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to consider situations where spacetime has a topology different from that of 
R4. This classical approach is in fact rather appropriate for the subject 
matter. 

The book's biggest drawback is its excessively formal character. Whether 
and how to take over a particular nonrelativistic, macroscopic idealization 
into relativity is only partially a question of whether the appropriate differen­
tial geometric formalism can be set up. To get a real sense of the uses and 
limitations of some model one also needs to analyze some specific physical 
situations to which the model is relevant and needs to investigate the model's 
relation to less phenomenological, more microscopic models. Such discussions 
are regrettably rare in the book. But within its own framework the book is 
highly competent. It will remain a useful reference for quite some time. 
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Rational quadratic forms, by J. W. S. Cassels, London Mathematical Society 
Monographs No. 13, Academic Press, London-New York-San Francisco, 
1978, xvi + 413 pp., $36.50. 

The focal point of the book under review, the classification of quadratic 
forms over Z, can be formulated very simply. If 

ƒ =2-4*,*,- and *-2*fcW> 
are nondegenerate quadratic forms in n variables xv . . . , xn andylf... ,yn 

respectively, with coefficients fy « fjt and gtj = gJt in Z, is it possible to 
determine whether or not ƒ and g are equivalent over Z, i.e. whether or not 
there is a linear change of variables 

yj - 2 h]** 

with (Jij) an invertible matrix over Z which will transform g into ƒ? This is 
closely related to the question of describing those integers that are repre­
sented by g, and to the more general question of which quadratic forms are 
represented by g over Z. All these problems can, of course, be formulated 
over any integral domain and not just over Z. In particular, they can be 
formulated over an arbitrary field where it can be shown, rather simply, that 
every quadratic form is equivalent to a diagonal form provided the character­
istic of the field is not 2. If the field in question is R, then g is equivalent to a 
diagonal form 

r n 

1 r+1 

and r and n provide a complete set of invariants for equivalence over R. This 
is Sylvester's Theorem. It is the classification theorem over R. Forms over R 
with r > 0 and n > r are called indefinite, with r = n positive definite, and so 
on. Forms over Z are called indefinite if they are indefinite when viewed over 
R, and so on. It is important to make the distinction between definite and 
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indefinite since, in so many parts of the theory, these two types of forms 
behave in such different ways. 

The classification problem has its roots in the 19th century. It has a long 
and chaotic history and it was not until the middle of the 20th century that it 
was put on a secure foundation. Proofs were incomprehensible, facts were 
erroneous, and intuitions were misguided. As recently as 1944 it was specu­
lated that the so-called class number for indefinite forms had to be 1, whereas 
in fact it can be arbitrarily large. If there is any single concept that is 
responsible for clarifying the whole matter it is the concept of the spinor 
genus, and this is given the central place in Rational quadratic forms which it 
deserves. 

The great liberating force goes back to Hasse's classification of quadratic 
forms over Q in 1923. Prior to that time, quadratic forms over Q relied on the 
theory over Z and, because of the difficulties intrinsic to Z, proved to be a 
highly intricate and elaborate subject. Using the /?-adic numbers which had 
just been developed by Hensel, Hasse proved that two quadratic forms over 
Q are equivalent if and only if they are equivalent over all the/»-adic fields Qp 

including Q^ » R, thereby reducing classification over Q to classification 
over all Qp. But classification over Qp is easy: if p < oo, there are three 
invariants that classify forms, the dimension, the determinant, and the so-
called Hasse symbol; Up = oo, classification is given by Sylvester's Theorem. 
So forms are classified over Q, not as easily as over R, but simply enough all 
the same. 

The next important landmark was a conceptual one due to Witt, in 1937. 
Instead of working with quadratic forms, Witt suggested that we work with 
quadratic spaces where, by definition, a quadratic space V over an arbitrary 
field F of characteristic not 2 is an /i-dimensional vector space V over F that 
is provided with a symmetric bilinear form B: V X V-* F. In this terminol­
ogy, equivalence of forms over F is replaced by isometry V « U of quadratic 
spaces. In particular, if we are working over Q, the Hasse principle becomes 

Vs*U**Vps*Up\fp 

where Vp is the quadratic space obtained from V by extending the scalars 
from Q to Qp. Returning to general fields, the group of isometries of V onto 
V is called the orthogonal group and is written On(V). Several subgroups of 
importance can be identified within this group, notably the subgroup 0*(V) 
of transformations of determinant 1, the commutator subgroup Qn(V) of the 
entire group, and a group which I will refrain from defining but which is close 
to Qn(V) and is written 0„(V) or @n(V). (Incidentally, the structures and 
isomorphisms of these groups have been studied extensively, but that is 
another story.) Quadratic spaces are good for studying quadratic forms over 
fields. What about over integral domains? Here it is necessary to modify the 
concept of a quadratic space to that of a quadratic lattice. For simplicity we 
consider a principal ideal domain I with a field of quotients F. Then a 
quadratic lattice is, by definition, a module T « Ixx + • • • + Ixn on the 
quadratic space V with xX9..., xn a base for V. And equivalence of forms 
over / is replaced by isometry T a A between lattices. 

Let us return to the classification problem over Z. Guided by Hasse's 
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results over Q it is natural to ask if two quadratic forms are equivalent over Z 
if and only if they are equivalent over all Zp where Zp denotes the /?-adic 
integers in Qp and Z^ denotes all of Q^ = R. In other words, is the Hasse 
principle true over Z? The answer, in general, is no. But it fails in only a finite 
way. More specifically, two quadratic forms over Z are said to be in the same 
genus if they are equivalent over all Zp; each genus contains a certain number 
of equivalence classes over Z; their number is called the class number; the 
class number can be shown to be finite; if the Hasse principle were true, it 
would be 1. 

All this can be interpreted in the language of quadratic lattices. Consider 
two quadratic lattices T and A on V over Q. Then T and A are said to be in 
the same class if there is a a in On(V) such that T » a A. And they are said to 
be in the same genus if, for all p < oo, there is a 2 p in On(Vp) such that 
Tp » 2 ^ where Tp and Ap are obtained from T and A by extending the 
scalars from Z to Zp. Then the class of T corresponds, essentially, to a class of 
quadratic forms over Z, while the genus of T corresponds, essentially, to a 
genus of quadratic forms over Z. 

The next building block in the theory is, therefore, a complete desciption of 
the genus, and this is the same as classification over Zp. This is known and, 
for odd primes/?, it is easy. Suffice it to say, by way of example, that any two 
quadratic forms of the same dimensions, with coefficients in Zp and with unit 
determinants, are equivalent if and only if these determinants are essentially 
equal. Classification over Z2 is due to Jones in 1944 and Pall in 1945. 

Finally, T and A are said to be in the same spinor genus if there is a a in 
On(V) and a 2 , in 0»(Vp) for aUp < 00 such that Tp « o^A^ where Tp and 
ap are as before, and ap is the extension of a from V to Vp. The concept of 
spinor genus is due to Eichler, with subsequent development by Kneser. The 
partitioning of quadratic lattices on V into spinor genera is finer than the 
genus but not as fine as the class. The following fundamental theorems are 
true. 

THEOREM. The number of spinor genera in a genus is always finite and is a 
power of 2. 

THEOREM. In the indefinite case with n > 3, the spinor genus coincides with 
the class. 

Using the second of these theorems, together with additional properties of 
the spinor genus, it is possible to classify a wide variety of indefinite 
quadratic forms over Z. There is no classification to speak of in the definite 
theory, but the following interesting theorem is true. 

THEOREM. Let fix) be a positive definite integral form in it > 4 variables. 
Then there is an integer N with the following properties: Let a > N be an 
integer which is primitively represented by fix) over Zpfor all primes p; then a is 
primitively represented by f over Z. 

This, then, is the skeleton of the theory developed in the first eleven 
chapters of Rational quadratic forms. The theory remains valid if Q and Z are 
replaced by an algebraic number field and its ring of algebraic integers, but 
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Cassels has refrained from working in this generality. The deep analytic work 
of Siegel giving quantitative versions of the representation theory of forms 
over Z is mentioned in passing, as is Tamagawa's adelic version of the Siegel 
theory. The last three chapters of the book have a distinctly different flavor 
from the first eleven. Chapter twelve is concerned with the existence of a 
canonical form in each class of positive definite forms. Here the forms can be 
over R but the transformations involved must be over Z. Minkowski reduc­
tion is defined and it is shown that, generally speaking, there is essentially one 
Minkowski reduced form in each class. Positive definite forms in /i-variables 
can be interpreted in R^"*1)/2 by looking at their entries on and above the 
main diagonal of their associated matrices, and the geometry of the sets 
obtained (for example, of the set that corresponds to all reduced forms) is 
studied. Siegel domains are introduced and used. Chapter thirteen studies the 
integral points of orthogonal groups, i.e. the groups of integral automorphs of 
quadratic forms. For example, we have the following result when n = 2. 

THEOREM. The group 0 + ( / ) of proper integral automorphs of a primitive 
indefinite anisotropic binary form ax2 + 2bxy + by2 consists of the T = ± 
T£(v G Z) where T0 is of infinite order. The T S O "•"(ƒ) are the matrices 

T—lt — bu — cu\ 
\ au t + bu) 

where t and u satisfy certain specified conditions. 
Chapter fourteen is on Gauss' theory of composition of binary forms which 

is concerned with putting a natural group structure (it turns out to be a finite 
abelian group) on "primitive classes of quadratic forms of discriminant D". It 
is related to ideal theory in quadratic extensions of Q. 

In writing a book like this it is necessary to make some decisions on the 
philosophy to be used right from the start. First, should the language be that 
of forms, or of matrices, or of vector spaces and lattices. Second, should the 
approach be elementary assuming as little as possible from the reader. And 
third, should things be done over Q and Z, or should they be done over 
algebraic number fields. The first decision really applies to the first eleven 
chapters alone, i.e. up to the development of the spinor genus. When it comes 
to classes and genera, the choice between forms, matrices and lattices is really 
a matter of taste, my taste being lattices first, forms second, and matrices 
third. It is possible to develop spinor genera using forms, and Watson 
originally did this when he discovered the spinor genus independently of 
Eichler, but the ideas are forced and unnatural and, without trying to be 
dogmatic, it ceases to be a matter of taste. Spaces are right, forms are wrong. 
The approach of Cassels is basically geometrical, i.e. via spaces, with an 
intermingUng here and there of forms. Personally I would have preferred a 
little more geometry, but the mix is fine. Next there is the matter of being 
elementary. The only nonelementary fact that is assumed is Dirichlet's 
theorem on primes in an arithmetic progression. Other than this, all that is 
required of the reader is a knowledge of the simplest facts about linear 
algebra, group theory, and Z and Q. A few basic results from the geometry of 
numbers are proved in the book. Even the /?-adic numbers are constructed. 
Finally, there is the decision on whether to work over Q or, more generally, 
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over algebraic number fields. The author chose Q. This has its pros and it has 
its cons. On the positive side, it enables the approach to be more elementary, 
the proofs are more concrete, there is no need to use results from class field 
theory which is difficult enough to understand let alone to develop, and it 
makes the material more accessible to mathematicians in other areas-group 
theory, combinatorics, topology, differential geometry-who in the past have 
found Z and Q good enough for their purposes. On the negative side it must 
be said that these same mathematicians are beginning to find Z and Q too 
specialized, that it is not as simple as the author suggests to extend things 
from Q to algebraic number fields, and that the reader who has mastered the 
subject over Q will be faced with a psychological barrier in having to go over 
it all again over an algebraic number field. My advice to the novice who 
intends to work in quadratic forms is, in fact, to start out over number fields. 

So much for overall philosophy. Some other points should also be men­
tioned. Cassels emphasizes the effectiveness of the results whenever he can. 
This is a welcome feature of the book although, on one occasion, I found his 
explanation inadequate and unconvincing. Next, at the very end of the book 
he shows how the use of Dirichlet's theorem can be replaced by some 
elementary, but nontrivial, theory. He also shows that the folklore on the 
equivalence between the geometric and the form approach to spinor genera is 
true, a service to the expert, but incomplete and confusing to others. The 
author's development of Minkowski reduction and composition theory is 
clearly done and to be recommeded. My overall disappointments include a 
certain vagueness that is all too often covered by a wave of the hand, and an 
incompleteness that leaves you with the feeling that you have not been 
brought to the frontiers of research. Whether or not the decision to work over 
Q is a disappointment will depend on what you intend to use the book for. 

The audience for Rational quadratic forms will be those mathematicians 
who wish to apply the arithmetic theory of quadratic forms and either want to 
learn the subject or have a good reference source for theorems over Z; 
students who wish to work in the theory; and specialists who are interested in 
seeing the subject from a somewhat different perspective. The ultimate 
questions are whether to buy the book; and, having bought it, whether to 
read it; and, in reading it, whether one will enjoy it. My answer to the first of 
these questions is yes; to the second, yes if you are just interested in Z or if 
you are looking for a different perspective; my answer to the third question is 
that I did. 
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Compact right topological semigroups and generalizations of almost periodicity9 

by J. F. Berglund, H. D. Junghenn and P. Milnes, Lecture Notes in Math., 
vol. 663, Springer-Verlag, Berlin-Heidelberg-New York, 1978, x + 243 pp., 
$12.00. 

This monograph in lecture-notes* clothing (hereafter referred to as BJM) 
has something in it for everyone: Semigroups S and the backchat between 


