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I. Introduction. Finite simple groups. The title of my talk described a 
problem in which I have been interested for a very long time: 

Given a prime number p. We wish to find the relations between the properties 
of the p-blocks of characters of a finite group G and structural properties of G, 

Only the case is of interest that G is p-singular, i.e., that the order g = \G\ 
is divisible by/?. 

The problem of finding all simple finite groups is still unsolved. During the 
last few years, very significant progress has been made by John Thompson, 
Daniel Gorenstein, John Walter, Helmut Bender, Michael Aschbacher, and 
others. It seems that most group theorists feel that it is only a matter of time 
until all finite simple groups will be classified. Jonathan Alperin wrote to me 
recently; 

"It is a good guess that within five years everything should be pretty clear. 
But how long it will take to clean up and correct all the papers-and they do 
need that-is anybody's guess." 

I may add that there may be some doubt about the exact meaning of a 
classification of the finite simple groups. We shall come back to this point in 
more detail below. While in our problem, we are concerned with arbitrary 
finite groups, not only simple finite groups, there cannot be any doubt about 
the importance of the recent developments for our problem. 

Our notation will be more or less standard. By a group, we shall usually 
mean a finite group without mentioning this explicitly. By a character x of a 
group G, we shall always mean a complex character. The set of irreducible 
characters of G will be denoted by Char(G). The symbol C1(G) will be used 
for the set of conjugacy classes of G. Since characters x are constant on each 
K G C1(G), it suffices to know the value of x f° r a class representative 
oK E K. We then have the character matrix XG of G, 

* C = ( x K ) ) , (xeChar ( (7 ) ,#eCl ( (7 ) ) . (1.1) 

The rows here are indexed by the x G Char(G) and the columns are indexed 
by the K E C1(G). Since Char(G) and C1(G) both consist of the same 
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number k(G) of elements, XG is a square matrix of degree k(G); the number 
k(G) is the class number of G. 

We conclude this introductory section with a discussion of the terminology 
used in connection with the simple groups. We distinguish the following cases 

1. The simple groups G of prime order p. Since they are of little interest, we 
shall usually exclude them without mentioning this explicitly. In other words, 
we shall restrict our attention to the nonsolvable simple groups. 

2. The alternating permutation groups An, n > 5. These are the groups of 
particular interest in Galois theory since An is the Galois group of the general 
algebraic equation of degree n and the nonsolvability of An is equivalent with 
the fact that the equation cannot be solved by radicals. It was already known 
to Galois that a nonsolvable group of order at most 60 was isomorphic to A5. 

3. The Chevalley groups (simple groups of Lie type). These are the groups 
described in the celebrated paper [25] of Claude Chevalley. We find it 
convenient to include their twisted analogues discovered by Robert Steinberg, 
Jacques Tits, Michio Suzuki, and Rimhak Ree. Among the simple groups of 
Lie type, we have the classical groups, i.e., the linear, symplectic, orthogonal 
and unitary simple groups. The first cases of classical groups were already 
discussed by Galois. A more systematic study was made by C. Jordan [F]2 

and by L. E. Dickson [A], [29], and [30]. 
4. Sporadic groups. It has been known for more than a hundred years that 

there exist simple groups, not of the types discussed so far. It has become 
customary to refer to these additional simple groups as "sporadic groups". 

The first five sporadic groups, the Mathieu groups, were described by E. 
Mathieu in 1861 and 1873. The next sporadic group was discovered by 
Zwonimir Janko in 1965, after a gap of almost one hundred years. Today, 
twenty-four sporadic groups are known, and it seems probable that there are 
at least two more such groups. On the other hand, it is quite possible that 
there are infinitely many (nonisomorphic) sporadic groups. 

The crux of the matter then is the question: 
"Are there finitely many or infinitely many sporadic groups?" 
The optimists among us will be inclined to accept the first alternative. If 

they succeed in finding an upper bound for the order of sporadic groups, then 
the whole problem can be handled by a computer, though the costs of the 
project may very well be prohibitive. If they succeed only in establishing an 
upper bound for the number of sporadic groups, but not for their order, there 
is still a possibility that a kind of inductive procedure will be able to solve the 
problem. 

We have already indicated that if the pessimists are right and there are 
infinitely many sporadic groups, this in itself need not be a disaster. After all, 
there are infinitely many simple groups of Lie type, but we have an excellent 
classification. On the other hand, it is quite possible that we have an infinite 
sequence {Gn} with the orders \Gn\ strictly increasing and that infinitely 
often, entirely new types of groups occur in our sequence (or, as some people 

2It is interesting to note that Jordan in the introduction of his fundamental book [F] refers to 
the book as a "commentary" on the work of Galois. Historians of mathematics have remarked 
that this is one of the most modest statements ever made by a mathematician. 
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say, new monsters appear). Then, indeed, it may become necessary to state 
more clearly what we mean by a classification of the simple groups. It is not 
even impossible that no classification exists. 

I have to confess that I find the uncertainty delightful. If it should be 
shown, say in ten years, that the 26 sporadic groups mentioned above are all 
there is, the theory of simple groups would lose much of its interest. It would 
still require a lot of work such as the question of finding better and shorter 
proofs, but the real excitement would be gone. 

II. Centralizers of elements of prime order. Suppose that G is a simple 
group, not of prime order. A celebrated therem of Feit and Thompson [33] 
states that |G| = g is even. Hence G contains elements z of order 2 or, as we 
say, involutions z. 

Now, I have shown in [7] that 

g < ( | 8 c ( z ) | + 2 ) 2 ! ; (2.1) 

the proof is quite elementary. It follows that there exists only a finite number 
of (nonisomorphic) simple groups G in which the centralizer of an involution 
is isomorphic to a given group H. Actually, it was this fact which formed the 
starting point of the recent developments. We may also mention that, for 
many particular choices of H, the problem of finding the simple groups 
satisfying the condition has been solved. For an example of such a case, we 
may refer to [47] in which Z. Janko constructed the first sporadic group J 
which was not a Mathieu group. 

As a first application of block theory, the following result can be proved, 
cf. [9V, (6D)]. 

THEOREM (2A). Let G be an arbitrary group of even order g. Let P be a 
Sylow 2-group of G and let e > 0 be a real number. Then there exists an 
involution z in the center %(S) of S such that 

\G: Or(G)\ <[2(1 + £)|S|2 |SG(z)|3/2]!. (2.2) 

Here, 02>(G) is the core of G, i.e., the unique maximal normal subgroup of G of 
odd order. 

Involutions in the center of a Sylow 2-group of G are often termed central 
involutions of G. The following remark is obvious since \S\ < |£G(z)|. 

COROLLARY (2B). The right side of (2.2) is at most equal to 

[2(l + e)|SG(z)|7/2]!. 

The Theorem (2A) shows that we have inequalities such as (2.1) not only 
for simple groups G but for all finite groups G which do not have a normal 
subgroup of odd order larger than 1. The upper bound in (2.2) may or may 
not be smaller than that in (2.1). No direct proof of (2A) avoiding block 
theory is known. 

Already in [7], it was remarked that no result of the type of (2.1) was 
known in which elements of odd prime order/? figured instead of involutions. 
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This was an obvious point, since in simple Lie groups of odd characteristic pf 

one would naturally be more interested in elements of order p and their 
centralizers than in involutions. 

In a recent paper, Paul Fong and I proved the following result [19, 
Theorem 2]: 

THEOREM (2Q. Letp be a prime integer. At least one of the following holds: 
(a) There exists a real-valued function f of a real argument with the following 

property : If G is a finite group of order divisible by p and ifcis the maximum of 
the orders \QG(x)\ for elements x E G of order p9 then 

\G:Op.(G)\<f(c). 

(b) There exist infinitely many sporadic simple groups of order divisible by p. 

If we have case (a), we have a generalization of (2.1) and (2A). The 
function ƒ can actually be constructed. However, we may also have the 
alternative (b) and we don't know whether or not we then have inequalities of 
the type (2.1). 

We study the situation further if we have case (b), 
We can show, cf. [19J: 

THEOREM (2D). If we have case (b) in Theorem (2C), there exists an infinite 
sequence {GH} of sporadic groups GH such that the sequence {\Gn\} is strictly 
increasing, that all \GH\ are divisible by p and that the Sylow-p-subgroup Sn of 
GH are all isomorphic. Moreover^ the degrees of all p-modular nonprincipal 
characters of GH tend to oo for n -» oo. 

Theorem (2D) indicates that rather dreadful types of sporadic groups exist, 
if we have case (b) in Theorem (2C). If we have case (a), then Theorem (2A) 
has analogues for elements z of odd prime order instead of involutions, 
However, it has not been possible to prove this without further hypotheses. 

III. Groups with a cyclic Sylow /^-subgroup. Sporadic groups were intro­
duced in §1 as the simple groups which are neither of prime order, nor 
alternating groups, nor of Lie type. Because of this rather negative type of 
description, there is really nothing much of a general nature we can say about 
sporadic groups. On the other hand, if we are to solve the problem of 
classifying the simple groups, it will be sporadic groups on which we have to 
concentrate. 

In order to make any progress, it will be necessary to add special 
assumptions, preferably assumptions which are satisfied by the twenty odd 
sporadic groups known today. 

A look at the list in Appendix II will divulge a remarkable fact. The order 
of each of the known sporadic groups G contains prime factors p with the 
exact exponent 1. Of course, we have no idea whether or not this is also true 
for the unknown sporadic groups. Incidentally, it is of course true for the 
simpler groups of prime order and-what is not at all trivial-for the alternating 
groups. 

It seems reasonable then to study groups G which have a Sylow p-subgroup 
P of order p for some prime number p. It is not necessary to require 
simplicity of G at this stage. 
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If we do this, again block theory can be applied. In the character matrix XG 

in (1.1), we first take the irreducible characters x whose degree is not divisible 
hyp and we first take the conjugacy classes K G C1(G) consisting of elements 
of order prime to/?. Then XG breaks up in the form 

where 0 denotes a zero-matrix. Moreover, if we set N = %G(P) and if we 
take the irreducible characters and conjugacy classes of N in a suitable order, 
then in 

XN~\WN o ; 

the matrix VN is almost the same as VG; we only have to multiply certain of 
the rows of VN with - 1 in order to obtain VG, cf. [51]. 

It is much easier to study N than G. In fact, N does not possess irreducible 
characters whose degree is divisible by/?. Hence we have 

XN = (UN9VN). (3.2) 

THEOREM (3A). Let G be a group which has a cyclic Sylow p-subgroup P of 
prime order p. Set N = %G(P). If the irreducible characters and conjugacy 
classes of G and N are taken in a suitable order, the character matrices of these 
groups take the form 

(UG VG\ 
X° ~~ \ W 0 / XN ~~ (UN>VN) 

where VG is obtained from VN by multiplying some of the rows with ~~ 1. 

COROLLARY (3B). If G and N are as in (3A), the class number k{G) of G is 
at least as large as k(N). 

No direct proof of (3B) is known. We derive some further corollaries. Note 
that it follows from Sylow's theorem that g = |G| has the form 

g = prm(l + n*p) (3.3) 

where |£C(P)| =/?m, where r = \9lG(P)/£G(P)\ divides/? - I, and where 
m > 1 and n* > 0 are integers. Since 

|G: %G(P)\ - 1 + n*p, (3.4) 

1 4- n*p is the number of distinct Sylow /^-subgroups of G. 
In [6], we dealt with the case that m = 1 and that G is perfect. We have: 

COROLLARY (3C). Assume that G is a perfect group with a Sylow p-subgroup 
P of prime order p. If n* in (3.4) is less than \{p — 3), then G a* PSL(2,/>) 
withp > 3 or Gcz PSL(2,/? - 1), where p > 3 is a Fermât prime. On the other 
hand, if n* > \(p - 3), then n* has the form 

n* « (puw + u2 + u + w)/ (w + 1) 

where u and w are positive integers with (u + l)|w(/> - 1), 
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In [20], the method was used to prove the following result which had been 
conjectured by E. Artin. 

COROLLARY (3D). The only simple groups G whose order g = \G\is divisible 
by a prime p > g1/3 are the groups isomorphic to one of the two groups 
occurring in the first part of (3C). 

The Theorem (3A) was derived from properties of a /?-block with a defect 
group of order p. In an important paper, E. C. Dade [28] showed that 
analogous properties hold for /?-blocks with a cyclic defect group. Using 
Dade's theorem, Marcel Herzog [44] succeeded in determining all perfect 
groups G with a cyclic Sylow/?-subgroup P such that |P | exceed |(?|1/3. 

Recently, in [15], I have used Dade's theorem to study groups with a cyclic 
Sylow /?-subgroup P. The number q* in [15] is taken as p. The result is as 
follows. 

THEOREM (3E). Assume that G is a perfect group with a cyclic Sylow 
p-subgroup P. Set \P\ = q, \QG(P)\ = qm9 \VlG{P)\ = qmr, \G: %G(P)\ = n 
= 1 + n*p. 

(i) The numbers m, r, and n* are integers; r\p — 1; g = qrmn. 
(ii) There is associated with G a finite set £ of lattice points in a Cartesian 

x — y-plane. The set £ consists of the lattice points (x, y) which lie on a 
nondegenerate hyperbola and for which 0 < y < n*. The hyperbola § passes 
through the points (—1,0), (n*9 0), (0, n*) and the line y = —l/p is an 
asymptote. Furthermore, the involutory birational transformation y 

(x,y) -> (y/ (x + l), (xy + x2 + x)l (x + 1)) 

maps $ onto itself 
(iii) The set £ is empty, if and only if G/Op(G) c~ PSL(2,p) withp > 3 or 

ifp is a Fermât prime larger than 3 and G/Op(G) cz PSL(2,p — 1). 
(iv) Except in the cases in (///), there exist points Zl5 Z2 in £ such that 

Z2 =£ Z1? Z2 ¥= y(Zj). If two such points Zl9 Z2 are given, then $ and £ are 
uniquely determined and so are p and n. We can give an upper bound for 
\G/Op(G)\. 

On applying (3E), we choose arbitrarily two lattice points ZX9 Z2 with 
Z2 T^ Z1? Z2 T^ y(Z,). We can then determine #, n and p. However, in 
general, p will not be a prime number nor will n be an integer with n = 1 
(mod/?). In these cases, Zx and Z2 will not belong to a group G. In the 
opposite case, we can find £, n and/?. We also have information concerning 
the x in the principal /?-block. It is still possible that no group G exists, but 
there are at most finitely many possibilities for G/Op(G). 

So far, this method has not led to the discovery of a new sporadic group, 
but maybe it will some day. 

It seems that all simple groups have cyclic Sylow /^-subgroups for some 
prime/? dividing \G\. 

IV. Characters of groups with a given Sylow/?-subgroup. It is now natural to 
ask: Can the results of §111 be generalized to the case where the group G has 
a noncyclic Sylow/?-subgroup P? So far, all attempts to do so have failed. 

file:///G/is
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The purpose of what we call "block theory" is to find a substitute. 
We mention here only the papers on block theory which are needed in 

these notes. In addition to my papers [8], [9], [10], there are the important 
contributions of J. A. Green [39], [40], and [41] and of Walter Feit [J]. A great 
deal of work appears in the literature, some in different context and under 
different names. As discussed in [9 II], it is natural to assume that not only 
the Sylow/^-subgroup P of G but also the fusion ^(G) of G in P is given. 

So far, essentially the only cases treated have been cases where the prime/> 
is 2. The reason for this can be seen from §11 where we discussed the 
importance of involutions and their centralizers. 

Up to now, only certain classes of 2-groups have been treated. These 
include the groups P of 2-rank at most 2, cf. [21], [32], [1], and [2]; the case 
that P is the Sylow 2-subgroup of i/3(4) does not appear in the literature but 
since |P | has the small value 64, it can be treated without difficulty. 

As an example of a group P of 2-rank 3, we mention the Sylow 2-subgroup 
of the group G2(3). The latter group plays a dominant role in Thompson's 
JV-group paper [65]; for this reason it is of particular interest. Assume then 
that G is a finite group with the Sylow 2-subgroup P and that the fusion 
% = ^(G) is given. As is well known, it depends only on ®j whether or not G 
has a normal subgroup of index 2; we shall assume that this is not the case. It 
can then be shown [18] that there are exactly two possibilities for <$; in the 
case of the first one, G has two conjugacy classes of involutions and in the 
second case, there is only one such class. Moreover, in the first case, 
G/02(G) is either isomorphic to the Mathieu group Wn or to a group W 
which is determined uniquely up to isomorphism by the conditions that W is 
nonsoluble and nonsimple and has order 1344. 

If G has only one conjugacy class of involutions, G/02(G) is isomorphic 
to G2(3), cf. [3511]. Actually, [35] gives a characterization of the finite simple 
groups G2(q)9 the projective symplectic group PSp(4, q), and the Steinberg 
simple groups D%(q) where q is an odd prime power. 

V. Groups of characteristic 2-type. It has been observed by Daniel 
Gorenstein [37] that the following conditions appear to be satisfied by the 
simple groups G of Lie type over fields of characteristic 2 with a few 
exceptions: 

(a) The group G is simple, (b) Its 2-rank is more than 2 (i.e., 
G contains elementary abelian subgroups of order 8. (c) A 
Sylow 2-subgroup S of G does not normalize a subgroup of (*) 
G of odd order k > 1. (d) All 2-local subgroups of G are 
2-constrained. 

For this reason, Gorenstein calls groups G satisfying the conditions (*) groups 
of characteristic 2-type. He observes that a very large portion of J. G. 
Thompson's iV-group papers [65] deals with such groups. In addition to the 
Lie groups over fields of characteristic 2, the group G2(3) and the following 
sporadic groups are characteristic 2-type groups: The Mathieu groups Af22, 
M23, M24; the Suzuki group of order 448,345,497,600, and the large Conway 
group. It seems reasonable to try to study sporadic groups which are of 
characteristic 2-type. 
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We mention the following result of Gorenstein [37, Theorem 1], 

THEOREM (5 A). If G is a simple group of characteristic 2-type\ then 02(H) = 
(\) for every 2-local subgroup H of G. 

We shall find it convenient to speak of characteristic 2-type groups G if G 
is simple or nonsimple and if the conditions (*) (b), (c), and (d) are satisfied. 
The proof of Theorem (5A) yields here a slightly weaker result. 

THEOREM (5A*). If G is a characteristic 2-type group and if H = 9lG(JP) is a 
2-local subgroup with P a 2-group of order more than 2, then 02{H) = <1). 

Now an idea of David Wales and proved in final form by Ronald Solomon 
[60] can be applied. We state the result in a different language. In [91], groups 
G of 2-deficiency class two were defined as groups G for which there does not 
exist a nonprincipal 2-block of defect larger than 1, We then have the 
theorem. 

THEOREM (5B). If G is a characteristic 2-type group», then G is of 2-deficiency 
class 2. 

On combining Theorem (5B) with [91, (7A)], we find 

COROLLARY (5C). Let G be a characteristic 2-type group. If the Sylow 
2-group P of G has abelian 2-rank larger than two, there exists a boundf(\P\) 
depending only on \P\ such that \G\ < f(\P\). 

It follows that there exist only finitely many nonisomorphic characteristic 
2-type groups G with a Sylow 2-subgroup P of given order, provided that P 
has 2-rank at least 2. Again no proof seems to be known which does not use 
block theory. 

It follows from [91] that a finite group G of even order is of 2-deficiency 
class two, if and only if 6G(Z)/<JC> = W is of 2-deficiency class 1 for every 
involution z of G. Of course, W has smaller order than G. If we assume that 
we know all groups W of 2-deficiency class 1 and smaller order than |G|, we 
can construct all possible groups ©G(z) as extensions of a group of order 2 by 
a known group W. In order to find G, we have to solve the problem of 
finding the groups in which the centralizer of an involution is isomorphic to a 
given group. It was already mentioned in §2 that problems of this kind have 
been treated by quite a number of authors. 

A further reduction of a similar nature is possible. In order to find all 
groups W of 2-deficiency class 1, we can proceed as follows. We construct all 
groups V of 2-deficiency class 1 of smaller order than | W\f then construct the 
extensions U of a cyclic group <£> of order 2 by the group F, and finally have 
to find the groups G in which the centralizer of an involution is isomorphic to 
U. 

VI. Examples and Remarks,3 It may be of interest to some readers if we 
mention some examples. We wish to show that the results discussed above 
can be used to answer very concrete questions. 

3In §§VI and VIII, a large number of facts are discussed very briefly. The reader may do well 
to read only parts of special interest to him. 
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(1) For certain orders, for instance for the orders 5616, 6048, and 7920, the 
existence of simple groups of that order was known. However, it was not 
known whether or not there were nonisomorphic groups of that order. Here, 
Theorem (3A) with suitable choice of p can be applied. This provides 
sufficient information to permit construction of the character matrix XG% 

(1.1). Finally, this yields enough information that we can prove that simple 
groups of the orders in question have to be isomorphic to the known groups. 

(2) If the given order g contains primes with the exponent 1, similar 
methods can be used frequently to show that no simple group of order g 
exists. 

(3) Burnside [24, Note N, p. 504] reports on his work leading to a 
determination of all simple groups of orders up to 1,000. He writes "The 
labour involved in such a direct examination increases very rapidly with the 
order, and puts a practical limit on carrying it on to considerable values of 
the order." 

The methods discussed in (1) and (2) changed the picture. H. F. Tuan [66] 
was able to determine the simple groups of orders up to 10,000, Sister 
Elizabeth Louise Michaels [54] extended this to the upper bound 20,000 and 
finally, Marshall Hall, Jr. [42], [43] started to work on the construction of 
simple groups of orders up to 1,000,000. There were twenty-one orders for 
which he did not obtain results. The most interesting of the orders treated is 
the order 604,800, since this led Hall to the construction of the Janko-Hall 
group [42], see also Janko's paper [48]. 

(4) There are a number of aids which can be used to eliminate cases in a 
program of the type discussed in (3). (a). If |G| is divisible by primes/? with 
the exact exponent 1, the results of [22] can be helpful, (b). It follows from the 
Corollaries (3C) and (3D) in §111 that only primes/? < |G|1/3 can divide \G\ 
except when G is isomorphic to one of the groups PSL(2, /?) or PSL(2, p — 1) 
in the corollaries, (c). The following results can be shown: If |G| contains/? 
with the exact exponent a, then \G\> p2", if the Sylow 2-subgroup P is 
abelian. The same is still true, if P is nonabelian, but if G does not contain 
elements of order 2/?. For a > 3, we have \G\ > pa+3. 

The following two results are more difficult to prove. The prime 2 divides 
|G| at least with the exponent 6 except in cases which can be listed explicitly 
[34]. If a > 2, then | G\ >/?5[36]. 

(e) It follows from Thompson's ]V-group paper [65] that if |G| contains only 
three distinct prime factors, two of the prime factors are 2 and 3 and the 
remaining prime factor is 5, 7, 13, or 17. In the last two cases, G is isomorphic 
to PSL(3, 3) or, respectively, to PSL(2, 17). If \G\ has the form |G| - 2a • 3b * 
5 (and if \G\ ¥= 5), I have shown that G es A5 or G c~ A6, or G c* PSp(3,4) of 
order 25920 [12], If g = 2a • 3* • 7, then G c* PSL(2, 7) or G es PSL(2, 8), [68]. 
The order 84,672 can be removed from Hall's list [R. Brauer, J. S. Leon]; also 
as can be shown without much difficulty the order 43,200. Hence all simple 
groups of order less than 86,400 are actually known. 

(4) Among the simple groups G, not of prime order and of order, say, 
below 1,000,000, a very large percentage is of type PSL(2, q). It is therefore of 
interest to have a criterion that allows us to decide whether or not G is 
isomorphic to a group of this type. Such a criterion has been given by Hans 
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Zassenhaus [70]; this criterion is already used in the proof of Corollary (3C) 
in §111 and other work of theoretical and not numerical nature. 

Zassenhaus' investigations led him to the introduction of the concept of 
near fields and the class of groups now called Zassenhaus groups. 

(5) A systematic study of Zassenhaus groups (as well as of Frobenius 
groups) was made by Noboru Ito [46]. The last part of Ito's book also deals 
with the Suzuki groups Sz(q) which the reader will encounter below in this 
section. 

(6) Some of the first characterizations of sporadic groups G by their order 
was given by R. G. Stanton [61]. Stanton treated the Mathieu groups Ml2 and 
Af24. Application of Theorem (3A) and of [61] allows Stanton to construct the 
character matrix (1.1). This again yields enough information to determine G 
up to isomorphism. Similar methods were used by David Parrott and S. K. 
Wong to characterize M22 and the Higman Sims group, [56], [57]. 

(7) In 1960, Michio Suzuki constructed an infinite sequence Sz(22,ï+1) of 
order 

24«+2 (22„ + l + 22n + l)Q2n+\ _ 2^ + \)Q?*+\ - 1) („ > 1) 

[62]. These are now usually called the Suzuki groups, see above in (5). At the 
time of their discovery, it was believed that they were sporadic groups which 
later was shown to be false. 

(8) Block theoretic methods allowed me to show that Sz(8) was the only 
simple group of its order. Later Michael Collins [26] generalized this result by 
proving that if a simple group G has a Sylow 2-subgroup isomorphic to that 
of Sz(q), then G is itself isomorphic to Sz(#). His proof uses some of the most 
sophisticated tools developed by Bender, Goldschmidt, Gorenstein, and 
Walter. Collins [27] also proved a similar result for the unitary groups U3(q) 
with even q > 4. 

(9) As we mentioned in (7), it was believed in 1960 that the Suzuki groups 
$z(q) were sporadic groups and, in particular, that there were infinitely many 
sporadic groups. This belief was already shattered in 1961 when Rimhak Ree 
and, independently, Robert Steinberg noted that the groups Sz(q) were 
twisted groups of Lie type B2 that had been overlooked! As a consequence, 
we had to change our opinion after only one year. It is again conceivable that 
there are only finitely many (nonisomorphic) sporadic groups. I have already 
mentioned that it is still anybody's guess now fifteen years later. 

(10) Rimhak Ree's work mentioned in (9) was the starting point for his 
discovery that two more families of simple groups of Lie type have been 
overlooked. One of them, of type G2, [59] is of special interest to us. The 
groups in it resemble in some ways the Suzuki groups with the prime 2 
replaced by the prime 3. Ree also made a statement which was of special 
interest to me personally. He mentioned that the Sylow 2-groups of all the 
groups in his family were of order 8. It was then clear that Sylow 2-groups of 
the new simple Ree groups had to be all elementary abelian of order 8. Hence 
no characterization of the groups by their Sylow 2-subgroup S and the fusion 
in S was possible. 
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(11) At that time, H. N. Ward started to work on his Ph.D. Thesis at 
Harvard under my direction. I suggested to him the question of §11 for the 
Ree groups: Given a simple group G and an involution z in G such that 
6G(z) is isomorphic to the analogous group with G replaced by one of the 
simple Ree groups. What can you say about G? Subsequently, Ward [72] 
succeeded in obtaining the character table of G. However, his attempts to 
prove the isomorphism of G with the Ree group in question failed. John 
Thompson who had been a member of the Harvard Mathematics Department 
in 1962 became interested in the question and made considerable progress 
[64]. However, it is still unsolved. Possibly, there exist infinitely many spora­
dic groups of Ree type and, possibly, none at all. 

Our discussion of examples in 1-6 has ended in 7-11 with a report on some 
of the strangest chapters of mathematical history in modern times. 

VIL A digression. We said at the beginning that most group theorists felt 
that it would only be a matter of time until the simple groups would be 
classified. We shall now take a closer look at this statement. 

Clearly, a requirement for a classification of the simple groups is that we 
can arrange a set of representatives for the isomorphism classes of simple 
groups in a sequence 

G\> Gi> Cr3,... (7.1) 

indexed by the integers, and that we know the multiplication table of Gn for 
each n. We should also know to which of the four types of simple groups in §1 
the group Gn belongs. We may assume that the groups Gn in (7.1) are 
arranged such that \Gn\ < \Gn\ for n < n'. 

There is no difficulty about the solvable simple groups; they are the simple 
groups of prime order. A necessary condition that Gn be isomorphic to the 
alternating group An is that \Gn\ = n\ However, this condition is not 
sufficient. For instance, there exists a simple group Gn of order | 8! which is 
not isomorphic to As. 

Let M be a given positive integer. Given enough money, space, and time, 
there would be no theoretical difficulty about building a computer which 
could construct the part {Gl9 G2,... } of (7.1) which consists of the groups 
Gnwith\Gn\ < Af. 

It is possible that, for a suitable choice of Af, we are finished at this point. 
This would of course require that there exist only finitely many 
nonisomorphic sporadic groups, all of order at most equal to Af. In addition, 
we would have to have a proof that there do not exist sporadic groups of 
order larger than Af. 

If there exist sporadic groups of order larger than Af, possibly the situation 
may be remedied by replacing Af by a larger value. 

So far, it has not been proved that there are only finitely many 
nonisomorphic sporadic groups. Let us consider the case that there exist 
infinitely many nonisomorphic sporadic groups. We speak here of a system of 
classification @ for the sporadic groups, if the set of sporadic groups in (7.1) is 
written as a disjoint union 
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Q U C2 U • • • {12) 

of finitely many or infinitely many subsets Cr In order that this classification 
be of any value, we would require that the Gn in the same Cj share some 
important group theoretical properties. 

Depending on the exact circumstances, this might be a satisfactory answer 
to the problem of classifying the sporadic groups. However, we are far from 
knowing that such an answer exists. 

VIII. Additional topics. We discuss briefly a number of topics where block 
theory can be used. 

1. We define a system of classification © (§VH) as follows. The class Cj 
consists of the sporadic groups Gn whose order is divisible by exactly j 
distinct prime numbers. 

CONJECTURE (8A). If the system @ is used, the class C3 is empty. 
We can write the whole set (7.1) as a union of disjoint sets Cf where Cf is 

the set of groups Gn whose order is divisible by exactly j distinct primes, 
j = 1, 2, • • • . Then Cf consists of the solvable simple groups. A well-known 
theorem of Burnside shows that Cf is empty. 

CONJECTURE (8A*). The set CJ consists of 

A$f A69 U4 (2), PSL(2, 7), PSL(2, 8), U3 (3), PSL(3, 3), PSL(2, 17). (8.1) 

Clearly, (8A*) implies (8A), 
No proof of (8A*) is known. Using block theory, at least some special 

results covered by the conjecture (8A*) can be proved. For instance, if G is 
simple of an order \G\ = 5 • 3a • 2b with a > 0, b > 0, then G is isomorphic to 
one of the first three groups in (8.1), cf. [12]. If G is simple and |G| = 7 * 3a • 
2b with a > 0, b > 0, then G is isomorphic to one of the next three groups in 
(8.1), [71]. 

If we use more recent results whose proof depends on much deeper 
methods, we can say more. It follows from Thompson's iV-group paper [65] 
that the three primes dividing \G\ belong to one of the set 

{2, 3, 5), {2, 3, 7), {2, 3, 13}, (2, 3, 17). 

In the last two cases, it was proved recently by Kenneth Klinger [49] and by 
Geoffrey Mason [53] that the groups in question are isomorphic to PSL(3, 3) 
and PSL(2, 17) respectively. It is also known that if G belongs to CJ and if 
some Sylow subgroup of G is cyclic, then G is isomorphic to a group in (8.1). 

The class C4 is no longer empty (see Appendix II). One may conjecture that 
all classes Cj are finite. This would of course be the case if there are only 
finitely many nonisomorphic sporadic groups, but it might still be true in the 
opposite case. 

2. Application to linear groups. We consider here finite linear groups of a 
given dimension n, i.e., finite subgroups of GL(/i, C). We say that such a 
group G is quasi-primitive, if G is irreducible and if, for every normal 
subgroup H of C, any two irreducible constituents of H are similar. The 
following result is essentially due to H. F. Blichfeldt [4]. 
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THEOREM (8B). If G is a finite, quasi-primitive linear group of degree n9 then 
for every prime number p < n 4- 1, we have 

\G\^HG)\P^\n\)p. (8.2) 

Moreover, (cf. [6II] and [31]) 

\G: %{G)\ < nl (2n + \)6<»-M"+». (8.3) 

Here, for a E Z and a ^ O , (a)p is the highest power of p dividing a and 
w( • - - ) is the prime number function. 

The Theorem (8B) is a refinement of a classical theorem of C. Jordan. In 
particular, it follows Jiiat there exist only a finite number of possibilities for 
the projective group G = GJ%(G) (apart from equivalence). 

For n < 4, the groups G were determined explicitly by Felix Klein, C 
Jordan, Valentiner, and H. F. Blichfeldt, cf. [4], but no further progress was 
made after that for about fifty years. By the use of block theory it became 
possible to treat the cases n = 5 [11], n = 6 [52], n = 7 [70], and most 
recently, n = 8 [45] and [32]. Results of this kind are important for the theory 
of algebraic equations of degree /i — 1. 

The results of [13] are a first step in the direction of finding the order of 
magnitude of the best possible upper bounds in Jordan's theorem. 

Finally, in [17] an analogue of Jordan's theorem for fields of characteristic 
different from 0 is proved. 

3. There are cases in which block theory can be used to obtain new proofs 
of important older theorems. In [63], John Thompson obtained a more direct 
approach to the celebrated "Theorem B" of Graham Higman and Philip Hall 
which plays an important role in the "odd order paper" [32] of Feit and 
Thompson. 

A similar case is a proof of J. L. Alperin [1, §4] of a theorem of George 
Glauberman. 

IX. An epilogue: Work not yet done. Apart from the many questions in the 
preceding pages, there are many open problems. Since there are now so many 
mathematicians working in the theory of finite groups, perhaps some of them 
may try to solve them. 

Most of the recent work on simple groups uses purely combinatorial 
arguments. A number of new concepts have been introduced which are 
certainly highly significant. It will be of interest to see, if any of them play a 
role in problems of the representation theory of finite groups. 

There are also questions of a more technical nature. The character theory 
of groups G with a given Sylow 2-subgroup S has been developed for the 
cases where S has abelian 2-rank at most two (cf. §IV). There is no reason 
why the case of larger 2-rank of S could not be treated. If this can be done, it 
may become possible to prove the Schreier conjecture for simple groups G 
whose Sylow 2-subgroup is isomorphic to one of the 2-groups S for which 
results are available. 
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Even if the classification problem for simple groups can be solved in the 
most satisfactory form, we still do not know all about finite groups that we 
want to know, e.g., about the structure of the modular representations, about 
the invariants of finite linear groups, and so on. 

I, for one, hope that finite group theory will keep mathematicians busy for 
a long time to come. 

Appendix I 
REMARKS ON THE THEORY OF BLOCKS 

If G is a finite group of order g and if # is a field, we can embed G in an 
associative algebra K[G] over the field K such that if a E G corresponds to 
k(o) G K[G\ the elements {k(o)} form a #-basis of K[G] and that the 
mapping o -» k(a) is a (nonzero) group isomorphism. The algebra K[G] is the 
group algebra of G over K. In working with K[G], we assume tacitly that the 
mapping k is given. 

The investigation of K[G] in the case of an algebraically closed field K of 
characteristic 0 is equivalent with Frobenius' theory of group representations; 
it does not matter, if we choose K simply as the complex field C. In 
particular, Frobenius defined the irreducible characters of G and obtained 
their basic properties. It should be emphasized that the characters describe 
'purely group-theoretical properties' of G. If a certain theorem of group 
theory is proved by means of characters, it may be of technical interest to 
find a proof which is 'free of characters', but it is not of theoretical interest. 

The case of a group algebra K[G] over a field of prime characteristic/? ^ 0 
leads to the study of the p-modular representations of G. We refer here to the 
books [B], [E], [G], and [J]. It is no restriction for our purposes to assume that 
K be algebraically closed. 

We said in §IV that what we call "block theory" is to serve as a substitute 
for the results of [51] which were exploited in §111. 

The basic references for block theory as used here are my papers [8], [9], 
[10], J. A. Green's paper [39], [40], [41], and Walter Feit's lecture notes [J] 
which contain a great deal of new material. 

In addition, we may mention [14] and, for a different point of view [23]. We 
restrict ourselves to publications which deal with results applied in these 
notes. 

The very fact that block theory is a substitute for an unknown theory 
means that there are many open problems. Some interesting contributions to 
such questions were given recently in [50] and [55]. 

Appendix II 
SPORADIC GROUPS 

In Part I, we give the orders of the sporadic groups listed in [J]. Part II 
deals with the recent discoveries. If two names are given for one of the 
sporadic groups, the first is that of the group theorist who suggested the 
existence of the group and the second that of the person who checked the 
existence, usually on a computer. 
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Part Ï Order 

Mlt 

Ml2 

M22 

M23 
M24 

J 

h 

h 

(.1 

1.2 
(.3 
(^24 
p23 
\F%% 

2 4 - 3 2 - 5 - 1 1 
26 - 3 3 • 5 • 11 
27 - 3 2 • 5 -7 • 11 . 
27 • 3 2 • 5 - 5 • 11 • 23 
2 1 0 - 3 3 • 5 -7 • 11 -23 
23 - 3 • 5 • 7 * 11 - 19 
27 • 3 3 • 52 • 7 

27 • 3 s • 5 • 17 • 19 

2 1 0 • 3 3 • 52 • 73 • 17 
29 - 3 2 - 5 3 - 7 - 11 
27 - 3 6 - 5 3 • 7 • 11 
2 1 3 - 3 7 - 5 2 -7 • 11 • 13 

2*i . 3 9 - 5 4 - 7 2 -11 • 13 
2 1 8 - 3 6 - 5 3 - 7 - 11 -23 
2 1 0 - 3 7 • 53 - 7 • 11 -23 

= 7,920 
= 95,040 
= 443,520 
= 10,200,960 
= 244,823,040 
= 175,600 
= 604,800 

= 50,232,960 

= 4,030,387,200 
= 44,352,000 
= 898,128,000 
= 448,345,497,600 
•23 - 4 x 1018 

- 4 x 1012 

- 5 x 1 0 n 

2\\ ' 3 1 * * 5~ ' 73 • 11 • 13 • 17 • 23 • 29 -1 .3 x 1024 

2 1 8 . 3 1 3 . 5 2 . ? . jj . 1 3 

2 1 7 - 3 9 - 5 2 - 7 - 11 • 13 
28 * 3 7 • 5 6 • 7 - 11 * 31 • 

Part II 

29 - 3 4 - 7 3 *5 • 11 • 19 • 

• 1 7 - 2 3 - 4 x 1010 

- 6 x 1013 

3 7 - 6 7 - 5 x 1016 

31 

The five Mathieu groups 

The Janko group 
The Janko-Hall group 
The Janko-Higman and 

McKay group 
The Held-Higman and 

McKay group 
The Higman-Sims group 
The McLaughlin group 
The Suzuki sporadic group 

The three Conway groups 

The three Fischer groups 

The Lyons ISims group 

The O'Nan-Sims group 
The Rudvalis-Conway and 

Wales group 2 1 4 • 3 3 • 53 • 7 • 13 - 29 = 145,926,144,000 
The "Baby Monster" 2 4 1 • 3 1 3 • 5 6 - 72 • 11 • 13 • 17 • 19 • 23 • 31 • 47 

- 4 . 2 5 x 1033 

The Thompson group 2 1 5 • 3 i 0 • 5 3 • 72 • 13 • 19 • 31 - 9 x 1016 

The Harada-F. S. Norton and 
P. E. Smith group 2 1 4 • 3 6 • 5 6 • 7 • 11 • 19 - 2.73 x 1014 

The "Monster" 2 4 6 • 3 2 0 • 59 • 76 • l l 2 • 133 • 17 * 19 • 23 • 29 • 31 • 
•41 - 4 7 - 59 -71 - 8 x 1053 

The Janko "group"/ 4 2 2 1 • 3 3 • 5 • 7 • 113 • 23 • 29 • 31 • 37 • 43 
= 86, 775, 571, 046, 077, 562, 880 ~ 8.68 x 1019 

Note. The actual existence of the "Monster" and of J4 has not yet been 
established. 
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