RESEARCH ANNOUNCEMENTS

ON THE ABUNDANCE OF APERIODIC BEHAVIOUR FOR MAPS ON THE UNIT INTERVAL¹

BY P. COLLET AND J.-P. ECKMANN

Continuous maps from the interval [0, 1] to itself have been studied for some time as simple models of dynamical systems with discrete time. In particular, the map $x \mapsto 1 - 2|x - \frac{1}{2}|$ has no stable periodic orbit on [0, 1]. In the paper [1] we show that such behaviour is very common among the members of a parametrized family of maps which contain a quadratic critical point.

Let $0 < \delta < \frac{1}{2}$ and define the map f_{δ} : $[0, 1] \rightarrow [0, 1]$ by

$$f_{\delta}(x) = \begin{cases} 1 - \delta - (x - \frac{1}{2})^{2} / \delta & \text{for } x \in [\frac{1}{2} - \delta, \frac{1}{2} + \delta], \\ 1 - 2 |x - \frac{1}{2}| & \text{for } x \in [0, \frac{1}{2} - \delta] \cup [\frac{1}{2} + \delta, 1]. \end{cases}$$

FIGURE 1. The function f_{δ} for $\delta = 0.15$.

Received by the editors September 7, 1979 and, in revised form, December 6, 1979.

AMS (MOS) subject classifications (1970). Primary 58F99; Secondary 28A65.

¹ This research was supported in part by NSF grant PHY-77-18762 and by the Fonds National Suisse.

- In [1] we construct a Lebesgue measurable subset M of $[0, \frac{1}{2}]$ with positive measure having the properties:
- (a) M gets thicker near $\delta = 0$, i.e., Leb. meas. $(M \cap [0, \delta])/\delta > 1 1/\log \delta$, for small $\delta > 0$.
 - (b) If $\delta \in M$, the map f_{δ} has no stable periodic orbit.
- (c) If $\delta \in M$, f_{δ} is topologically conjugate to a piecewise linear map $g_{\tau(\delta)}$: $x \to \tau(\delta) \cdot (1/2 |x \frac{1}{2}|)$, with $\tau > 2^{\frac{1}{2}}$.

REMARKS. (1) (a), (b), and (c) show the abundance of aperiodic behaviour among the f_{δ} , when δ is near 0. This settles an old question about maps on the interval.

- (2) (c) implies sensitive dependence on initial conditions in the sense of Guckenheimer [2].
- (3) The often-studied maps $x \mapsto 4sx(1-x)$ with $s = 1 \delta^2 \pi^2/8$ are conjugated (through $x = \sin^2(\pi y/2)$) to $y \mapsto 1 \delta (2/\delta)(y \frac{1}{2})^2 + O(\delta^2)$ (for y near $\frac{1}{2}$). This motivates our choice of f_{δ} .

SKETCH OF THE PROOF FOR THEOREM 1. The proof relies on a representation of a number in the interval $E_{\delta} = [\frac{1}{2} - \delta, \frac{1}{2} + \delta]$ by a sequence $(n_i, A_i, \epsilon_i)_{i \in \mathbb{N}}$, where $n_i \in \mathbb{N}$, $A_i \in \mathbb{N}$ and $\epsilon_i = \pm 1$. The representation is defined recursively. Let $x_0 \in E_{\delta}$ be the number to be represented, and assume $(n_i, A_i, \epsilon_i)_{i=1, \dots, j}$ have been computed together with $x_j \in E_{\delta}$. n_{j+1} is defined as the smallest integer such that $f_{\delta}^{n_{j+1}}(x_j)$ is in E_{δ} . x_{j+1} is equal to $f_{\delta}^{n_{j+1}}(x_j)$, A_{i+1} is the integer part of

$$2^{n_{j+1}-1}(\delta + (x_j - \frac{1}{2})^2/\delta)$$
 and $2^{n_{j+1}-1}(\delta + (x_j - \frac{1}{2})^2/\delta) - A_{j+1}$

is equal to $\epsilon_{j+1}x_{j+1}$. Some parts of the proof of Theorem 1 are reminiscent of the small divisor problem. In particular, if for some δ , $x_i = \frac{1}{2}$, then $\frac{1}{2}$ is a stable periodic point. Such a δ , together with a small δ interval around it, does not belong to M and can be considered as a resonance. The measure of M is investigated using a lower bound on $dx_i/d\delta$ when δ is in M.

REFERENCES

- 1. P. Collet and J.-P. Eckmann, On the abundance on aperiodic behaviour for maps on the interval, Geneva University, Comm. Math. Phys. 73 (1980), 115.
- J. Guckenheimer, Sensitive dependence on initial conditions for one dimensional maps, Comm. Math. Phys. 70 (1979), 133.

PHYSICS LABORATORIES, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHU-SETTS 02138