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GEOMETRY AND PROBABILITY IN BANACH SPACES 

BY LAURENT SCHWARTZ 

Introduction. The following is a brief survey of results in a circle of ideas 
concerned with the properties of various classes of Banach spaces (centering 
around the classical L ' spaces) in terms of operators acting between them, a 
circle of ideas and important results which involves the names of such 
mathematicians as Pietsch, Maurey, H. Rosenthal, Krivine, Pisier, and others. 
As the title emphasizes, an important role is played by random processes with 
values in these Banach spaces, i.e. vector-valued probability distributions. 

1. Summing maps in Banach spaces. A sequence e = (en)n(EN of elements of 
a Banach space E is said to be / ' if \\e\\p = (SJIeJI^)17 ' < + oo; 11*11, is the 
/7-norm of this sequence (in fact, it is a norm only for 1 < p < + oo; we shall 
also work in the case 0 < p < + oo, with the usual modifications for p = 
+ oo : Hell**, = SupJIeJI^). A sequence e is said to be scalarly / ' if, for every 
£ EL E' (the dual of E), the scalar sequence <e, £> = «er t, £>)WGN *S lp>tnat *s 

(2n\(en, 0\p)X/p < + oo; in this case, it can be proved (by the Banach-
Steinhaus theorem or the closed graph theorem) that \\e\\* = 
Supm<l(2n\(en, 0\p)l/p < + oo; \\e\\* is the scalarly /'-norm of e. A con­
tinuous linear map u from a Banach space E into a Banach space F 
transforms trivially an /'-sequence into an /'-sequence, a scalarly /'-sequence 
into a scalarly /'-sequence; u is said to be p-summing if it transforms every 
scalarly /'-sequence into an /'-sequence. By a trivial argument, if u is 
/^-summing, there exists a constant C such that, for every sequence e of E, the 
inequality || i#(^)||̂  < C||e||* holds; the smallest constant C is called the 
/^-summing norm of u and is denoted irp(u). 

Every map is (+ oo)-summing, since ||e||* ^ = ||e|| + 00, and TT+O0(U) = ||w||; 
generally u will not be better (for instance, we shall see that the identity map 
in an infinite-dimensional Banach space is never /^-summing for p < + oo). 
On the other hand, if E is finite dimensional, a scalarly /'-sequence is also / ' , 
so that every map u of finite rank is/^-summing for every p. A finite sum of 
/^-summing maps is /^-summing; a finite product of continuous linear maps, 
one of which is/^-summing, is also/?-summing (the/?-summing maps "form an 
ideal"). 

THEOREM (1.1) (PIETSCH). For u: E -> F to be p-summing, p < + oo, it is 
necessary and sufficient that there exists a Radon probability [i on the unit disk 
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B' of E', equipped with the weak-star topology o(E', E), and a constant C such 
that, for every x E E, one has 

\\u(x)\\ < c(fj<x, OMd®)) ". 

The best possible constant C is exactly 7Tp(u). 

The proof is a fine application of the Hahn-Banach theorem and convexity. 

COROLLARY (1.2). A p-summing map is also q-summing for q > p, and 

COROLLARY (1.3) (PIETSCH'S FACTORIZATION). (1) If (Z, %, /i) is a probabil­
ity space, the canonical injection j of L°°(Z, %, JU) into LP(Z, %, fi) is p-sum­
ming, of IT-summing norm < 1. Therefore every map which transmits through 
such a map is also p-summing, 

(2) More generally, if u: E —> F is a product u2ux with the following 
factorization diagram 

- - • L°°(Z, 2 , ju) • Lp(Z, %, M) 

where k is the canonical injection, S a closed linear subspace of ZA then u is 
p-summing, and mp{u) < ||w2|| IM|. 

(3) The converse is true', a p-summing map, p finite, can be always factorized 
in this way, with irp{u) = ||w2|| ||t?||; and Z can be chosen to be the unit disk B' 
of E', with the weak-star topology, JU Radon on B', and v(x)(£) = <x, f >. 

In this sense, the canonical maps of the form (1) may be considered as the 
prototypes of the /^-summing maps. 

COROLLARY (1.4). A p-summing map, p finite, is weakly compact, and 
transforms every weakly compact subset of E into a strongly compact subset of 
F. 

PROOF. The canonical injection L°° -+ Lp has these properties. 

COROLLARY (1.5). The identity map in an infinite-dimensional Banach space 
is never p-summing for p finite. 

Namely, if it were, the unit disk would be weakly compact, therefore 
strongly compact. 

This can be written in another form. In an infinite-dimensional space, there 
always exists a sequence which is scalarly lp but is not lp. As a particular case, 
we get Dvoretzky-Rogers' theorem: In every infinite-dimensional space, there 
exists a sequence which is summable but not absolutely summable (take 
p = 1 in the previous result). 

In some way, the characterization property (1.3) achieves the knowledge of 
the/?-summing maps. But, in practice, it is never easy to recognize whether or 
not a map has this factorization property. For instance, when is a map 
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between Hubert spaces /7-summing? The following theorem has no trivial 
proof, all the known proofs are of probabilistic nature (the "best" proofs use 
the Gauss probability law). 

THEOREM (1.6) (P^CZINSKY). Let u be a continuous map from a Hilbert 
space E into a Hilbert space F. The following properties are equivalent: 

(1) u is Hilbert-Schmidt (i.e., for every Hilbert basis (et)i&1 of E, \\u\\HS = 
(2, ||w(^)||/r)1/2 (which is independent of the basis) is finite), 

(2) u is p"summing for some finite p, 
(3) u is p-summing for every p, 
(4) the adjoint map u* has one of these properties. 
In these cases, \\u\\HS = TT2(W), and ^(w*) = irp(u) for every p. 

The situation arising from (1.2) is the following: For a given map u: 
E -> F, there exists a "summing-cut" S(u) E R+, such that for/? < S(u), u is 
not /?-summing, and, for p > S(u), it is, and p H» irp{u) is decreasing on 
]S(u), +oo]. If S(u) = + oo, u is just ( + oo)-summing, nothing more (see 
(1.5)). For S(u) = 0, u is /^-summing for every p, and we say that u is 
completely summing (for instance, a Hilbert-Schmidt map between Hilbert 
spaces is completely summing). It will be convenient to say that u is 
/? + -summing if r-summing for every r >p (it means S(u) < p),p"-summing 
if r-summing for some r <p (it means S(u) <p). 

THEOREM (1.7). Either S(u) — 0, or S(u) > 1; in other words, if u is 
l~-summing, it is completely summing. 

This property has been conjectured by Pietsch; it has been proved by Simone 
Chevet and Bernard Maurey in 1972. It is still often called Pietsch*s conjecture, 
although it has been proved I We shall say that a Banach space E is p-Pietsch if 
every p-summing map from E into a Banach space is completely summing. 

If E is /?-Pietsch, it is ^-Pietsch for q < p; there exists a cut P(E) e R+, 
such that E is/?-Pietsch for/? < P(E), and is not for/? > P(E). We shall say 
that E is /? +-Pietsch if it is r-Pietsch for some r >p (it means P(E) >/?), 
p~-Pietsch if it is r-Pietsch for every r <p (it means that P(E) >p). Theorem 
(1.7) expresses that every Banach space is 1"-Pietsch (P(E) > 1). Then 

THEOREM (1.8) (ROSENTHAL). Let E be infinite dimensional. 
(1) If E is p-Pietsch, necessarily /? < 2 (hence 1 < P(E) < 2) and E is 

p + -Pietsch if p < 2. 
(2) E is p-Pietsch, p > 1, if and only if every map L°° -» E is p'-summing, 

\/p + 1//?' = 1. 

Observe that/? = 1 is surely an exception in Theorem (1.8) (2), since every 
map is (+ oo)-summing. But we may use part (1). Then E is 1-Pietsch if and 
only if there exists some finite r such that every map from L°° into E is 
r-summing. We shall see various instances in §2. 

The /?-summing maps have various applications. Instead of taking se­
quences e = (e„)/ieN, o n e c a n ta^e measures (the sequences are kinds of 
discrete measures), and study /?-radonifying maps. Without entering into 
details, a /?-radonifying map is /?-summing; the converse is almost true, and 
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true for 1 </? < + oo. The radonifying maps give interesting tools to study 
stochastic processes. The continuity of the trajectories of the Brownian 
motion, and many other processes may be proved in this way. 

2. The type and cotype of a Banach space. There are various kinds of types. 
We shall consider here the so-called Rademacher type. Consider a scalar 
random series 2„ ±xn where the xn are given complex numbers, and the 
signs ± are random, each with probability 1/2, independent of each other. 
An old theorem of probabilities says that this series converges almost surely if 
(2„K| 2 ) 1 / 2 < + oo, and diverges almost surely if (2J.xJ2)1 /2 = + oo. What 
is the situation if we replace the numbers xn by vectors of a given Banach 
space El The previous condition is, in general, neither necessary nor suffi­
cient (it is necessary and sufficient iff E can be renormed as a Hubert space 
result of Kwapien). If (SJIxJI2)1/2 < + oo implies the 2„ ±xn is almost 
surely convergent, we shall say that E is of type 2; if only the stronger 
condition (SJIxJI*)1^ < + oo, 0 </? < 2, implies that 2„ ±xn is almost 
surely convergent, we shall say that E is of type p. Of course every Banach 
space E is of type 1. If E is of type/?, it is of type q f or q < /?; therefore there 
exists a cut T(E) G [1, 2], such that E is of type/? for/? < T(u)> not of type/? 
for/? > T(u). E will be said of type/?"1" if of type r for some r >/? (it means 
T(E) >/?), of type/? - if of type r for every r <p (it means T(E) >p). 

A space Lp, 1 < p < 2, is of type/?, and not/?+ if it is infinite dimensional; 
for/? > 2 finite, it is of type 2, but L00 is only of type 1. Type is transmitted to 
subspaces and factor spaces. Of course, it is possible under suitable condi­
tions, to replace the independent random variables ± by other ones; we don't 
give the results here. Also it is possible to consider a map u: E -+ F; it is said 
to be of type p if ÇZn\\xn\\

p)l/p < + °° implies that 2„ ±u(xn) con­
verges almost surely, so that E is of type /? iff the identity of E is of type /?. 
The type properties come just "below" the summing properties: one can show 
that a (+oo)_ -summing map (the weakest summing property) is of type 2 
(the strongest type-property); observe also that the identity map of an 
infinite-dimensional space cannot be (4- oo)_-summing but can be of type 2. 

Now let us consider the converse property. E is said to be of cotype q> 
q > 2, if the almost sure convergence of 2„ ±xn implies (SJIxJI*)1/* < 
+ oo (which, for q > 2, is weaker than (2J |*J | 2 ) 1 / 2 < + oo). If E is of 
cotype q, it is of every cotype r > q, and every E is of cotype + oo. Therefore 
there exists a cut CT(E), such that E is of cotype q for q > CT(E), not of 
cotype q f or q < CT{E). E will be said of cotype q+ if of type r for every 
r > q (it means that CT(E) < q), of cotype q~ if of cotype r for some r <q 
(it means that CT(E) < q). A space Lq is of cotype q9 but not q~ if it is 
infinite dimensional, for q > 2 finite, and L°° is only of cotype +oo; for 
1 < q < 2, Lq has cotype 2. Cotype is transmitted to subspaces, not to factor 
spaces; observe that every Banach space is a subspace of some space L00 and 
a factor space of some space L1, so that the previous observations about the 
types and cotypes of L00 and Ll are quite understandable. If E has type/?, 
then E' has cotype /?', the conjugate exponent, so that, for the cuts defined 
previously, one has CT(E') < (T(E))'; the converse is not true, and < 
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cannot be replaced by = ; namely, Ll has cotype 2, and L°° is only of type 1. 
Pisier proved that E is of type 1+ iff J5" is; there is no analogous property 

for exponents/? =£ 1, as the examples of the spaces U show. 
Types and cotypes have a lot of applications. Let us just give some of them. 

THEOREM (2.1) (MAUREY). If U: E -> F is (+oo)„summing, and F is of 
cotype 2, then u is 2-summing. If u is 2-summing and E is of cotype 2, then u is 
completely summing {in other words, a cotype 2 is 2-Pietsch, as defined in §1). 

This explains the fact that, for Hubert spaces, a ̂ -summing map, for some 
p finite, is completely summing; it is 2-summing because F is of cotype 2, 
therefore completely summing because E is of cotype 2. Thus, this property 
of Hubert spaces holds for two spaces of cotype 2. 

THEOREM (2.2) (MAUREY). If E' is of type p, then E is p~ -Pietsch. 

This again proves Pietsch's conjecture (1.7) because Ef is always of type 1. 
This sufficient condition is far from being necessary; for instance L1 is 
2-Pietsch although L°° is not of type 2. Maurey gave a necessary and 
sufficient condition in terms of type for E', but more complicated than the 
prior one. 

It results from Theorems (2.1) and (2.2) that U, for 1 < r < 2, is 2-Pietsch, 
and, for 2 < r < + oo, is (r')~-Pietsch; it is not r'-Pietsch if infinite dimen­
sional. 

THEOREM (2.3) (GROTHENDIECK-MAUREY). Every continuous linear map 
from a space Ll into a Hilbert space is completely summing. 

This example, as that of (1.8) (2), is very interesting; there are spaces 
between which every map has some summing property. Grothendieck proved 
only that the map is 1-summing, and it was a very deep theorem. Now the 
thing is much easier; every map is 2-summing, this part is rather easy; but Ll 

has cotype 2, therefore is 2-Pietsch, (2.1), therefore every map is completely 
summing. 

There are well-known factorization theorems for the maps between the 
spaces Lr, proved by Grothendieck, and extended later on; they enter into 
the theory of types and cotypes. Types and cotypes are also very useful to 
give a lot of probabilistic properties; for instance the central limit theorem 
and the law of iterated logarithms for scalar independent random variables 
may be extended to Banach random variables, provided that some properties 
of type or cotype are satisfied. Also observe that the partial sums of series 
2 * xn form a martingale of a very particular kind; type and cotype may be 
extended to martingale-type or martingale-cotype, which are much stronger 
and deeper properties, studied by Pisier, related to smoothness or convexity 
of the disks of the Banach space. 

3. Theory of finite representability and super-properties. Let E and F be 
Banach spaces. Their distance d(E, F) > 1 is the infimum of the ||w|| ||M —1|| 
for all the isomorphisms u between E and F (d(E, F) = + oo if they are not 
isomorphic). One says that F is finitely representatie into E if, for every e > 0, 
every finite-dimensional subspace of F has a distance < 1 4- e with some 
subspace of E. We write then: F f.r.i. E. If F f.r.i. E, G f.r.i. F9 then G f.r.i. E. 
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A subspace of E is f.r.i. E. Now let P be a property of Banach spaces. We 
shall say that E has super P if, it not only has P, but also every Banach space 
f.r.i. E has P. ? is a super-property iff super P = P. All these properties 
highly depend on the norms. If you change the norm of E into an equivalent 
one, you change the spaces which are f.r.i. E and the super-properties of E. If 
G0 is a given Banach space, the property "E is f.r.i. G'Q is, for E, a 
super-property; Conversely, "G0 is not f.r.i. E" is, for E, a super-property. 
Reflexivity is not a super-property, and super-reflexivity has been deeply 
studied in the recent years; it does not depend on the norm; Per Enflo 
showed that E is super-reflexive if and only if it can be renormed as to be 
uniformly convex. The space U, 1 < r < + oo, is super-reflexive. E is 
super-reflexive iff E is (not trivial). 

As opposed to reflexivity, the following properties are super-properties: 
type p, cotype q, /?-Pietsch. One has studied extensively the following super-
property of E: Lp is not f.r.i. E. The set of numbers/? for which Lp is f.r.i. E 
is closed in [1, +00]. It is known that Ls is a subspace of some Lr for 
1 < r < s < 2; therefore, if L5 is not f.r.i. E, then U is also not for 
1 < r < s < 2. Therefore, in the interval [1, 2], there is a cut (FR, < 2)(E), 
such that, for p < (FR, < 2)(E), Lp is not f.r.i. E, and, for 2 > p > (FR, 
< 2)(E), Lp is. There is a famous (and difficult) theorem of Dvoretzky-
Rogers, saying that, if E is infinite dimensional, L2 is finitely representable 
into E. For/? > 2, the situation is much less known; the set of numbers/? for 
which Lp is f.r.i. E may be reduced to one point; it seems it may be an 
arbitrary closed subset of ]2, 4- 00]. Then we shall define (FR, > 2)(E) as the 
largest s > 2 for which Ls is f.r.i. E. 

THE GREAT THEOREM (3.1) (MAUREY, KRTVINE, PISIER). (1) (FR, < 2) = 

T(E). In other words, E has type p* iff Lp is not f.r.i. E. In particular, E is of 
type 2~ iffLp is f.r.i. E f or nop < 2. 

(2) (FR, > 2)(E) = CT(E) = (P(E))' (conjugate exponent). In other words, 
the following properties are equivalent: U is f.r.i. E f or no r > q; E has cotype 
q + ; E is (q')~ -Pietsch. 

(3) (Pisier, June 1980). Let P(E) the number defined in (1), Q(E) the number 
defined in (2), 1 < P(E) < 2 < Q(E) < + 00. Then, if P(E) > 1 or P(E') > 
1 (equivalent conditions), one has \/P(E) + l/Q(E') = 1. (If P(E) = P(E') 
= I, the result need not hold; counterexample: if E is a space L°°, E' is a space 
L\ P(E) = 1, Q(E') = 2.) 

This statement has been sought for during a long time; various incomplete 
statements have been found for years; and the proof is difficult. 

Every Banach space is a subspace of some L°°; therefore, if L00 is f.r.i. E, 
every Banach space is f.r.i. E. Therefore the weakest nontrivial super-property 
(nontrivial meaning that there is at least a Banach space which does not 
possess it) is L00 is not f.r.i. E. Weakest means if E has a nontrivial 
super-property, then it has this one. And this property is equivalent to E is 
1-Pietsch, or E has some finite cotype. It is interesting to observe that every 
Banach space is 1~-Pietsch, and that the weakest super-property is to be 
1-Pietsch. There are a lot of consequences of this remark: if a Banach space 
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has type 1, or if it is super-reflexive, etc., then it is 1-Pietsch. But a reflexive 
space (reflexivity is not a super-property) need not to be 1-Pietsch. 

There are a lot of byproducts of the theorem. Consider for instance a 
summable sequence in E'\ it is known that it is not necessarily absolutely 
summable; but maybe it is always /*, for some finite q > 1. The lowest bound 
of such q's is exactly CT(E) (therefore > 2). In particular: if E is /7-Pietsch, 
every scalarly /^sequence is lp ; if every summable sequence is lp\ E is 
p "-Pietsch. The weakest super-property is equivalent to "there is a finite q 
such that every summable sequence of E is /*". 

THEOREM (3.2) (ROSENTHAL). Let E be a closed vector subspace of Lp, 
1 < p < 2. The following properties are equivalent. 

(1) E has typep+, 
(2)LP isnotfr.i.E, 
(2') E does not contain an isomorphic copy of lp, 
(3) every continuous linear map from E into lp is compact, 
(4) E can be imbedded in some Lq,q >p, 
(5) the topology of E (induced by Lp) is equal to the topology of convergence 

in measure, 
(6)forp = I, E is reflexive. 

This part of mathematics, geometry and probability in Banach spaces, is 
presently a very dynamic one; there are many more results than those which 
are given here. They have applications in probability theory, partial differen­
tial equations, harmonic analysis (lacunary series and Helson sets), and 
C*-algebras. 

We do not give any bibliography because all the results given here have 
been set forth in the Séminaires de l'Ecole Polytechnique (Séminaire 
Schwartz, or Séminaire Maurey-Schwartz, or Séminaire d'Analyse Fonction­
nelle), of the years 1969-1970, 1972-1973, 1973-1974, 1974-1975, 1975-1976, 
1977-1978, 1978-1979, 1979-1980 and these Séminaires contain an important 
bibliography. 
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