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The twenty seven papers of the Reverend Alfred Young are attractively 

collected in this volume together with a foreword by G. de B. Robinson and 
Young's obituary by H. W. Turnbull. The papers were all written over forty 
years ago (although one was published posthumously in 1952), and as 
Turnbull says in the obituary: 

"Young's work is never easy reading, for it lacks that quality which helps 
the reader grasp the essential point at the right time. The very closest and 
constant attention is required to pick out some of the most fundamental 
results from a mass of detail. One could almost suppose that he camouflaged 
his principal theorems. His work resembles a noonday picture of a magnifi­
cent sunlit mountain scene rather than the same in high relief with all the 
light and shade of early morning or sunset." 

It is natural then to ask whether it is worthwhile to publish a volume of old 
obscure papers. To answer this we shall examine some of the ramifications of 
Young's ideas in recent research. First of all two recent conferences Combina-
toire et representation du groupe symétrique in Strasbourg [19] and Alfred 
Young Day in Waterloo [82] were both centered on the theme of Young's 
research. 
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Young's most important achievements lie in his series of nine papers 
Quantitative substitutional analysis (QSA) which occupy well over half of the 
present volume. In the first QSA paper Young introduces the method of 
tableaux. A Young tableau is an array of the first p integers (Young uses p 
letters) constructed as follows: Let TT be any partition of the integer p into 
positive parts. The Ferrers graph of IT (needed for the tableau construction) 
may best be understood by an example; if m is the partition 4 + 4 + 3 + 1 + 
1, the Ferrers graph of m is 

The /th row of boxes corresponds to the /th part of TT. In the Ferrers graph of 
77 insert the integers 1,2, . . . , /?; such an array constitutes one of the p\ 
possible Young tableaux of shape TT. If in addition there is strict increase in 
each row and column, the array is called a standard Young tableau (in­
troduced in QSA III). For example, if p = 5 and *n is the partition 3 + 2, then 
the five standard Young tableaux of shape m are 

123 124 125 134 135 
45 35 34 25 24 * 

Young's object in the entire QSA series was to treat problems in invariant 
theory; for example, he showed in QSA I that the method of tableaux could 
be used to replace the polarization operator in the derivation of the Clebsch-
Gordon series. 

Frobenius [24] (see also [25]) observed that the method of tableaux was 
closely connected with his own work on the representation theory of the 
symmetric group. Young felt compelled to master the contributions of 
Frobenius (and Schur [102]) before continuing his QSA series. However since 
Young was a country pastor (Rector of Birdbrook, Essex, 1910-1940) and no 
linguist, a period of twenty five years elapsed between QSA II and QSA III, a 
paper primarily devoted to the irreducible representations of the symmetric 
group. The keystone to the work in QSA III and QSA IV lies in the explicit 
construction from the Young tableaux of certain elements of the group 
algebra that Young called the positive and negative symmetric groups. From 
the totality of these elements of the group algebra corresponding to all 
tableaux of a fixed shape TT, specific idempotents of the group algebra are 
constructed, and from these Young constructs the actual matrices of the 
irreducible representation of the symmetric group Sn corresponding to the 
partition m of n. A full account is given by Rutherford [100]. 

Young's ideas have had a significant impact on: (1) group representation 
theory, (2) combinatorics and statistics, (3) invariant theory, (4) physics and 
(5) chemistry. These topics intertwine sufficiently that a single result may 
have implications in more than one area. 
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Research on the representation theory of the symmetric group has 
advanced tremendously in recent years. While Young was concerned only 
with representations over a field of characteristic zero, much has since been 
done to treat the case of arbitrary characteristic (the "modular" representa­
tion theory). Among the most interesting work in this area is that of G. D. 
James. An exposition of his accomplishments and those of others on this 
topic occurs in [51]. Also an excellent treatment of related results concerning 
the Hall polynomials and symmetric functions has recently been given by I. 
G. Macdonald [68]. 

The combinatorial aspects of Young's work often seem to arise from group 
theory. For example, the concept of "hook length" concerns a set of parame­
ters related to Young tableaux. These arose first in the work of Nakayama 
[77], [78] on modular representations of the symmetric group. However the 
idea of hook length has numerous further implications for group theory [23] 
and for combinatorics [20], [36], [108]. 

Another combinatorial feature of Young tableaux is the Robinson-
Schensted-Knuth correspondence. This is a subtle combinatorial algorithm 
for constructing bijections between certain sets of matrices and sets of 
"generalized" Young tableaux. For example it is possible to exhibit a one-to-
one correspondence between the set of symmetric p X p permutaton matrices 
and Young tableaux with p parts using this correspondence. The algorithm 
arises in the work of Robinson [88], [89], [90], and it was later rediscovered by 
Schensted [101]. Schensted's ideas were extended by Schützenberger [104], 
[105], and Knuth [53]. One can perhaps appreciate the combinatorial clout of 
this work by recalling a difficult result of Erdös and Szekeres [15]. 

THEOREM. Any permutation of the integers 1, 2, 3, . . . , n2 + 1 contains either 
an increasing subsequence of length n + 1 or a decreasing subsequence of length 
n + 1. 

Schensted [101] using the algorithm just described greatly strengthened this 
result by proving the 

THEOREM. The number of permutations of 1,2, . . . , m with longest increasing 
subsequence of length c and longest decreasing subsequence of length r is equal 
to S^C^)2, where the sum is over all partitions /x of m with largest part equal to 
r and number of parts equal to c. The term f^ is the number of standard Young 
tableaux of shape [i. 

Note that the Erdös-Szekeres theorem follows easily from Schensted's 
result since any partition of n2 + 1 must either have more than n parts or 
have at least one part that exceeds n. 

G. Kreweras ([55], [56], [57], [58], [59], [60], [61]) has obtained many 
fundamental results on Young tableaux by considering what he calls the 
Young lattice. This is the lattice of all partitions of integers ordered by X > /A. 
if and only if for each i the /th part of X is at least as large as the ith part of /A. 

The classical ballot problems which are related to numerous problems in 
statistics are also related to Young tableaux. Here one considers k candidates 
for office and n votes distributed among them. It is postulated that candidate 
1 wins, candidate 2 comes in second, etc.. 
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Problem. How many ways can the ballots be counted so that at each step of 
the counting no one has more votes than candidate 1, no one except possibly 
candidate 1 has more votes than candidate 2, etc.? For example, if amongst 5 
votes, candidate 1 gets two votes, candidate 2 gets two votes and candidate 3 
gets one vote, then the five admissable counting arrangements of the ballots 
are 11223, 11232, 12123, 12132 and 12312. Such "counting arrangements" are 
generally called "lattice permutations". These lattice permutations are in 
one-to-one correspondence with the standard Young tableaux of shape 2 + 2 
+ 1; the corresponding Young tableau is constructed by putting i in theyth 
row if the ith entry of the lattice permutation is j . The ballot problem may 
now be persued with all the available results on Young tableaux. Barton and 
Mallows [3] in their paper on the random sequence give more details and 
describe related problems as does Stanley [108] (see also Nakayama [78], 
Narayana [79], [80], MacMahon [69] and Steck [109], [110]). 

Concerning invariant theory, popular belief has it that Hubert [35] killed 
the subject. An extensive sociological post-mortem was given by Fisher [17]. 
All this, of course, flies in the faces of the rejuvenation of invariant theory in 
theoretical physics, and Hermann Weyl's compelling case for its importance 
[118]. More recently a number of mathematicians have recognized the con­
tinuing significance of the subject. D. Mumford [75] utilized invariant theory 
in his solution of the problem of "moduli" of algebraic curves; Dieudonné 
and Carrell [13] provide a nice introduction to the work of Mumford. Rota et 
al. [94], [95], [96] consider the relationship between invariant theory and 
modern work in combinatorics; indeed, these papers may be viewed as direct 
modern outgrowths of Young's work. 

Theoretical chemistry has also found invariant theory and Young's con­
structive approach to the representation theory of the symmetric group to be 
of value. V. Prelog [84] in his Nobel Lecture Chirality in Chemistry refers to 
Young's work. An object is "chiral" if it cannot be transformed into its mirror 
image through translation and rotation; this geometric aspect of certain 
molecules turns out to be of significance in chemistry. E. Ruch et al. [63], [97], 
[98], [99] consider Young's representation theory of the symmetric group in 
order to achieve structural insight into chirality in chemistry. 

In physics Young tableaux also arise. Extensive work by L. C. Biedenharn 
and J. D. Louck (see [9]) concerns the representations of the unitary group 
and the theory of bounded operators defined on the Hubert space H = 2[mJ 

0 jj[m] where H[m] is the carrier space of a unitary irreducible representation 
of U(ri). It turns out that the basis vectors of H[m] are in one-to-one 
correspondence with the set of standard Young tableaux of shape [m], Louck 
has pointed out to me that physicists have generally employed Gel'fand 
patterns instead of Young tableaux for denoting the basis vectors of H[m\ 
Apparently Baird and Biedenharn [1] first pointed out the one-to-one corre­
spondence between Gel'fand patterns and standard Young tableaux. These 
and other applications of Young tableaux in physics are touched on in [9]. 

Thus there can be no doubt of the fruitfulness of Young's work. Surely the 
above incomplete survey indicates its extensive impact. The appearance of 
Young9s collected papers should assist future mathematicians in the difficult 
but rewarding task of understanding Young's ideas. On this very point, we 
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must mention the papers by Garsia and Remmel [26], [27] who were led to a 
valuable study of Young's raising operator as a result of trying to reconcile an 
apparent contradiction in two of Young's formulas. In a similar vein, G. D. 
James wrote (in a letter to me) concerning the concealed gems in Young's 
work: "Murphy and I have recently proved Carter's Conjecture determining 
which ordinary irreducible representations (for /̂ -regular diagrams) remain 
irreducible modulo/?. After doing so, I noticed Theorem VI on page 460 of 
the Collected Works, and after two or three days discovering what was going 
on, I realized that this contains most of the crucial information. No doubt if 
Young had been presented Carter's Conjecture he would have proved it in a 
very short time . . * " 

In our list of references we have tried to include a majority of the papers 
that have cited Young within the past 15 years. The following table lists the 
general area to which each of those papers belongs. 

GROUP REPRESENTATION THEORY. [4], [5], [6], [7], [23], [26], [27], [32], [33], 

[34], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [54], [64], 
[65], [66], [67], [68], [70], [71], [72], [73], [74], [76], [77], [78], [85], [87], [88], [89], 
[90], [91], [100], [102], [104], [105]. 

COMBINATORICS AND STATISTICS. [2], [3], [8], [10], [12], [14], [18], [19],[20], 
[21], [22], [29], [30], [31], [36], [37], [38], [39], [53], [55], [56], [57], [58], [59], [60], 
[61], [79], [80], [81], [101], [106], [107], [108], [109], [110], [111], [112], [113], 
[117] 

INVARIANT THEORY. [13], [28], [92], [93], [94], [95], [96], [103], [114], [115], 
[116], [118], [119], [120] 

PHYSICS. [1], [9], [11], [16], [75], [121] 

CHEMISTRY. [62], [63], [84], [97], [98], [99] 
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Vector lattices, also called Riesz spaces, have been objects of mathematical 
interest at least since F. Riesz's pioneering paper [34] at the International 
Mathematical Congress held at Bologna in 1928. Since then many others have 
developed the subject. Some of the more important contributions to the 
theory through 1950 were made by the following authors. H. Freudenthal 
[14], S. W. P. Steen [37], L. V. Kantorovich [19], M. H. Stone [38], H. Nakano 
[26], [27], [28], [29], [30], [31], [32], F. Maeda and T. Ogasawara [25], [33], K. 
Yosida [40], [41], [42], H. F. Bohnenblust [9], S. Kakutani [17], [18]. 

In the next fifteen years vector lattices were not given much attention. 
Some important things were done. A paper of I. Amemiya [1] gave many new 
advances in the algebraic theory, some of which are still being rediscovered. 
W. A. J. Luxemburg and A. C. Zaanen were also very active at this time with 
a succession of important papers [22], [23]. 


