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RESEARCH ANNOUNCEMENTS 

ON THE ABUNDANCE OF APERIODIC BEHAVIOUR 

FOR MAPS ON THE UNIT INTERVAL1 

BY P. COLLET AND J.-P. ECKMANN 

Continuous maps from the interval [0, 1] to itself have been studied for 
some time as simple models of dynamical systems with discrete time. In particu­
lar, the map JCH-• 1 - 2\x - VL\ has no stable periodic orbit on [0, 1]. In the 
paper [1] we show that such behaviour is very common among the members of 
a parametrized family of maps which contain a quadratic critical point. 

Let 0 < 5 < VL and define the map/6: [0, 1] —» [0, 1] by 

/a(*) •{ : 
- 8 - (x - W)2/ô for * € pi - 6f % + 8 ] , 

- 2 l x - % l forJcG[0,%-8] U [H + 8, 1]. 

x-H-*-(x-1/2)7S 

x-*2(1-x) 

O 1/2 1 

FIGURE 1. The function fb for ô = 0.15. 
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In [1] we construct a Lebesgue measurable subset M of [0, lA] with posi­
tive measure having the properties: 

(a) M gets thicker near 6 = 0, i.e., Leb. meas. (M n [0, 8])/8 > 1 -
1/llogfil, for small ô > 0 . 

(b) If ô G M, the map f6 has no stable periodic orbit. 
(c) If 8 G M, fd is topological^ conjugate to a piecewise linear map gT^6y 

x - * r(ô)-(l/2 - lx - fcl), with r > 2V\ 
REMARKS. (1) (a), (b), and (c) show the abundance of aperiodic behav­

iour among the f8, when 8 is near 0. This settles an old question about maps 
on the interval. 

(2) (c) implies sensitive dependence on initial conditions in the sense of 
Guckenheimer [2]. 

(3) The often-studied maps x h-> 4SX(1 - x) with s = 1 - 82n2/8 are con­
jugated (through x = sin2(7ry/2)) to y H-> 1 - fi - (2/0)0 - #)2 + 0{82) (for 
y near %). This motivates our choice of f6. 

SKETCH OF THE PROOF FOR THEOREM 1. The proof relies on a represen­
tation of a number in the interval E8 = [Vi - 8, xh + 8] by a sequence 
(nif A(, e()iGN, where nt G N, At G N and et = ± 1. The representation is defined 
recursively. Let x0 G E6 be the number to be represented, and assume 
(ni9 Ai9 ei)i=Ï9mj have been computed together with Xj G E6. nJ+ x is defined 
as the smallest integer such that /6

W/+1 (x;.) is in ^ . ay+1 is equal to ffl +1 (*.), 
.4y.+ 1 is the integer part of 

2"/+i-1(ô -I- (ay - Î4)2/Ô) and 2"/+i-1(6 + (xf - %)2/8)-Af+l 

is equal to e /+ j * ^ x. Some parts of the proof of Theorem 1 are reminiscent of 
the small divisor problem. In particular, if for some 8, xt = % then J4 is a sta­
ble periodic point. Such a 8, together with a small ô interval around it, does 
not belong to M and can be considered as a resonance. The measure of M is in­
vestigated using a lower bound on dxjd8 when ô is in M 
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