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Locally solid Riesz spaces, by Charalambos D. Aliprantis and Owen 
Burkinshaw, Academic Press, New York, 1978, xii + 198 pp. 

Vector lattices, also called Riesz spaces, have been objects of mathematical 
interest at least since F. Riesz's pioneering paper [34] at the International 
Mathematical Congress held at Bologna in 1928. Since then many others have 
developed the subject. Some of the more important contributions to the 
theory through 1950 were made by the following authors. H. Freudenthal 
[14], S. W. P. Steen [37], L. V. Kantorovich [19], M. H. Stone [38], H. Nakano 
[26], [27], [28], [29], [30], [31], [32], F. Maeda and T. Ogasawara [25], [33], K. 
Yosida [40], [41], [42], H. F. Bohnenblust [9], S. Kakutani [17], [18]. 

In the next fifteen years vector lattices were not given much attention. 
Some important things were done. A paper of I. Amemiya [1] gave many new 
advances in the algebraic theory, some of which are still being rediscovered. 
W. A. J. Luxemburg and A. C. Zaanen were also very active at this time with 
a succession of important papers [22], [23]. 
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In the last decade codification of the theory has, perhaps, begun. Books 
devoted exclusively or mostly to vector lattices have been written. We have 
those by W. A J. Luxemburg and A. C. Zaanen [24], H. H. Schaefer [35], D. 
H. Fremlin [12] and the book under review. 

Let us now briefly describe a part of the theory of vector lattices which 
is of current interest in analysis.,A vector lattice for our purposes is a real 
vector space L, which is also a lattice, and is subject to the compatability 
relation 0 < ^ ; G L , 0 < a , j 8 E R imply ax + $y > 0. One has a unique 
Jordan decomposition x = x~*~ — x~ with x+ — x\/0, x~ — (-x) V 0 and 
x* A x~ = 0. The analyst imposes a norm subject to ||j>|| < ||JC|| whenever 
\y\ < W (\y\ = y+ + y~ = y+ Vy~ ~ yV (~y))- When L is complete un­
der its norm we have a Banach lattice. 

Linear maps between Banach lattices which are also lattice homomor-
phisms are somewhat rare. One may ask, however, for a given linear map, 
isomorphism, or isometry between Banach lattices what can be discovered 
which is a consequence of the lattice structure. A special case of this is to 
characterize the ranges of contractive projections on Z^-spaces (1 < p < oo). 
These turn out to be precisely the subspaces which are themselves isometric 
to Lp -spaces (perhaps for a different measure). If p ^ 2, they are all obtain­
able from closed linear sublattices of the original Z^-space by multiplication 
by a measurable function of absolute value one (modulo unimportant 
measure theoretic technicalities). This theory goes back to A. Grothendieck 
[15] and is studied in [11], [3], [39]. A reasonably definitive treatment is given 
in [6]. 

Another problem is to decide when a closed subspace of a Banach lattice is 
linearly isomorphic to a Banach lattice or better, after a multiplication type 
isometry as above, is in fact a sublattice as well. This problem is essentially 
open. 

The closed subspace problem comes up in the study of local unconditional 
structure. Any Banach lattice has the property that each of its finite dimen­
sional subspaces can be enlarged to a finite dimensional subspace which is 
linearly isomorphic to a Banach lattice (finite dimensional of course). We 
cannot achieve isometry but can make the isomorphism constants tend to one 
as the dimension tends to infinity. Suppose conversely that one has a Banach 
space with this type of local (i.e. finite dimensional) behavior. It is easy to 
show that the space is linearly isometric to a closed subspace of a Banach 
lattice. (If the isomorphism constants are merely bounded, instead of tending 
to one, we have an isomorphism rather than an isometry.) With heavy 
technical hypotheses one can then show that the original space is indeed 
linearly isometric to a Banach lattice. The case when all the finite dimen­
sional lattices are ^,-spaces (p fixed 1 < p < oo) is easier and one has, in fact, 
an Lp -space. Whether this last result holds in the isomorphic case with bound 
sufficiently close to one is not known. H. Elton Lacey [20] gives a good 
summary of much of this material. The easiest exposition of the general case 
(local characterisation of Banach lattices with order continuous norm) will 
appear in [7]. 

One more current topic can be described briefly as ^,-structure in Banach 
lattices. This is covered in some detail by J. Lindenstrauss and L. Tzafriri 
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[21]. Suppose we have a function ƒ of n real variables made up of operations 
of addition, scalar multiplication, maximum, and minimum. It makes sense to 
talk of f(xl9..., xn) where xl9..., xn now come from a vector lattice. Our 
function ƒ is positively homogeneous of degree 1 (f(\xl9..., Xxn) = 
\f(xl9..., xn) for all X > 0). In a Banach lattice we can extend from this 
subclass of functions to define f(xl9..., xn) for any positively homogeneous 
function ƒ of degree one. In particular we can define for 1 < p < oo and 
xl9 . . . , xn in a Banach lattice CSî-il*,-!*)1^- If there *s a two-sided estimate 
for the norm of all such elements in terms of (S^ilKUO1^ w e h a v e an 
isomorphic characterisation of Z^-spaces. By assuming one-sided estimates we 
have the notions of ^-convexity or /7-concavity. By restricting to xl9..., xn 

such that \xt\ A |*,| = 0 0 ^j) w e h a v e the weaker notions of upper and 
lower /^-estimates. These link up with ideas of type and cotype which are 
defined in general Banach spaces. Very roughly a Banach lattice with a lower 
^-estimate has cotype q9 and type r implies /7-convex for 1 <p < r. 

Despite this activity the study of vector lattices still has a somewhat uneasy 
role in mathematics. In its purely algebraic aspects, lattice and linear struc­
ture, analysts largely ignore it. Bourbaki [10] has one short section on the 
subject. J. Lindenstrauss and L. Tzafriri [21] prefer to avoid algebraic ideas 
entirely and do so by a devious route through a concrete representation of 
free vector lattices and the full force of the representation theory for M-
spaces [18]. In fact this is not too unreasonable in their context. Some extra 
order algebra would avoid the M-space results but not the free vector lattices. 
(They never actually use the term free vector lattice.) This method also gives 
the homogeneous function results mentioned above. 

Probably the main reason for treating vector lattices in such cavalier 
fashion is the extreme simplicity of the lattice axioms. The classical spaces Lp9 

C(K) are all vector lattices, but coming as they do, with natural concrete 
representations as function spaces the consequences of the lattice structure 
are more easily seen as consequences of this representation. Indeed since the 
free vector lattice on a finite number of generators has a concrete representa­
tion as a function lattice [8], any vector lattice identity valid in the reals is 
valid in an arbitrary vector lattice. There are therefore many results which the 
working analyst can prove for himself, as they are needed, without bothering 
to develop, or consult the general theory. This leads to much duplication. One 
example of this can be found in the discovery of the complete Boolean 
algebra of polar subspaces made by F. Maeda and T. Ogasawara [25] as part 
of their representation theory. Among those who have rediscovered this result 
are F. Sik [36], J. Isbell [16], and the reviewer [4]. 

The other side of the coin shows when topological structure is imposed as 
well. Even in the simplest cases, normed vector lattices, Banach lattices, the 
relationships between order and topology do not have the far reaching 
consequences we find in, say, Banach algebra theory. Order completeness is 
independent of topological completeness and order convergence of topologi­
cal convergence. The lattice operations may be continuous at the origin, 
without being uniformly continuous. Linear transformations may be continu­
ous without respecting order bounded sets. Continuous linear functional 
may ignore order convergence of nets or even of sequences. Order continuity 
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for nets is independent of order continuity for sequences. We thus have a 
topological dual space, an order dual, an order sequentially continuous dual 
(integrals) and an order continuous dual (normal integrals) all of which are 
important. There are, seemingly endless, technical byways in which to lose 
oneself. 

Coupled with this we have no general agreement over terminology, even for 
the basic concepts, nor for notation as Fremlin [13] points out in his review of 
[35]. 

The books we have mentioned are widely different in character. Luxem­
burg and Zaanen [24] give in their volume I, an exhaustive treatment of the 
algebraic side of the theory. They go into great detail with related subjects 
(Boolean algebra, distributive lattices). They present all the representation 
theories for archimedean vector lattices, and show how to obtain some 
classical results of analysis (Radon-Nikodym theorem, spectral theorem in 
Hubert space, Poisson formula) by these methods. Topology is never imposed 
and they leave linear functional to volume II. Schaeffer's book [35] is 
probably the most useful. It treats Banach lattices in some depth, and does 
not get too heavily involved in peripheral details. Fremlin's book [12] is never 
dull. It contains much that is elegant and new. The approach is topological 
linear space rather than norm and the style idiosyncratic. 

Now we consider the book under review. In approach it most resembles 
Fremlin's book. Some of Fremlin's results are given, with slightly easier 
proofs. The style is less flamboyant. Unfortunately the authors have followed 
Fremlin for terminology so we find much use of a proper name as the 
adjective to describe one property or another. They have also left out all 
motivations, applications and connections with other branches of analysis. 
Their choice of topics seems guided by their own research interests. Much of 
the new material on locally convex solid spaces carries over naturally from 
the Banach lattice situation. Apart from the intrinsic interest in these gener­
alizations it would have been good to have concrete evidence of their 
usefulness. There are many improvements on existing proofs, and plenty of 
material to interest experts on topological vector lattices. The more casually 
interested reader may find less to attract him. 

There are seven chapters, each supplemented by exercises. Open problems 
are given after all but the first two chapters. Chapter I is introductory and 
contains the standard results about vector lattices, homomorphisms, ideals, 
quotients, order completeness (here called Dedekind completeness), projec­
tion properties, order bounded linear maps, order duals, order convergence 
and also some standard linear topological space material. Chapter 2 imposes 
compatibility between order and topology. The requirement of uniform 
continuity for the lattice operations leads to locally solid topologies. A solid 
set in a vector lattice is a set A such that \x\ < \y\ andj> E A imply x G A; a 
locally solid topology is a linear space topology where the zero element has a 
base of solid neighborhoods. Locally solid and Hausdorff implies archi­
medean. With local convexity added, duality theory is developed and the 
topology is generated by a family of monotone seminorms. There is also a 
section on topological completion. 

Chapter 3 is concerned with order continuity. An order continuous topol-
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ogy is a locally solid topology such that order convergence implies topological 
convergence. The authors follow Fremlin in calling this a Lebesgue topology. 
(Other terms in the literature for this property are condition (A, ii) and 
universally continuous.) There are also a-order continuous topologies for 
which order convergent sequences are topologically convergent, and pre order 
continuous topologies for which order bounded increasing sequences (and 
hence nets) are Cauchy. These notions are investigated and characterizations 
and interrelations given. A section on Z^-spaces gives the characterisations of 
H. F. Bohnenblust [9] and S. Kakutani [17], [18]. 

Chapter 4 considers order closed topologies, those with a base of neighbor­
hoods of zero consisting of solid order closed sets. Again following Fremlin, 
these are called Fatou topologies. They are shown to lift to the Dedekind 
completion and, when Hausdorff, to have a finer restriction to order bounded 
sets than any Hausdorff order continuous topology. The deep theorem of 
Nakano [32] that order intervals are topologically complete for any order 
complete vector lattice with an order closed topology is proved. The proof 
given here, and that of Amemiya [2], are the two best proofs of this result. 
The proper name soup continues with: Levi space (for boundedly order 
complete), meaning every topologically bounded increasing directed set has a 
supremum; Nakano space, one which is Levi and Fatou; and the theorem, 
every Nakano space is topologically complete. 

Chapter 5 considers metrizable locally solid spaces with particular attention 
to order continuity properties. 

Chapter 6 considers duality for convex locally solid vector lattices. Most of 
the chapter is concerned with weak compactness in the order dual and 
characterizing compact solid sets by disjoint sequences. This chapter is 
probably the best in the book. 

Chapter 7 contains some results about laterally complete vector lattices. 
(Laterally complete means that every nonempty pairwise disjoint subset has a 
supremum.) Topologically this is an unnatural condition. For the normed 
case even a-lateral completeness forces finite dimensonality. Consequences of 
lateral completeness, such as Archimedean plus (a-) laterally complete imply 
the (principal) projection property [5] are obtained and the independence of 
lateral completeness and order completeness is shown. Finally some topologi­
cal consequences of lateral completeness are considered. Roughly, there is at 
most one Hausdorff order closed topology on a a-laterally complete vector 
lattice and if there is one, it is necessarily order continuous. 

REFERENCES 

1. I. Amemiya, A genera! spectral theory in semi-ordered linear spaces, J. Fac. Sci. Hokkaido 
Univ. Ser. 1,12 (1953), 111-156. 

2. , On ordered topological linear spaces, Proc. Internat. Sympos. Linear Spaces, 
Jerusalem, (1960) pp. 14-23, Israel Acad. Sci. Humanities, Jerusalem, 1961. 

3. T. Ando, Contractive projections in Lp-spaces, Pacific J. Math. 17 (1966), 391-405. 
4. S. J. Bernau, Unique representation of archimedean lattice groups and normal archimedean 

lattice rings, Proc. London Math. Soc. (3) 15 (1965), 599-631. 
5. , Lateral and Dedekind completion of Archimedean lattice groups, J. London Math. 

Soc. 12 (1976), 320-322. 
6. S. J. Bernau and H. Elton Lacey, The range of a contractive projection on an Ly space, 

Pacific J. Math. 53 (1974), 21-41. 



1002 BOOK REVIEWS 

7. , Banach lattices and local unconditional structure. Seminar in Analysis, Lecture 
Notes in Math., Springer-Verlag, Berlin and New York (to appear). 

8. R. D. Bleier, Free vector lattices, Trans. Amer. Math. Soc. 176 (1973), 73-87. 
9. H. F. Bohnenblust, On axiomatic characterization of Lp-spaces, Duke Math. J. 6 (1940), 

627-640. 
10. N. Bourbaki, Intégration, Chapitre II, Actualités Sci. Indust. no. 1175, Hermann et Cie, 

Paris, 1952. 
11. R. G. Douglas, Contractive projections on an Lx-space, Pacific J. Math. 15 (1965), 443-462. 
12. D. H. Fremlin, Topological Riesz spaces and measure theory, Cambridge Univ. Press, 

London and New York, 1974. 
13. , Review of Banach lattices and positive operators by H. H. Schaefer, Bull. London 

Math. Soc. 8 (1976), 215-216. 
14. H. Freudenthal, Teilweise geordnete Moduln, Nederl. Akad. Wetensch. Proc. Ser. A 39 

(1936), 641-651. 
15. A. Grothendieck, Une characterisation vectorielle métrique des espaces L1, Canad. J. Math. 7 

(1955), 552-561. 
16. J. R. Isbell, A structure space for certain lattice-ordered groups and rings, J. London Math. 

Soc. 40 (1965), 63-71. 
17. S. Kakutani, Concrete representation of abstract (L)-spaces and the mean ergodic theorem, 

Ann. of Math. 42 (1941), 523-537. 
18. , Concrete representations of abstract (M)-spaces, Ann, of Math. 42 (1941), 

994-1024. 
19. L. V. Kantorovich, Lineare halbgeordnete Raume, Mat. Sb. 44 (1937), 121-168. 
20. H. Elton Lacey, Local unconditional structure in Banach spaces, in Banach spaces of analytic 

functions (Proc. Pelczynski Conf., Kent State Univ., Kent, Ohio 1976) pp. 44-56. Lecture Notes 
in Math., vol. 604, Springer-Verlag, Berlin and New York, 1977. 

21. Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, volume II: Function spaces, 
Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer-Verlag, Berlin, Heidelberg, New 
York, 1979. 

22. W. A. J. Luxemburg, Notes on Banach function spaces, Nederl. Akad. Wetensch. Proc. Ser. 
A, Note XIV 68 (1965), 229-248; Note XV 68 (1965), 415-446; Note XVI 68 (1965), 646-667. 

23. W. A. J. Luxemburg and A. C. Zaanen, Notes on Banach Junction spaces, Nederl. Akad. 
Wetensch. Proc. Ser. A, Note 1 66 (1963), 135-147; Note II 66 (1963), 148-153; Note III 66 
(1963), 239-250; Note IV 66 (1963), 251-263; Note V 66 (1963), 496-504; Note VI 66 (1963), 
655-668; Note VII 66 (1963), 669-681; Note VIII 67 (1964), 104-119; Note IX 67 (1964), 
360-376; Note X 67 (1964), 493-506; Note XI67 (1964), 507-518; Note XII 67 (1964), 519-529; 
Note XIII 67 (1964), 530-543. 

24. , Riesz spaces. I, North-Holland, Amsterdam, 1971. 
25. F. Maeda and T. Ogasawara, Representation of vector lattices, J. Sci. Hiroshima Univ. A, 12 

(1942), 17-35. 
26. H. Nakano, Uber das System aller stetigen Funktionen auf einem topologischen Raum, Proc. 

Imp. Acad. Tokyo 17 (1940-41), 308-310. 
27. , Uber normierte, teilweise geordnete Moduln, Proc. Imp. Acad. Tokyo 17 (1940-41), 

311-317. 
28. _ _ , Eine Spektraltheorie, Proc. Phys.-Math. Soc. Japan 23 (1941), 485-511. 
29. _, Teilweise geordnete Algebra, Japan J. Math. 17 (1941), 425-511. 
30. , Stetige lineare Funktionale auf dem teilweise-geordnetem Modul, J. Fac. Sci. Imp. 

Univ. Tokyo 4 (1942), 201-382. 
31. , Modulared semi-ordered linear spaces, Tokyo, 1950. 
32. , Linear topologies on semi-ordered linear spaces, J. Fac. Sci. Hokkaido Univ. (1) 12 

(1953), 87-104. 
33. T. Ogasawara, Theory of vector lattices. I and II, J. Sci. Hiroshima Univ. (A) 12 (1942), 

37-100 and 13 (1944), 41-161 (in Japanese). 
34. F. Riesz, Sur la décomposition des opérations fonctionelles linéaires, Atti del Congr. Internaz. 

dei Mat., Bologna 1928,3 (1930), 143-148; Oeuvres Completes II, 1097-1102, Budapest, 1960. 
35. H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Heidelberg, 1974. 
36. F. Sik, Zur Theorie der halbgeordneten Gruppen, (Russian, German Summary), Czech, 

Math. J. 81 (1956), 1-25. 



BOOK REVIEWS 1003 

37. S. W. P. Steen, An introduction to the theory of operators. I, Proc. London Math. Soc. (2) 41 
(1936), 361-392. 

38. M. H. Stone, A general theory of spectra. I and II, Proc. Nat. Acad. Sci. U.S.A. 26 (1940), 
280-283 and 27 (1941), 83-87. 

39. L. Tzafriri, Remarks on contractive projections in Lp-spaces, Israel J. Math., 7 (1969), 9-15. 
40. K. Yosida, On vector lattice with a unit, Proc. Imp. Acad. Tokyo 17 (1940-41), 121-124. 
41. , Vector lattices and additive set functions, Proc. Imp. Acad. Tokyo 17 (1940-41), 

228-232. 
42. , On the representation of the vector lattice, Proc. Imp. Acad. Tokyo 18 (1941-42), 

339-342. 

SIMON J. BERNAU 
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 1, Number 6, November 1979 
© 1979 American Mathematical Society 
0002-9904/79/0000-0521/$01.50 
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1. In the past twenty years or so mathematical logic has moved from being 
a subject often considered rather exotic (if indeed it was really mathematics) 
to being a subject about which most mathematicians ought to know at least a 
little. The reasons are not hard to find. First, mathematical logic essentially 
enshrines the idea of precision in mathematical language. Second, it treats of 
the logical processes of deduction and makes clearer the abstract structure of 
arguments. Third, the techniques involved lead to new developments in and 
of other parts of mathematics. 

Precision of language was encouraged, even demanded, by the nineteenth 
century crises in analysis and, later, set theory. (How easy it is now to 
distinguish between convergence: Ve > 0 \fx 38 > 0 . . . and uniform con­
vergence Ve > 0 38 > 0 \fx . . . How tricky for Cauchy.) 

The analysis of deduction culminates in the provision of a neat (essentially 
finite) presentation of axioms and rules which give only true statements and, 
in certain cases, all true statements (the completeness theorems). 

New techniques emerged including the ideas of recursive functions and the 
development of computer programs. (These together with the precision of 
language led to an unexpected answer to e.g. Hubert's tenth problem: there is 
no general formal technique which will decide diophantine problems.) Recur­
sive function theory comes from the ideas of formal languages; the other 
aspect, truth, leads to model theory: the semantic aspect of the languages. 
Most present general interest here centres on nonstandard analysis. Abraham 
Robinson's brilliantly simple observation was to apply a reasonably well-
known theorem (compactness) in what appeared an entirely unpromising 
situation. 

2. Corresponding to the three aspects of logic noted above (though not in 
one-one correspondence) are three theorems. 

Propositional calculus deals only with logical connectives (e.g. and, or, not) 
applied to unanalyzed statements and is very useful as a pedagogical prelude. 
The first theorem (completeness of propositional calculus) shows that a finite 


