condition (g). 
(iii) 7Xya, ô) = r(y, ôr(a)), a E #. Hence condition (r). 
(iv) T(ay, 8) = r(y, r(a), 8), a S &. Hence condition (/). 

PROOF. AS above conditions (ii) and (iii) imply condition (iv). Also T = T* 
is obvious. 

We will begin by proving (i). Let a[(l] = a ( l ) . . . tf(M). Consider y = 2 xj* 
and 8 = S>yM G *> W M E *• T*1011 

AT1 = S *M(iy\ «r̂ -1 = 2 * • a00"1 V1-
By definition 

TUrrKW1) = 2 r . W ^ i V ) = 2 t r^a^V^ ' ) ) ) . 
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Since tr^/f is invariant relative to the action of G and 

J~laiv\i = aMa a(M> • 
It follows that the sum on the right becomes 

2 trVfo(tf[M]tf a^~l*T(>,)) _ T(aya-\ô). 

The proof of (ii) goes as follows. Let r(y) = 2 x'J*. Then 

Consider 

^ « y ) , T (8 ) ) = 2 t r ^ a ^ j ^ r C ^ ; ) ) = 2 t r ^ ^ . ^ x ; . T(.V;_ )). 

Using Galois invariance again along with the formula for A^_M, we can easily 

see that the last sum can be written 

However, NKo/lo{a) = A^ /f(a) = br(b) and A^o/ïo(a) - a ^ l ^ which im­
plies that this sum is 

2 t r V ï o (ö [ M ] r (^)^) = 7X8, y) - r(ï> *)• 

To prove (iii) it is sufficient to show that for x, y, z E K and 0 < /x, *>, o) < 
s we have 

T(xfzr,yr) = T{xj\yj^(zr)). 

If *> + co T*= [A and *> 4- co ̂  JU, + s both sides are 0. We will therefore assume 
that J' + to = /Aor^' + lo = ju + s,. The proof in either case is the same so we 
will take v + to 4- JU. By definition 

T{xj"zr,yr) = trK/to(alll]Xz^T(y)) 

and 

= t r ^ a w f l f j H ^ M * ) ) 

= t r ^ f a ^ ' M j O ) - T(xj'zr,yj») 

which is what we wanted to prove. 
Thus, we have found a T G Sym(#) satisfying conditions (r), (1) and (g). 

Below, we will show T is uniquely determined by these conditions. 

COROLLARY. T- T e Sym(#) and satisfies 

r * ( 8 ) ( r - T ) - ( r - T ) / ( 8 ) , 8 e # , 
/ * ( 8 ) ( T - T ) = ( r - r ) r ( 8 ) , 8 G #. 
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PROOF. Simply observe that r2 = r and from (iii) of the preceding theorem 

and T • r is symmetric. The remaining assertions are equally obvious. 
We call any X G Hom(#, #*) satisfying the condition (r) an r-form and the 

condition (1) an /-form. The set of all symmetric r-forms will be denoted by 
Sr and the set of all symmetric /-forms by §/. Before describing the sets Sr 
and S/ we observe that T vanishes off the 'diagonal' Kj^ X A//i, 0 < n < s 
and that a symmetric r-form or a symmetric /-form is uniquely determined by 
its 'top row' K X Kj*, 0 < \x < s. 

LEMMA 7.1. Let #0 be the space of all d E # satisfying T(Z) = z. 77*e« 
(1) S/ = Tr(#0), 
(2) Sr = 77(#0). 
(3) In particular, ï0T = Sr n S/ tf«</ 7*, w/* to constant ï0-multiple, is the 

unique r and I-form that is symmetric. 

PROOF. We will prove (1). Clearly Tr(#0) c S,. Consider a n J G § / and 
the linear mapping of K over f0 given by 

x-^XixJ*), x G K. 
There exists an r]^ G K such that X(xJ^) = t r ^ (TJ x), A: G A'. Hence, by 
the definition of Ton K X Kit follows that 

X(x9yj") = Jr(T(^)x,7") - KK/to{%xr{y)) - r (x , M ^ ) ) 

for all x, >> G l Thus, 

* = r%T<V(^)K 
on AT X Kj^, 0 < ii <s. Consider TJ = 20<M<,./~Mfy). By condition (1) 
T(TJ) = T] and r*(ri)T is symmetric. Indeed, r*(-q)T is a symmetric /-form. 
Since r vanishes off the diagonal X = r*(rj) r on AT X A/M, for all 0 < fi < s. 
Thus, since both sides are symmetric /-forms X = r*(r})T and X G Tr(#0). 

Property (2) is proved in a similar fashion. We will proceed to property (3). 
For an X G Sym(#) which is both an /-form and an r-form we can write 
X = Tr(rj) = 77(TJ'), TJ, TJ' G #0. Since 71 is invertible r(rj) = /(1/) which im­
mediately implies TJ = 77' G f0. Hence our lemma has been proved. 

Consider the representation of &x on # defined by setting 

e(y)Ô = T(Y)«Y, Y G #*, Ô G # . 

Let #0 c # be defined as in the preceding lemma. Then c#0 is the eigenvalue 
(— l)-space of T and # = #0 0 c#0. Clearly, #0 and cd0 are e-invariant. We 
will need that they are e-irreducible as well. The proof runs as follows. Let U 
be an e-invariant and irreducible subspace of ê0 and 0 ^ z o G U. From 

e(zg)z0 = zfr+l G U and e(l + z$)z0 = z ^ + 1 + 2z£+1 + z0 G £/ 

it follows that all powers of z0 are in £/. In particular 1 G £/. Let 1,0, ,0s~l 

be a basis of K0 over f0. From 

e(0O* UU and e(l + 0*1) • 1 G £/ 
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it follows that all powers of 0 are in U and hence K0 c U. Finally the 
elements By + r(0y) are in U since e(jfi)9v and e(l + y)9v are in £/, 
jit, v E Z. However, these elements span #0 over f0 as JU,, v run over the 
integers implying U = #0. 

We are now ready to study the group representations R and L using the 
elements T and T- r as our main tools. Consider Endj(#) as a subalgebra of 
End(#). Its dimension over f0 is 2s4. Define 

W = T Endf $ c Hom(#, #*), F = T- r Endf # c Hom(#, #*); 

clearly, both are f0-subspaces of dimension 2s4 over f0. We will show that W 
is the eigenvalue ( — c2) subspace and V is the eigenvalue c2 subspace relative 
to the endomorphism R(c). Once this has been shown we have W n V = (0) 
and arguing by dimension 

Hom(#, #*) = W 0 V. 

T a k e * = 7T E JF where Y E Endf(#). Then 

i?(c)X = r*(c)TYr(c) = Tr ( -c )»(c ) = -c2TY = - c 2 * 

since F is linear over f and c2 E f0. Similarly, f or X E V we have R(c)X = 
c2X and our assertion is proved. 

The theory of central simple algebras gives 

Endf(#) = /(#) ®f r(#°) a # ®f #° 

where /(#) ®f r(#°) denotes the linear span of the products l{8)r(y) over f 
where 8, y E #. We will use this strongly in our analysis of thé spaces W and 
V. 

Consider W = T Endf(^). We begin by showing that W is R and L-
invariant. TakeX = Tl(8)r(y) 6 ^ a n d a 6 #x . Then 

R(a)X = r*(a)77(S)r(y)r(a) = Tl(8)r(ayr(a)) E W 

and hence W is Z*-invariant. A similar argument shows that W is L-invariant 
as well. Observe that for ô, y E #0 we have ayr(a) and a8r(a) in #0. Thus far 
ö, y E #0 and X = Tl(8)r(y) a refinement of the above argument shows that 
R(a)X and L(a)X are in 77(#0) ®f r(#0). It follows that the subspaces 

Wx = 77(#0) ®f r(#0), FF2 = 77(#0) ®f r(*o)r(c) = Wy(c) 

are 7? and L-invariant. There subspaces ^ and W2 are easily seen to be the 
symmetric and alternating elements, respectively, of W and W= Wx® W2. 
These subspaces are also irreducible with respect to the joint action of R and 
L. This need only be proved for Wx. Identifying Wx with #0 ®f d0 as vector 
spaces over f the representations R and L on Wx induce representations Rx 

and Ll9 respectively, on #0 ®f #0 given by 

Rx(8)(a ® fi) = (r(8)a8) ® 0, 

Lx(8)(a ® fi) = a ® (r(8)/38), a, j8 E #0. 

Now as we have seen the mappings a -» r(8)a8 of #0 as 8 runs over #* act 
irreducibly. The joint action of Rx and Lx on d0 ®f #0 is the same as the 
tensor product of this irreducible action with itself and hence is irreducible. 
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Thus, Wx and also W2 are irreducible with respect to the joint action of R and 
L. 

We shall now decompose Wx and hence W2 into /^-invariant and irreduci­
ble subspaces. Before we considered %r the space of symmetric r-forms with 
respect to r and found that Sr = 77(#0). To indicate the dependence of Sr 
upon T we shall now write %r — Sr(r). It is obvious that the space %r = 
%r{r) = Sr(r)r(c) consists of all the alternating r-forms with respect to r and 
is in fact the space 6£(#, r, T) defined above under the identification Pol(#) 
with Alt(#). 

The space §r(r) is obviously an L-invariant subspace of Wx the action on a 
typical element X = Tl(8), S 6 ^ 0 being given by 

L{y)X = l*(y)Tl(8)l(y) = Tl(r(y)8y) G Sr. 

Since the mappings 8 -> r(y)8y of #0 act irreducibly as y runs over #*, it 
follows that Èr(r) = Tl(ê0) is L-invariant and irreducible. Observe that the 
dimension of §r(r) over f0 is s2. Now let 1 = a0, ax, . . . , at9 t = s2 — 1 be a 
basis of #0 over f 0 and consider the spaces 

Sr(r)r(a,.) = 77(#0M<*,), 0<j<t. 

For JT E 77(#0)r(a,), we have L(Ô)X in Tl(&0)r(aj) and it is easy to see that 
Tl(&0)r(aj) is an L-invariant and irreducible subspace consisting of all sym­
metric r-forms corresponding to the (not necessarily positive) involution 
T'(8) = ajT(8)afl. Arguing by dimension we have 

Wx = 0 S Sr(r)r(ay). 
7 = 0 

Analogous results for W2 = Wxr(c) immediately follow. We summarize these 
results as follows. 

LEMMA 7.2. Let W = T Endf(#) = 77(#) <8>fr(#°) W^etf 

^ = 77(#0) ®f (#o), ^ 2 = ^ r ( c ) . 

Then W = H^ 0 W2 ^ ^ decomposition of W into the direct sum of its 
symmetric elements Wx and its alternating elements W2. 

(i) The space Sr(r) = 77(#0) of symmetric r-forms relative to T is an 
L-invariant and irreducible subspace and 

y=o 

where i = a0, . . . , at, t = s2 — 1 is a basis of #0 over f0. 
(ii) The space ^tr(r) = Sr(r)r(c) ss $(#, r, r) of alternating r-forms rela­

tive to r is an L-invariant and irreducible subspace and 

W2 = Wxr{c) = © S Sr(r)r(c)r(a,.) = © 2 ^ M " / ) 
y=o y-o 

with notation as in (1). 
Moreover, Ŵ  and W2

 a r e irreducible with respect to the joint action of L 
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and R. There is a completely analogous set of results decomposing Wx and 
W2 into /^-invariant and irreducible spaces. 

Consider V = T- r • EndjCtf) = !T- r • /(#) 0 r(#°). We may identify V 
with # ®f #° and observe that V is R and L-invariant where this identifica­
tion associates to R and L the representation i£2

 a n d L2on & ®f #° given as 
follows. If Ô, a, £ G # then 

*2(ô)(a ® j8) = (aS) 0 (j88), L2(ô)(a ® 0) = («a) ® (8)8). 

Let K/ be the space of symmetric tensors in ê ®f #° and F2 the space of 
alternating tensors in d* ®f #°. It is obvious that both V[ and V2 are invariant 
with respect to R2 and L2 jointly. Moreover, if Vx and V2 are the correspond­
ing subspaces of V then K = Vx 0 F2 where Fj and K2 are /? and L-in­
variant. Also, as is known, the spaces V[ and V2 are irreducible with respect 
to the mappings a ® /? -* * « ® X/3, X E GL2(&). Finally since K, c 
Sym(#) and V2 c Alt(#) we have Sym(#) = Wl®Vl and Alt(#) = W2 ® 
F2. 

Let p be an arbitrary representation of the algebra #° over f0 on a vector 
space U over f0 and P the induced group representation of $x on 
Hom( U9 U*). The theory of simple algebras allows us to identify p with q • r, 
r the regular representation of #° over f0 and q > 1 an integer, up to 
f0-equivalence. Hence, without loss of generality, we assume p = q- r and 

i/-ei *, 
where each #M = # is p-invariant and the restriction of p(8) to t^ is r. Hence, 
U* = © 2 % ! * * and 

<i 

Hom(£7, £ / * ) = © 2 H o r n e d ; ) 
f i . y - 1 

where each of the factors Hom(^, #*) = Hom(#, #*) is P-invariant and the 
restriction of P(8) to Hom(# , #*) is P(ô). Thus, the study of the group 
representation P reduces to Lemma 7.2 and the discussion immediately 
following it. 

Consider Hom(#M, #*) = Hom(#, #*) and write 

Sym(^) = Wx(ii) © Vx{ii\ W^p) = JVl9 ^ ( / i ) = K„ 

Alt(^) = W2(ii) 0 K2(/i), W2(ti) = ^ 2 , K2(/i) = V2. 

For JU ^ *> let 

Sym( //,, v) = the symmetric elements in Hom(#M, #*) 0 Hom(#„, #*), 

Alt( /A, *>) = the alternating elements in Hom(^, #*) 0 Hom(#„, #*). 

The mapping X-> X ® X* of Hom(^, »*) into Hom(#M, #,*) 0 Hom(#„, fl£) 
determines an isomorphism 

Hom(*M,*;r)»Sym(/4,iO 
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while the mapping X-> X ® (-X*) of Hom(fy, &?) into Hom(#M, #*) © 
Hom(d|/, &*) determines an isomorphism 

Hom(#M ,*;)«Alt(M,>0. 

In the following these isomorphisms will be understood and we may write 

Sym(/ i , iO- Ws(^v)®Vs(li9p) 

where W « Ws( /A, *>) and V « K,( /x, p) under the first isomorphism and 
hence Sym(U) = Ws(p) © Vs(p) where 

Also, we may write 

Al t ( / i , iO- ^ ( l ^ * ) © ^ , " ) 
where W &WA(ii,r) and K s ^ ( J U , *>) under the second isomorphism. Then 
Alt(U) = W^(p) © ^ ( p ) where 

wA{p) « 0 2 W2(M) © 2 ^ U ")> 

Let Sr(p) = Sr(p, T) be the symmetric r-forms on U corresponding to p 
and T in the sense that X = X* G Hom(t/, £/*) and 

p*(Ô)* == Xp(r(ô)), 8 6 * . 

Similarly, let 2fr(p) = 3lr(p, T) S #(#, p, r) be the alternating r-forms on U 
corresponding to p and r. We have 

Sr(p, T) = © S ^I(M, T) © S WXih "> r) 

where ^ ( J W , T) » 77(d0) and J^(/A, p, T) » 77(#) under the first isomor­
phism. Also, 

«(#, AT) « M P > T) - Sr(p, r)r(c). 

The dimension of each of these spaces is q2s2 over f0. 
We are now in a position to discuss the original problem of this section. Let 

pQ be a rational representation of d° on the rational vector space U = U{Q) 
and p the corresponding representation #° on the vector space U over f0. 
Denote the set of positive involutions T' on & coinciding with T on the center 
by [T]. Recall the relation /($(#, p, T')) = 6£(#, p e , T') and the corresponding 
diagram 

%{U) -=> N(A) 
f i it w e #(*, P, T'). 
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Let p = r and take T' E [T] where r'(8) = ur(8)u~l, u E #0. Consider the 
space Tl(ê0)r(u) c Wx and take X = Tl(y)r(u), y E #0. For 5 E d, 

r(S)*X = r*(ô)77(y)r(w) = T^yMiOKiirffiJir1) = A>(r'(S)). 

It follows that 77(#0)r(w) = §>r(r'), the space of all symmetrie r-forms on & 
corresponding to T'. Observe that since we have already proved that Sr(r) is 
L-invariant and irreducible, we have SA-(T') L-invariant and irreducible as 
well. Thus 

U Sr(r') c Wx. 
T'e[T] 

Consider the sum 2 ô e #* R(S)Tl(ê0)r(ü). This space is both R and L-in­
variant and since it is contained in Wx which is both R and L-invariant and 
irreducible under their joint action 

Wx= E R(8)Tl({>0)r(u) = S *(8)Sr(r ' ) 

and Jf̂  is the smallest R and L-invariant space containing SA*(T'). 

Consider Sr(r) = Tl(&0). For any ô0 E #0 consider * = Tl(80) E Sr(r). 
Then, if 8 E #* 

* ( « ) * = r(8)*Tl(80)r(8) = r/(Ô0)r(ôr(5)) 

where t; = 8r(8) E #0. Take now y G f and write 

K Y ) * * ( S ) * = r*(y)Tl(80)r(v) = ^ ( ^ K ^ K ^ C Y ) ^ 1 ) . 

Since as we saw T'(8) = vr(y)v~l is a positive involution in [r] we have 

§ r(T ' ) = R(8)§>r(r) 

where T' is the positive involution in [T] given by T'(Y) = vr(y)v~l with 
v = ÔT(Ô). Thus, ^ is spanned over f0 by U T / G [ T ] Sr(

T')- We will summarize 
this discussion as follows. 

LEMMA 7.3. Let T' E [T] be given by T'(8) = UT(8)U~\ U E #0. 77*ert 

Sr(r ') = Tl(&0)r(u) C ^ . 

Moreover, Wx is the smallest R-invariant space containing Sr(r') ö«öf 

UT'e=[T] §>KT') •SP̂ 'w ^ i wer Co­

llie analogous 'alternating' result is the following. 

LEMMA 7.4. Let T' E [T] 6e determined by T'(8) = WT(8)W-1, « E d0. 77ie« 

«(#, r, T') ^ Tl(c&0)r(u) C W2. 

Moreover, W2 is the smallest R- invariant space containing 6£(#, r, T') a/w/ 
(£(#, r) spans W2 over f0. 

In terms of commutative diagrams we can reinterpret this last lemma as 
follows. Considering Pol(#) = Alt(#) = (d A #)* we can associate to any 
subspace U of Pol(#) ^ Alt(#) its dual U* as a subspace of # A # given as 
the set of all elements of # A # annihilated by £/. Let 

N(d, r, p') = %(»)/&(&, r, r)*, # (# , r) = #2(#) WJ. 
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Then 6£(#, r, T') consists of 77 G %(&) which factor through to define homo-
morphisms of N(&, r, T'). 

%(&) i>N({>,r,r')ï* N{A) 

V I' 
%(HQ)) -> *(*)• 

Moreover N(iï, r) is the 'largest' group in which every polarization IT E 
6E(#, r) defines a homomorphism. 

The generalized results can be found using Theorem 7.1 and we simply 
observe &(<&, r, T') = WA(p, r)r(u) = &($, T, r)r(u) where T'(8) = ur(Ô)u~\ 
i / 6 # 0 and state the following theorem. 

THEOREM 7.2. Let r' E [T] be given by T'(S) = ur(ô)u~\ u E fl0. 77iew 

«(*, p, T') « ( 0 2 ^iU> T) 0 2 ^ U "> r))r(c)K/i) 

is a subspace of WA(p) which is the smallest R-invariant subspace containing 
(£(#, p, r'). Moreover (£(#, p) c W^(p) spans WA(p) as a subspace over f0. 

8. Riemann matrices. Cyclic algebras. We come now to the problem of the 
existence of 'Riemann Matrices'. Continue the notation of the preceding 
section. Thus, d is a cyclic division algebra with center f, T is a fixed positive 
involution for d having f0 as its fixed field in t and T' is any positive 
involution coinciding with r on the center. Let pQ be a rational representation 
of d° on the rational vector space U = U(Q) and p the corresponding 
representation of ^ ° on the vector space U over f0. Then we have the 
relationship 

/(£(#, p T')) = «(*, PC> T') 

given by the commutative diagram 

%{U) ^ N(A) 
îi it w e 6B(#, p, T'). 

S Ï W Ö ) ) -> AT(B) 

Consider the real closure of this diagram, 

%{U)K 2 iV(^)R 

T'R 4'R 

^2(t/R) -> J V ( 5 ) R 

as we described in §§4 and 6. The problem as before is to describe for each 
m' E &(&, PQ, T') the collection of all complex structures J on UR satisfying 

(i") pR(a)J = JpR(a), aŒiï. 
(ii") (/, TTR) is a Riemann pair. 
Let N(A)R = n î ' A ^ C R , x)> h' = [f0 : Q], 2/? = dim^ U be the decom­

position of N(A)R compatible with the action of p(f0) as discussed in §§4 and 
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6. Then, <3l(#, pô, B), the collection of all complex structures on UR satisfying 
(i") and (ii") is given by 

h' 

ft(*,pe,B)-n«/(^) 
ï 

where $t(A) is the set of all positive definite GR-structures / , on A^+iCR, x») 
such that the induced automorphism in UR — N^+xfR, x,)/center commutes 
with pR(#), elementwise. 

The existence of an element in <3l (#, pQ, B) is assured as follows. Since -c 2 

is totally positive in f0 we find a totally positive square root V - c 2 in the 
algebra f0 ® e R. The mapping of N(A)R, 

(*, y) -> ( - ^ = - p ( c ) « , y), («, y) G M ^ ) R 

determines such an element using the R-linear extension of the action of ï0 on 
U to an action of (f0)R = f0 ®Q R to UR. 
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