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third chapter, besides the standard topics on topological vector spaces 
(Hahn-Banach, Krein-Milman, duality), there is a special emphasis on topics 
pertaining to completeness (hence to uniformity). The fourth chapter includes 
standard material on normed algebras and Banach algebras, with and without 
involution, as well as not-so-standard material on more esoteric topological 
algebras (locally m-convex g-algebras, etc.). The fifth and final chapter 
culminates in a proof of the Pontrjagin duality theorem. The prerequisites for 
reading the book (drawn mainly from general topology and integration 
theory) are sketched in three brief appendices. 

Proofs are detailed and carefully done. The layout is excellent; the printer 
deserves a medal for his skill in representing the many, often intricate and 
unusual, notations. The text is heavy on special symbols and terminology; 
since these are usually defined once and used from then on without explana­
tion, the burden on the reader's power of concentration builds quickly. (The 
burden on the proofreader's concentration was more than occasionally over­
whelming.) An index of symbols and a good general index help, but the 
reader's task is still formidable (the browser's, hopeless). 

The author states in his Preface: "This work is reasonably self-contained 
and accessible to students with a background in elementary analysis, linear 
algebra and point set topology. At the same time it covers a good amount of 
advanced material without going off into the purple deep." The reviewer 
concurs; there is a lot of fine material in this book for second-year graduate 
courses and seminars. 

Every mathematician needs to speak a little topology. The message of this 
book is that every analyst needs to speak a little uniformity; it is a central 
language of analysis, not just a peripheral dialect. Uniform structures deserve 
a niche in every first-year graduate course in general topology; this book 
effectively demonstrates why. 
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1. Among the three main types of nonassociative algebras, Lie, alternative 
and Jordan algebras, the Lie algebras were the first to be studied and are still 
the most important because of their connections with other parts of mathe-
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matics. In fact the Lie algebras were devised to study the Lie groups and 
appeared for the first time in the work of the Norwegian mathematician 
Sophus Lie (1842-1899). 

In order to analyze the structure of a continuous group a linear structure 
called an infinitesimal group is deduced when a neighborhood of the identity 
element of the group is known. The advantage is that infinitesimal groups can 
be studied using linear algebra and that the local properties of the group are 
reflected in the structure of its infinitesimal group. So, until the nineteen 
thirties when Herman Weyl introduced the term Lie algebras, these algebras 
lived under the name of infinitesimal groups as part of the study of continu­
ous groups. The new name gave a broader and independent life to the Lie 
algebras that started to be studied on their own without considering their 
relation to the Lie groups. This is the approach taken in Professor Chow's 
book. 

A vector space L over a field F with a binary operation or product linear in 
each variable is called a linear algebra. Let us denote the product of the 
elements x and y of L by [xy]. The linear algebra L is called a Lie algebra if 
the product satisfies the following two axioms. 

(1) [xx] = 0 for all x G L. Because this condition together with linearity 
and characteristic different from 2 is equivalent to [xy] = — [yx] it is called 
anticommutativity. 

Instead of the associative law the product satisfies the following property 
called the Jacobi identity. 

(2) [x|>z]] + [j[zx]] + [z[xy]] = 0 for all x,y and z in L. 
The use of brackets [ ] to denote the product in a Lie algebra is a general 

practice which is not always followed in the book under review. 
When F is the field of real or complex numbers, we talked about real or 

complex Lie algebras, respectively. The infinitesimal groups were always real 
or complex Lie algebras. 

The most familiar example of a real Lie algebra is the cross product in 
3-dimensional real space. This is the Lie algebra or infinitesimal group of the 
real Lie group SO(3, R), the group of rotations in a 3-dimensional Euchdean 
space. 

To become friendly with Lie algebras let us get some recipes for concocting 
such algebras and give examples of some well-known members of the family. 

EXAMPLE 1. Let L be any vector space. Define [xy] = 0 for all x emdy in L. 
With this bracket operation L becomes a Lie algebra. Such Lie algebras are 
called abelian Lie algebras. This is a good name because the real and complex 
abelian Lie algebras are the infinitesimal groups of the abelian Lie groups. 

Now here comes a recipe. Take any associative algebra and let ah stand for 
the product of the elements a and b of A. To say that A is associative means 
that it is a linear algebra with (ab)c = a(bc) for all a, b, c in A. Define the Lie 
product [ ] as follows, [ab] = ab — ba. With this bracket operation the 
algebra A becomes the Lie algebra AL. 

EXAMPLE 2. Let us take the associative algebra of n X n matrices with 
coefficients in the field F. The Lie algebra obtained from it by introducing 
the bracket operation is called the general linear algebra over F, g\n, F). The 
real and complex general linear algebras gl(n, R) and gl(n, C) are the Lie 
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algebras of the real and complex Lie groups of invertible n X n matrices, 
respectively. 

Any vector subspace of a Lie algebra closed under the bracket operation is 
again a Lie algebra. 

EXAMPLE 3. The vector space of n X n matrices with real or complex 
coefficients whose trace is zero is closed under the bracket operation. This 
subalgebra of the general linear algebra is called the special linear algebra 
and denoted sl(w, R), if the matrices are real, and sl(n, C), if we are dealing 
with complex matrices. They are the Lie algebras of the special linear groups 
of n X n matrices of determinant 1 with real and complex coefficients, 
respectively. 

Let us get a recipe to define a subspace of an associative algebra A with 
involution which is closed under the Lie product. Suppose that A has an 
antiautomorphism r of period 2. That is, r is a linear mapping of A into itself 
such that r(ab) *= r(b)r(a) and r2 is the identity, such T is also called an 
involution. Let S be the subspace of A consisting of T-skew elements, i.e., 
S = {a G A\r(a) = -a). It is immediate to see that, if a and b are in 5, [ab] 
is in S. Hence S is a Lie algebra under the Lie product. 

EXAMPLE 4. Let M be an n X n matrix and r(M) = M', the transpose of 
M. Then T is an involution of the algebra of n X n matrices with coefficients 
in F and the r-skew elements are the skew-symmetric matrices which, 
therefore, form a Lie algebra under the bracket operation. When F is the 
complex field we get the complex orthogonal algebra o(/z, C). It corresponds 
to the complex orthogonal Lie group 0(/z, C) consisting of complex matrices 
T satisfying V « T""1. 

EXAMPLE 5. Let us define a different involution in the algebra of 2n X In 
matrices. Take the skew-symmetric matrix 

'-{< o)' 
where 0 and In stand for the n X n zero and unit matrices, respectively. 
Notice that BB' = ~I2n. For any In X In matrix M define T(M) = BM'B~l. 
Then T is an involution and the Lie algebra of T-skew matrices is called the 
symplectic algebra sp(2«, F). When F is R or C we get the real and complex 
symplectic groups Sp(2n, R) and Sp(2«, C). These groups consist of all real or 
complex matrices T such that TBT1 = B. 

To a given structure it corresponds a group of automorphisms or symme­
tries. To a linear algebra A we can also attach a Lie algebra, called the 
algebra of derivations, that we are going to define. Let ab stand for the 
product of the elements a and b of A, a linear mapping D of A into itself is 
called a derivation if D(ab) = D(a)b + aD(b). A straightforward computa­
tion shows that, if D{ and D2 are derivations of A, then any linear combina­
tion of these two linear transformations is a derivation, as well as their Lie 
product [DXD2] = DXD2 — D2DX. Hence the space Der(/1) of all derivations 
of A is a Lie algebra. 

Two examples of exceptional Lie algebras are obtained as algebras of 
derivations of two eccentric members of the families of alternative and 
Jordan algebras. 
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If A is an associative algebra the function f(x,y, z) defined on A X A X A 
by f(x, y, z) = (xy)z — x(yz) is always zero. Those linear algebras A for 
which f(x,y, z) is an alternating function are called alternative algebras, so 
the alternative algebras include the associative algebras. They originated in 
the observation made by E. Artin that an eight dimensional real linear 
algebra defined independently by J. T. Graves and A. Caley in the eighteen 
forties, although not associative, satisfies the condition mentioned above. The 
study of alternative algebras showed that it is the only nonassociative alterna­
tive real division algebra, i.e., it has an identity and every nonzero element 
has a two-sided inverse. Another very important property is that it has an 
involution J such that for any element x the product xxJ is a scalar multiple 
of the identity. We will call this algebra the Cayley numbers and will denote 
it by £) because it is also known as the algebra of octaves or octonions. The 
history of this algebra and its connections with other parts of mathematics are 
discussed in F. van der Blij article History of the octaves, Simon Stevin (1961). 

The Jordan algebras are named after the physicist P. Jordan and their birth 
certificate is the joint paper by P. Jordan, J. von Neumann and E. Wigner 
entitled On an algebraic generalization of the quantum mechanical formalism, 
Ann. of Math. (1934). 

The ordinary product of two hermitian matrices or two hermitian operators 
A and B is not hermitian; to make it so one can try the "Jordan" product 
A X B ~\(AB + BA). With this product we obtain a commutative (non-
associative) multiplication such that {A X B) X A2 = A X (B X A2). 

Any commutative linear algebra whose product satisfies this equality is 
called a Jordan algebra. Not every Jordan algebra can be obtained from an 
associative algebra by introducing the "Jordan" product. We are going to 
consider a very special example. 

Take the algebra M3(C) of 3 X 3 matrices with coefficients in O, the 
Cayley members. If A is a matrix in M3(£)), let A* be its /-conjugate 
transpose. The set %(£>) = {A G M3(£))\A = A*} of hermitian matrices of 
Af3(£)) under the multiplication defined by A X B = \{AB + BA) is a Jordan 
algebra. Because the algebra S is not associative, the hermitian matrices of 
Mn(£>) do not form a Jordan algebra under X when n > 3. 

We will say something below about the derivation algebras of O and 
3C(3, O). 

2. In spite of the great growth and development of the theory of Lie 
algebras in the present century, the most surprising and central results in this 
theory are straight generalizations of the results contained in a series of 
papers (1888-1890) by W. Killing, and the justly famous thesis of E. Cartan 
of 1894: the classification of the finite dimensional complex simple Lie 
algebras and their finite dimensional irreducible representations. 

From now on Lie algebra will mean a finite dimensional Lie algebra over a 
field of characteristic zero. 

If x is an element of a Lie algebra L the mapping of L into itself that takes 
y into [xy] is a linear transformation called the adjoint of x and denoted ad x. 
With this notation we get [xy] = ad x(y) and ad[jcy] = [ad x, adj>]. Now we 
define a symmetric bilinear form K on L called the Killing form by taking 



982 BOOK REVIEWS 

K(x,y) = Tr(ad x • ad y), the trace of the linear transformation ad x • ad y. It 
follows from the definition that the Killing form is "associative", this means 
that K([xy], z) = K(x, [yz]). We say that L is semisimple if its Killing form is 
nondegenerate. From the associativity of K it is deduced that any semisimple 
L can be decomposed uniquely into a direct sum L = Lx® L2 © • • • @Ln 

where [xtyj\ = 0 for all xt in Lt and y} in Lp if i ^7", and each Lt is 
indecomposable. Moreover each Lt is also semisimple. 

Such indecomposable semisimple algebras are called simple. If G is a 
complex simple Lie group its Lie algebra is simple. The aim of the classifica­
tion of the complex simple Lie algebras was to find the different classes of 
complex simple Lie groups. 

To get a closer look into a simple Lie algebra we are going to break it into 
a direct sum of subspaces that reveals part of its structure as an algebra. But 
to use the full power of the methods of linear algebra we must assume now 
that the field F is algebraically closed or may consider, if interested only in the 
complex simple Lie algebras, that we are dealing with the field of complex 
numbers. Then any linear transformation whose minimal polynomial has no 
multiple roots is diagonalizable, and for any set S of commuting diagonaliz-
able linear transformation acting on a finite dimensional space there is a basis 
consisting of eigenvectors. 

Let H be a subalgebra of L maximal with respect to the property that for 
every h G H ad h is diagonalizable. We call such subalgebra a Cartan subal­
gebra. It turns out that H is abelian, the restriction of the Killing form to H is 
nondegenerate, and L = H © 2 La, where 2 La is a direct sum of 1 dimen­
sional eigenspaces La. That is, if xa G La, [hxj = ad h(xa) = a(h)xa, where 
a(h) is the eigenvalue of ad h. Thus a is an element of the dual H* of H, for 
a(h) depends linearly on h. 

The nonzero elements a of H* such that La = {x G L|ad h(x) = a(h)x for 
all h G H} =É 0 are called roots; if a is a root, dim La = 1. The set of roots 
spans H* and can be represented as a spanning set $ of vectors in an / 
dimensional Euclidean space E, where / = dim H. This is done in the manner 
illustrated in the example given below. 

The set of vectors $ satisfies the following conditions: 
(1) If a G $, then ~a G $, but ma £ <ï>, if m ¥> ± 1. 
(2) The reflections in any of the hyperplanes Pa, a G $, going through the 

origin and orthogonal to a take O into <&. 
(3) If O, y) stands for the inner product of the vectors x and y in E, for any 

two vectors a and ft in $, 2(«, (j)/ (/?, /?) is an integer called a Cartan 
integer. 

(4) $ is irreducible in the sense that it cannot be partitioned into two sets 
$1 and $2 s o ^a t every vector in $j is orthogonal to every vector in <&2. 

A spanning set of vectors in a Euclidean space satisfying conditions 1-4 is 
called an irreducible root system. The classification of the simple Lie algebras 
over an algebraically closed field of characteristic zero boils down to finding 
all possible irreducible root systems. It turns out that there are four infinite 
families of irreducible root systems and five exceptional ones. There is a 
simple Lie algebra corresponding to each irreducible root system. 

The group of Euclidean transformations generated by the reflections in the 
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hyperplanes Pa defined by a root system $, is called the Weyl group of $ and 
is always finite. Some of these groups are the groups of symmetries of regular 
poly topes. In such cases the hyperplanes Pa are the complete set of hyper­
planes of symmetry of the regular polytope. 

EXAMPLE. Let us cut open the complex simple Lie algebra sl(3, C) of 3 X 3 
matrices of trace zero, to bring forth its root system. 

Its two dimensional subspace consisting of the diagonal matrices of trace 
zero, is a Cartan subalgebra H. Relative to if, the space 

sl(3, C) = H ffi CE\2 © CE23 © CEX3 © CE2X © CE32 © CE3X, 

where Etj stands for the matrix with 1 in the (1,7) position and zero elsewhere, 
and the CEtf$ are the one dimensional eigenspaces. For, if the diagonal 
matrix D = diag(a1? a2, a3), with ax + a2 + a3 = 0, represents the general 
element of H, then 

ad D{EtJ) =[DEtJ] = (a, - aj)Elj9 

and the linear functional atj corresponding to CEtj is defined by oc^D) = af 

— üj. Hence a2X
 = ~ai2> a32 ^ ~aiv a3i = "~ai3> a n^? «13 = «12 "*" a23> but a\2 

and a23 are linearly independent. 
If D' = diag(ai, a'2, a3), with a'3 = -{a\ + a2), we find that the value of the 

Killing form 

K(D, D') = 2(ax - a2)(a[ - a2) + 2{ax - a3)(a\ - a3) + 2(a2 - a3)(a2 - a3) 

= 2(ax - a2)(a\ - a2) + 2(2^! 4- a2)(2a[ + a2) + 2(a, + 2a2)(a; + 2a2) 

= 6Tr (DD0, 

which shows that Â  is positive definite when restricted to real diagonal 
matrices. Since K restricted to H is nondegenerate, it defines a canonical 
identification of H and its dual H*. Denoting by (•, •) the restriction of K to 
the real plane R«12 + Ra23 C H* = H, this plane becomes a Euclidean 
plane. For, under the canonical identification of H with H*9 ax2 

= | diag(l ,- l , 0) and a23 = | diag(0, 1,-1). Then the Cartan numbers 
2(a12, a23)/(«23 , a23) and 2(a23, aX2)/(aX2, <xX2) are both equal to - 1 , and the 
six end points of the six vectors ( ± « 1 2 , ±a 2 3 , ±«13} of the root system are 
the vertices of a regular hexagon. The three lines (hyperplanes) through the 
origin perpendicular to these vectors are the axes of symmetries of an 
equilateral triangle, so that the Weyl group of the root system is the dihedral 
group D3. 

A similar dissection of the complex simple Lie algebra sl(w, C), n > 1, gives 
a root system whose Weyl group is the group of symmetries of an n - 1 
dimensional regular simplex. The group is isomorphic to the symmetric group 
s„. 

The complex Lie algebras whose root systems belong to one of the four 
infinite families are identified as the special linear, orthogonal and symplectic 
Lie algebras of Examples 3, 4 and 5 of §1. The root systems of the 
orthogonal Lie algebras split into two families, because the orthogonal groups 
of even dimensional spaces behave differently than the ones corresponding to 
spaces of odd dimension. As for the five exceptional root systems, their 
corresponding Lie algebras can be constructed from the information obtained 
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in the analysis of the structure of the simple Lie algebras (in the book we are 
considering the constructions carried out are due to H. Freudental). 

Two of the exceptional complex Lie algebras have been identified as the 
complexications (allowing complex coefficients) of the derivation algebras of 
the Cayley numbers and the Jordan algebra %(3, £)) mentioned in §1. Using 
sophisticated constructions based on the Cayley numbers and certain Jordan 
algebras, it is possible to obtain a unified description of the five exceptional 
complex simple Lie algebras. 

The existence of the exceptional algebras was completely unsuspected 
before the classification of the complex simple Lie algebras. Their analogues 
over arbitrary fields are responsible for the intrusion of Lie theory into other 
parts of algebra, especially the description of the known families of non-
abelian finite simple groups. 

Returning now to our complex simple Lie algebras, we are faced with a 
problem. Does the type of root system that we obtain for a Lie algebra L 
depend on the Cartan subalgebra that has been picked up? The answer is no, 
because it can be proved than any two Cartan subalgebras are conjugate 
under an automorphism of L, which implies that the two root systems are 
isomorphic. 

What about the finite dimensional representations of the simple complex 
Lie algebras? In the 1920's H. Weyl using the connection between Lie 
algebras and compact groups, proved that any finite-dimensional representa­
tion of a complex simple Lie algebra is completely reducible. The result is 
known as Weyl's theorem and his method as the unitary trick. The first 
purely algebraic proof of the theorem was given by Casimir and Van der 
Waerden in the 1930's, and is valid for simple Lie algebras over any field of 
characteristic zero. The theorem implies that it suffices to find the irreducible 
representations of the simple Lie algebras of characteristic zero. But E. 
Cartan had already proved that there is a bijection between the irreducible 
representations of a complex simple Lie algebra and a special type of linear 
forms defined on a Cartan subalgebra and called dominant weights. 

3. The general definitions and basic theorems of the theory of Lie algebras, 
together with the construction and study of the universal enveloping algebra, 
the Levi decomposition of a Lie algebra and Weyl's theorem on complete 
reducibility form the first volume of the book under review. 

The results leading to and including the classification and construction of 
the complex simple Lie algebras and their irreducible finite-dimensional 
representations, plus a long chapter on some cohomological and functorial 
properties of Lie algebras containing most of the basic definitions of category 
theory, constitute the second volume of the book. 

Several books and lecture notes covering this material and much more are 
mentioned in the bibliography which appears in the second volume. Professor 
Chow's book differs from them among other things by some peculiarities in 
the notation and terminology, the rejection of a universally used simplified 
notation for modules and representations, the repetition of proofs using 
distinct notations and the amount of computational detail included in the 
proofs, which account in part for the length of the book. 
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The book contains no exercises, partly because the routine and straight­
forward computations that are usually left to the reader are worked out in the 
text, and partly because it is not the intention of the author to refer to results 
in the theory of Lie algebras not covered in the text. 

Unfortunately, there is a large number of misprints in the text and many 
symbols have been left out. Apart from some wrong definitions, the table 
containing the Coxeter-Dynkin diagrams for the complex simple algebras 
gives the wrong diagram for Es. In the bibliography the name of J. Dixmier is 
misspelled and some French words have wrong accents. 

The efforts of the author to bring down an important subject to the level of 
readers without a general background in Mathematics are commendable, but 
any reader of this book may get lost in its forest of mathematical equations. 
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Homology and cohomology theory, by William S. Massey, Monographs and 
Textbooks in Pure and Applied Mathematics, no. 46, Marcel Dekker, Inc., 
New York, 1978, xiv + 412 pp. $29.75. 

Algebraic topology attempts to solve topological problems using algebra. 
To do so requires some sort of machine which produces the "algebraic 
image" of topology, and it is the machine itself on which topologists often 
spend most of their time, first carefully building and then diligently refining. 
Historically, the first such machine was ordinary homology and cohomology 
theory. (The word "ordinary" is not a slur~it means homology and cohomol­
ogy defined from an algebraic chain complex as opposed to "extraordinary" 
theories such as i^-theory.) Yet in the 84 years since homology was first 
mentioned, algebraic topology has developed rapidly and diversely. In the 
past 30 years this development has been particularly apparent with the 
problems more diverse and the machinery more and more complex, going far 
beyond its humble origins. Indeed, at the moment the subject is a tinkerer's 
delight; one can choose a machine and modify it almost at will. 

Precisely when the machine works; or how it is related to other parts of the 
subject, is often not quite known. The phrase "nice space" seems to be used 
with increasing frequency in algebraic topology. What is the most efficient 
way to develop the machinery? What is the best way to teach it to graduate 
students or to explain it to other mathematicians? All this is often forgotten in 
the frenzy to answer the next question. Exposition and careful development 
of the foundations have often appeared in unpublished lecture notes, and 
copies turn into prized possessions. Sad to say, there is no glory in cleaning 
up after a party. 

Homology and cohomology theory is a cleansing performed at the very roots 
of algebraic topology. It develops ordinary homology and cohomology theory 
in a neat and orderly fashion from the beginning, and does so in a novel way 
which is technically very pleasant. But why should such an old and estab­
lished area of topology require cleansing at all? The answer lies in the 


