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There is a folk theorem associated to the construction of classifying spaces 
for topological groups which says that a map of simplicial spaces which is a 
fibration in every degree has a fibration as its geometric realization. Peter 
May [GILS] has given a useful form of this which involves quasifibrations. 
This result has seemed to me a very interesting one, as it relates two rather 
opposite types of operations. On the one hand, it involves the geometric 
realization, which is defined by mapping into other things, and on the other 
hand, it involves fibrations, which are characterized by the properties of maps 
of other things into them. Any theorem which mixes "left" and "right" 
mapping properties should be expected to be difficult to prove. Since what is 
really wanted in applications is a homotopy theoretic result, the possibilities 
for complication are almost infinite. 

It seemed to me that a proof should be found which allowed for a 
homotopy invariant statement of the theorem, and which had the property 
that the ad hoc part of the argument was isolated in a reasonably small, 
isolated computation. After some effort, I managed to find such a proof, 
which I will outline in this paper. The virtue of this proof is that it involves a 
number of areas of topology which are known only to experts and which 
deserve a wider audience. Thus the proof of the theorem about the geometric 
realization of fibration has become the occasion for an exposition of 
simplicial methods, axiomatic homotopy theory, and homotopy limits and 
colimits. I shall only touch on simplicial methods, as there are several texts 
which cover these, and spend most of my time on axiomatic homotopy theory 
and the theory of homotopy limits and colimits. These are subjects which I 
think will become more pervasive in topology as attempts are made to apply 
homotopy theory in ever more general settings. 

For those who know what simplicial objects are, I will state the result on 
geometric realizations and illustrate it with some examples. For those not 
familiar with the terms I shall attempt to explain them as the talk proceeds. 

THEOREM. Iff: X -> Y is a map of simplicial spaces such that ir0{f) is a Kan 
fibration, and if the higher groupoids TLJJC) and I I ^ Y) are fully fibrant, then 
for any map g: Y' -» Y of simplicial spaces, if Xf is the homotopy theoretic fiber 
product of Y' with X over Y, R(X') is the homotopy theoretic fiber product of 
R ( Y') with R (X) over R ( Y), where R denotes the geometric realization. 

This theorem is proved for bisimplicial sets to take advantage of the rather 
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nice properties of the geometric realization functor. However, the singular 
complex and the standard realization functor carry it over to topological 
spaces with the homotopy type of CW-complexes, since the results and the 
hypothesis are both homotopy theoretic. 

The groupoids 11^ are not familiar to many people. They are the wreath 
product of the fundamental groupoid with the product of the higher 
homotopy groups. The condition that a simplicial groupoid be fully fibrant is 
somewhat difficult to explain, but if a simplicial groupoid is equivalent to a 
simplicial group, this condition will always be satisfied. On the other hand, if 
the simplicial groupoid is equivalent to a discrete simplicial groupoid (one 
object and one morphism in each component), the condition that it be fully 
fibrant is vacuous. Thus the theorem applies whenever ir^f) is a Kan 
fibration and X and Y satisfy the condition that either each Xn be discrete or 
connected and each Yn be either discrete or connected. Alternatively, we 
could ask that each Xn or Yn be a topological group. One of the most useful 
cases, of course, is the one treated by May in [GILS], where Xn is a point for 
all n and Yn is connected for all n. 

As a special case of our theorem, consider the case when X, Y, and Y' are 
discrete spaces. Then ir0(X) and 7r0( Y) are the underlying simplicial sets, and 
R(X) and R(Y) are their usual geometric realizations. Thus, as a special 
case, we obtain the theorem that the ordinary geometric realization from 
simplicial sets to topological spaces preserves homotopy theoretic fiber 
products. This is not actually a new result; it follows from a result of Quillen's 
which states that the geometric realization of a Kan fibration between 
simplicial set is a Serre fibration of topological spaces. 

The reader is encouraged to prove the lemmas which I state here for 
abstract homotopy theory. I learned them from various people in one way or 
another, particularly Dan Quillen, Dan Kan, Pete Bousfield, Ken Brown and 
Chris Reedy. The proofs are all elementary, though a few of them (particu­
larly the pasting lemma) do require drawing some rather complicated 
diagrams. The responsibility for the correctness of these results rests with me; 
if there are errors which have crept in, they are my own. The results on the 
existence of homotopy colimits and limits in abstract homotopy theory are 
also my own, and a more detailed account of these, together with some results 
on "functors up to homotopy" will appear elsewhere. There is, of course, 
considerable overlap with the work of Bousfield and Kan, whose work on 
homotopy limits and colimits represents a high point in homotopy theory. 

1. Simplicial topology. It has long been known that many important 
topological spaces can be studied combinatorially by explicitly considering 
decompositions of these spaces into unions of Euclidean discs. There are 
many familiar spaces which are homeomorphic to the Euclidean disc; among 
these, the simplices are generally the easiest to use since any map of the 
vertices of a simplex into a linear space has a unique linear extension to the 
simplex. The study of spaces which have been decomposed into simplices has 
been extended to the study of abstract simplicial sets. Up to homeomorphism, 
the abstract simplicial sets are no more general than triangulated spaces, but 
they are more flexible with respect to the formation of quotient spaces, and 
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they lend themselves better to combinatorial analysis than do the triangulated 
spaces. 

By a geometric simplex of dimension n, we mean a space with a fixed 
homeomorphism with the set of {n + l)-tuples ( / 0 , . . . , Q of nonnegative 
real numbers such that t0 + • • • + tn » 1. We write A" for the standard 
simplex of dimension n which is just the space of such (n + l)-tuples. By a 
face of A" we mean a subspace defined by tiy « • • • = tik = 0 for some 
(possibly empty) subset (il9..., ik) of (0, 1 , . . . , ri). If the subset is not 
empty, the corresponding face is called a proper face as it is not equal to A". 
The union of all the proper faces is called the boundary of An, and it is 
homeomorphic to the sphere of dimension n — 1. 

A finite triangulation of a topological space A" is a homeomorphism 
between X and a subspace of some A" which is the union of a set of faces of 
A". Not every space has a finite triangulation; those spaces which do are 
called polyhedra. Included among the polyhedra are such spaces as the 
compact differential manifolds. 

Associated to a triangulation of a topological space X is a combinatorial 
structure called a simplicial complex. A simplicial complex K is any sublattice 
of the lattice of finite subsets of a given set S which has the following 
property: AcBcS9BGK implies A E AT. If we regard l a s a subspace 
of A" which is the union of certain faces of A", we associate to this 
triangulation the set S of all faces of dimension 0 (called the vertices of A") 
which lie in X and let B = (vl9..., vr) be in K if and only if the r-
dimensional face containing B lies in X. 

Simplicial complexes may or may not be considered to have an ordering on 
their vertices. We shall consider all simplicial complexes to be equipped with 
orderings on their vertices, and all maps to preserve these orderings. 

A simplicial complex K has associated to it a topological space \K\ called 
the geometric realization of K. In the example above, X is naturally 
homeomorphic to the geometric realization of its associated simplicial com­
plex, so we see that no information is lost if we consider simplicial complexes 
rather than triangulated spaces. 

In order to form the geometric realization of a simplicial complex K, take 
the disjoint union of one copy A^ of a simplex of dimension na for each 
o E K, where na is the number of elements in a minus one. We regard the 
elements of o as the vertices of An% and for o c T E K, we identify A"° with 
the corresponding face of A \ The resulting quotient space is the geometric 
realization \K\ of K. 

While not every map |AT'| —> |̂ T| between two simplicial complexes is 
homotopic to a map induced from a map of vertices, every map can be 
represented as the geometric realization of a map of simplicial complexes if 
one performs the combinatorial construction known as subdivision often 
enough to the source simplicial complex. Thus, not only can the polyhedra be 
recovered from simplicial complexes, but the homotopy theory of polyhedra 
can be recovered from the homotopy theory of simplicial complexes. This 
shows that, at least for those polyhedra for which triangulations are known, 
homotopy theory can be reduced to combinatorics. Indeed, results of Ed 
Brown [FC] imply that the computations of homotopy groups of polyhedra 
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are recursively computable by combinatorial methods. 
Unfortunately, the category of simplicial complexes is not sufficiently 

flexible to allow for some of the standard constructions of the homotopy 
theorist. The main deficiency is the lack of finite colimits. For example, if K' 
is a subsimplicial complex of a simplicial complex K, there is no simplicial 
complex K/K' whose geometric realization will be |# | / |^' | - To remedy this, 
another combinatorial construction was introduced which is an extension of 
the idea of a simplicial complex. 

For the cateogrically minded, simplicial sets may be regarded as the 
sheaves on the category of ordered simplicial complexes with respect to the 
canonical topology. For such people, the rest of this section will follow 
immediately from first principles, and they may skip to the sections on 
homotopy theory. 

There are certain simplicial sets P(n) which are the power sets of the sets 
n = {0, 1 , . . . , n}. That is, P(n) is the lattice of all subsets of n. Then 
|P(n)| = A". If K is any simplicial complex, let Kn = Hom^n), K). Then 
inside K„ one has a subset consisting of all monomorphisms P(n) -» K. Since 
we have ordered the vertices, these correspond to the «-dimensional simplices 
of \K\. Every element/: P(n) -> K of Kn can be described as ƒ = gP(h) where 
g: P(m) -» K is a monomorphism, and m + 1 is the number of vertices in the 
image of ƒ. The elements of Kn which correspond to monomorphisms are 
referred to as the nondegenerate simplices of K in dimension n; the remain­
der are called the degenerate simplices in dimension n. 

One can take the product of simplicial complexes. If K and L are two 
simplicial complexes, Kn X Ln = (K X L)n for all n. However, the nonde­
generate simplices do not follow this rule. The standard map \K X L\ -* \K\ 
X \L\ is a bijection, and if either K or L is finite, it is a homeomorphism. 

By a simplicial set X, we mean a contravariant functor from the category 0 
of finite ordered sets to the category of sets. We write Xn for X(n). Notice 
that since simplicial sets are functors into the cateogry of sets, they inherit 
from the category of sets all limits and colimits. The following properties of 
simplicial sets are quite straightforward to establish: 

(1.1) (YONEDA LEMMA). If A" is the simplicial set given by &?m = Hom(m, n), 
there is for all X a natural isomorphism Xn s Hon^A", x). 

(1.2) The functor KH>K, where K(n) = Kn from the category of ordered 
simplicial complexes to the category of simplicial sets is full and faithful (Le., 
Hom(A'/, K) = Hom(A '̂, K)), and it preserves limits. 

(1.3) Every subsimplicial set of a simplicial complex is a simplicial complex. 

(1.4) For any simplicial set X, there are simplicial complexes K\ K and maps 
fg: K' -> K such that X is the coequalizer off, g: K[ -» K. 

If A' is a simplicial set, the elements of Xn are called the w-simplices of X. If 
there is a proper epimorphism hi n-»m and an element r G Xm such that 
o = X(h){r)y the «-simplex a of A is called degenerate. If no such pair (h, r) 
exists, o is called nondegenerate. 

There is often confusion as to why the degenerate simplices are included in 
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a simplicial set. The reason is fairly simple once one attempts to construct 
maps between simplicial sets. Notice that A0 is the terminal simplicial set and 
plays the role of the one point space (indeed, |A°| = A0 is the one point 
space). If we look at the constant map A"-»A0, this is the geometric 
realization of the dimensionwise constant map ƒ: A" -» A0. If we look at the 
behavior of ƒ on simplices, Aw has in dimension m exactly (n

nX\) nonde-
generate simplices. Thus, for 0 < m < n, fm: ùfm-+à°m has to have nonempty 
image for the nondegenerate simplices. However, in positive dimensions, A0 

has no nondegenerate simplices so that in order to describe the constant map 
ƒ: A" -> A0, we must include in A0 the degenerate simplices. 

We can extend the geometric realization functor from the category of 
simplicial complexes to the category of simplicial sets as follows. If A" is a 
simplicial set, let Cov(Ar) be the disjoint union of one copy of A^ for all 
simplices o E X% of X, and let/?: Cov(Ar)-* X send the identity element of 
A^ to a. Then Cov(x) is a disjoint union of finite simplicial complexes. Let 
Rel(x) be the fiber product over X of Cov(x) with itself, and let r, s: 
Rel(x) -» Cov(;t) be the two projections. Then Rel(*) is a disjoint union of 
finite simplicial complexes. Let \X\ be the quotient of |Cov(x)| by the relation 
|r|, \s\: \Rc\(x)\ -» |Cov(x)| (i.e., 1̂ 1 is the coequalizer of |r| and \s\). This can 
be shown to agree with the geometric realization functor defined previously 
on finite simplicial complexes. Further, this functor has a right adjoint given 
by the singular complex functor: Sing(/1)„ = Hom(Art, A). This geometric 
realization preserves colimits. It also can be shown to preserve finite limits in 
the full subcategory of CW-complexes. 

In many ways, simplicial sets are much like CW-complexes. Indeed, every 
CW complex has the homotopy type of the geometric realization of its 
singular simplicial set. Further, one can define skeleta for simplicial sets as 
follows. If X is a simplicial set, the ̂ -skeleton skp(X) is, in degree n, the set of 
n simplices of X which come from simplices of dimension q for q < p by 
composition with a map A"-* A'. If 3A" « sk""1^"), (|A"|, |3AW|) is 
homeomorphic to (Bn, S"~l), where Bn is the «-ball, Sn~l is the (n - 1)-
sphere. Further, sk"(;c) is obtained from sk"_1(jc) by attaching along a map 
aa: 8A""1 -» sk""^*) one copy of Aw for each nondegenerate simplex a of X 
of dimension n. 

There is a straightforward homotopy theory for simplicial sets if one uses 
A1 as the unit interval to define homotopies. There are technical difficulties, 
however, which make this approach rather unsatisfactory. For example, one 
cannot "turn over" A1 to reverse the direction of homotopies, so that 
homotopy is not a symmetric relation. Also if one joins two copies of A1 along 
one end, the result has the same geometric realization as A1, but is not 
isomorphic to A1. However, there is a subdivision functor for simplicial sets 
just as there is for simplicial complexes. The obvious thing to try works. If X, 
Y are simplicial sets with a finite number of nondegenerate simplices in X9 

then for every ƒ: \X\ -» \Y\ there is an n such that ƒ is homotopic to the 
geometric realization of a map of the nth subdivision of X to Y. If we also 
look at subdivisions of A" X A1, we find that the resulting homotopy classes of 
maps of subdivisions of X into Y is the same as the homotopy classes of maps 
of |X| into |y | . Thus, we see that if we allow for sufficient subdivision, the 
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homotopy theory of polyhedra can be described entirely in terms of the 
homotopy theory of simplicial sets, with the geometric realization and singu­
lar functors expressing this equivalence. 

Following Kan, one can describe the homotopy theory of simplicial sets in 
a neater, if less intuitive manner. Kan points out that the subdivision functor 
has a right adjoint Ex, which he calls the extension functor. The projection of 
the subdivision to the identity gives a natural transformation Y -» Ex( Y) such 
that for all Y9 |y | -» |Ex(y) | is a homotopy equivalence and a cellular 
inclusion of CW complexes. He then iterates Ex, and lets Ex00 be the colimit 
of the Ex" for n > 1. Adjointness now shows us that for X any finite 
simplicial complex (or simplicial set with finitely many nondegenerate 
simplices), the homotopy classes of maps of X into Ex°°( Y) will for all Y be 
the same as the homotopy classes of maps of |A"| into \Y\. Thus we obtain a 
second description of the homotopy theory of polyhedra, though at a 
price-even if y is a simplicial complex, Ex(y) will in general not be a 
simplicial complex, but only a simplicial set. However, Ex°°(y) can be 
defined, while no infinite subdivision functor can be defined. 

There is another way to describe the homotopy theory of simplicial sets. 
Call a map/ ' : X - • Y a weak equivalence if either of the following equivalent 
conditions hold: 

(1.5) Ex°°(/) is a homotopy equivalence, 
(1.6) | / | is a homotopy equivalence. 

Then, as was pointed out by Gabriel and Zisman [CFHT], the homotopy 
category for simplicial sets can be defined as the localization of the category 
of simplicial sets with respect to the weak equivalences. 

2. Abstract homotopy theory. It is possible to describe the simplest features 
of homotopy theory entirely in terms of which maps are to be considered to 
be "homotopy equivalences". For example, if ƒ, g: A -> B are two maps, we 
could say that ƒ is homotopic to g if there is a space A' and two "homotopy 
equivalences" ij: A-±A\ together with a map F: A' -» 2?, such that Fi = ƒ, 
Fj x g. This introduces a reflexive, symmetric relationship on maps, though 
not necessarily a transitive one. Further, our "homotopy equivalences" need 
not have homotopy inverses. For this reason, we shall use the term "weak 
equivalence" rather than the term "homotopy equivalence", since the latter 
term carries the connotation of a map with some type of inverse. 

We shall say that a category G has a notion of weak equivalence if certain 
of its morphisms have been called weak equivalences and if the following two 
axioms hold: 

(WE 1) Every isomorphism is a weak equivalence. 
(WE 2) If/, g are morphisms in G such th&t f g is defined, 
then if two of ƒ, g, f g are weak equivalences, so is the third. 

Associated to a cateogry G which has a notion of weak equivalences is another 
category Ho(S) which is obtained from G by localizing with respect to (i.e., 
inverting formally) the weak equivalences of 6. There is a localizing functor 
y: G -» Ho(C) which takes all weak equivalences (and possibly other 
morphisms) to isomorphisms. If G is the category of simplicial sets and weak 
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equivalences are taken to be those maps of simplicial sets whose geometric 
realizations are homotopy equivalences, Ho{6) is equivalent as a category to 
the category whose objects are the CW-complexes and whose maps are the 
homotopy classes of maps between spaces. If 6 is taken to be all topological 
spaces, and weak equivalences are taken to be homotopy equivalences, then 
Ho(C) is the category in which the maps are homotopy classes of maps and 
all spaces occur as objects in Ho(G). For the obvious reason, we refer to 
Ho(S) as the homotopy category of (2, and if ƒ is a morphism in 6, we call 
y(f) the homotopy class off. 

Even at this level, it is possible to exhibit some of the features which 
separate homotopy theory from ordinary category theory. Suppose that tf) is 
any small category, 6 is a category with a notion of weak equivalence. Then 
the functor category (Sf0 has an obvious (objcctwise) notion of weak equiva­
lence. However, in general, it is not the case that the natural map H o ^ ) - • 
(Ho(C))^ is an equivalence of categories. This has some interest in the case 
where ^ is a group (a category with one object and all morphisms invertible). 
In this case, Ho(6^) is the cquivariant homotopy theory of S-objects with <3) 
actions, while Ho((2)^ is the cateogry of (2-objects upon which <3) "acts up to 
homotopy". Notice that the constant map <$> -> {e} of <3) to the trivial group 
yields in the obvious manner a functor k: Ho((2) -» Ho(<2^). In the case that 
6 is either topological spaces or simplicial sets, k has a left adjoint B which 
takes a tf) -space Efy X^X, where Etf) is a contractiblc space upon which <3) 
acts freely. In particular, B takes the terminal object of Ho((?^) to the 
classifying space of <>D. 

More generally, if <3) is any category, a left adjoint to Ho(<2) -» Ho((2^) is 
called a homotopy colimit functor, and a right adjoint is called a homotopy 
limit functor. Notice that a left adjoint to Ho(6) -> Ho(S)^ would be a 
colimit functor, and a right adjoint would be a limit functor. Thus, the 
difference between the homotopy colimit (resp. limit) and the ordinary 
colimit (resp. limit) is closely related to the extent to which Ho(S^)-> 
HoCC)^ fails to be an equivalence of categories. 

More generally, if 0: <>D -* $ is any functor, there is an induced functor 
Ho($)*: Ho(eê) -» H o ^ ) given by composition. A left adjoint to Ho($)*, if 
it exists, will be unique up to isomorphism, and will be called the "homotopy 
left Kan extension along $", and will be denoted by Ho L*\ Ho((^) -> 
Ho<eê). Similarly, a right adjoint Ho R^ to Ho($)* will be called the 
"homotopy right Kan extension along $." 

At the present degree of generality, it is almost impossible to know whether 
or not a homotopy colimit will exist. However, as we shall see, with more 
structure, it is possible to show that homotopy colimits or limits exist, and 
even to show that they are induced by the colimit or limit functors defined on 
certain full subcategory. 

A somewhat more general problem than the problem of whether or not 
homotopy colimits or homotopy limits exist is whether or not certain functors 
on the homotopy level have adjoints. The following result can be found in K. 
Brown's [AHT]: 



772 D. W. ANDERSON 

ADJOINT FUNCTOR LEMMA. Let S: C, -> 62 be left adjoint to T: G2 -> Qx 

where 6^ and 62 are categories with a notion of weak equivalence. If S and T 
preserve weak equivalences, then Ho^S): 110(6,)-» £[0(62) is left adjoint to 
Ho(r), where Ho(S') and Ho(T) are constructed from S and T by the universal 
property of localization. 

Unfortunately, in many examples, if S is left adjoint to T, while S may 
preserve weak equivalences, T may not. It is possible, however, that there is a 
full subcategory Q[ of C, such that S takes its values in Q[, Ho(Q[) -> Ho(C,) 
is an equivalence of categories, and T preserves weak equivalences when 
restricted to <2,'. Then T induces a functor from Ho(6i) to H o ^ ) which has 
an extension (which is unique up to isomorphism) to Ho(6,). We call this 
isomorphism Ho(r). Since it is clearly adjoint to Hc^S), it is unique up to 
isomorphism, and thus does not depend upon the choice of Q[. Thus we are 
led to search for such categories Q[ of "good" objects. 

Ken Brown gives axioms for such "good" categories in [AHT]. We shall 
adopt most of his ideas while modifying the point of view to concentrate on 
finding "good" subcategories (for whatever problem is at hand) of a given 
category with a notion of weak equivalence. Also, he gives his axioms in 
terms of fibrations; our axioms are in terms of cofibrations and are roughly 
dual to his. Later, we shall consider Quillen's axioms for homotopy theory 
which include both cofibrations and fibrations in a closely related and dual 
manner. 

By a left homotopy structure on a category 6 with a notion of weak 
equivalence, we mean a specification of certain morphisms as "cofibrations", 
so that the following axioms are valid: 

(LH 0) 6 has finite colimits. 
(LH 1) The composition of two cofibrations is a cofibration. 
(LH 2) Every isomorphism is a cofibration. 
(LH 3) (Mapping Cylinder Axiom) Every map ƒ in Q can be 
factored as ƒ = pi, where i is a cofibration and p is a weak 
equivalence. 
(LH 4) (Cobase Extension Axiom) If we have a cocartesian 
square: 

if ƒ is a cofibration, so is ƒ'. If ƒ is also a weak equivalence, so 
i s / . 

There are two other axioms which are sometimes desirable, but which we 
will never assume without explicitly so stating. 

(LH 5) (Homotopy Extension Axiom) Every cofibration 
which is also a weak equivalence has a left inverse. 
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Suppose that we have a well ordered system of objects and maps {An -» 
An+,} in C. Define A'n to be the colimit over all ordinal r < n of Ar We call a 
map {An -> Bn) of well ordered systems a weak equivalence if each An -> Bn 

is a weak equivalence. We call it a cofibration if each An+x*-/n B'n -» Bn+X is 
a cofibration. This defines a left homotopy structure on the category of direct 
systems of objects indexed by any given ordinal number. 

(LH 6) (Continuity Axiom) Q has colimits. The colimit 
functor preserves cofibrations and it preserves weak equiva­
lences between cofibrant objects for well ordered direct 
systems of objects. 

We shall reserve the symbol </> for the initial object of G, and the symbol * 
for the terminal object if there is one. If A, B are two objects of 6, we write 
A _ B f or their coproduct. If we have a diagram B <- A -> C, we write 
B *— A C for the colimit of this diagram; this is called the coproduct of B 
with C under A. 

By an interval on A we shall mean an object 1(A) together with a 
cofibration /: A ^ A -» 1(A) and a weak equivalence/?: I(A)->A such that 
pi is the identity on each summand of A *_ A. If ƒ, g: A -» 5, by a homotopy 
from ƒ to g we mean an interval ƒ (4) on A together with a map F: I(A)->B 
whose composition with i is ƒ on the first summand, g on the second. 
Homotopic maps have the same image in Ho(S). 

Many of the standard constructions of homotopy theory, such as compo­
sition of homotopies with maps of (path) composition of homotopies carry 
over certain well behaved objects, those objects A for which the initial map 
<> -* A is a cofibration. For G the category of simplicial sets or the category of 
topological spaces with weak equivalence equal to homotopy equivalence, the 
initial map <$>-*A is always a cofibration. However, in the category of 
basepointed spaces, the initial map will be a cofibration only if the basepoint 
is nondegenerate. These and other examples will be discussed later. 

We call an object A cofibrant if the initial map <j>^>A is a cofibration. The 
following results follow from (LH 0)-(LH 4). Their proofs are left to the 
reader as enlightening exercises in abstract homotopy theory. 

LEMMA 2.1. If A, B are cofibrant, C, D are arbitrary, f: A -+ B, g0, gx: 
B -» C, h: C -* D, then if g0 is homotopic to gx, g0f is homotopic to gxf, and 
hgQ is homotopic to hgx. If g2: B -> C is homotopic to gx, then g0 is homotopic to 
£2-

LEMMA 2.2. Let G^ be the full subcategory of G consisting of the cofibrant 
objects. Then Ho(C )̂ -» Ho(S) is an equivalence of categories. 

LEMMA 2.3. If A, B are cofibrant, Hom(y(^4), y(B)) is the direct limit of the 
set of homotopy classes of maps of A into objects B' which are equipped with 
maps B -» B' which are cofibrations and weak equivalences. If the homotopy 
extension axiom is satisfied, Hom(y(^4), y(B)) is just the set of homotopy 
classes of maps from A to B. 

LEMMA 2.4 (EXCISION LEMMA). If A, B,C are cofibrant, and iff: A -* B is a 
cofibration, g: A -» C is a weak equivalence, then the cobase extension g': 
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B -* B>—*A C ofg along f is a weak equivalence. 

LEMMA 2.5 (PASTING LEMMA). Given a commutative cube 

in which all objects are cofibrant and the front and back faces are cocartesian 
with all maps cofibrations, if A ~» A\ B ~» ÏÏ\ C -» C' are weak equivalences, 
so is D ~± D\ 

The Pasting lemma is useful for proving that the homotopy type of a 
suspension depends only on the homotopy type of the original space and for 
other theorems of this type. 

The homotopy extension axiom holds for the category of topological 
spaces, where weak equivalences are homotopy equivalences, and cofibrations 
are closed embeddings with the homotopy extension property. This axiom 
fails for the category of simplicial sets. In general, if 6 is a category with a 
left homotopy structure, A, B are cofibrant objects, Hom(y(A), y(B)) is the 
colimit of the set of homotopy classes of maps of A into objects C for which 
there is a specified map B-+C which is both a cofibration and a weak 
equivalence (see Brown [AHT]). Thus, if the homotopy extension axiom 
holds, for all cofibrant A, B, Hom(y(A)9 y(B)) is just the set of homotopy 
classes of maps from A to B. It is customary to write [A, B] for Hom(y 
(A), y(B)), and TT(A, B) for the set of homotopy classes of maps from A to B. 

The axiom of continuity is useful for the construction of homotopy colimits 
and, more generally, the construction of homotopy direct images (or 
homotopy left Kan extensions). 

Our axiomatization of left homotopy theory allows for a fairly economical 
axiomatization of homology and cohomology theories. By a cohomology 
functor on S, we mean a set valued contravariant functor H which takes 
weak equivalences to isomorphisms, and which satisfies the following axioms: 

(H 1) (Additivity) If {Aa} is a family of cofibrant objects, 

ƒƒ(•_, {Aa}) -» .—. {H(Aa)} is an isomorphism. 

(H 2) (Excision) If A is cofibrant, A ~» B,A -» C cofibrations, 
the map H(B^A C) -* H(A}—,HiA)H(C) is an epimorphism. 

If there is a cofibrant terminal object in 6, these axioms can be extended in 
the usual manner to cohomology functors H ~n for n > 0. This follows the 
lines of Dold [HEF]. Dual axioms characterize homology. For any object C in 
6, H (A) - [A, C] is a cohomology functor. If cohomology functors Hn exist 
for all n with (HH)~l » Hn~*x all n, we call the collection of cohomology 
functors {ƒƒ"} and the given isomorphisms a cohomology theory. 

There are various categories with left homotopy structures associated to a 
given category with a left homotopy structure. For example, if A is an object 
of 6, let A/Q be the category of all diagrams A -* B in 6. If 6 has a 
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terminal object *, * / 6 is the category of basepointed objects over 6. If/: 
A -* B9 g: A -> C, h: B ~+ C with g = hf we say that A is a cofibration of ƒ to 
g if it is a cofibration of B to C in 6. Weak equivalences are defined 
similarly. 

More interesting is the following. Suppose that 9 is a finite partially 
ordered set If $, ty: 9 ~+ 6, iy: $ -* % call TJ a weak equivalence if for all 
P G 9, TJ(P): $0P) -» *0P) is ^ weak equivalence. Call TJ a cofibration if for 
all P, the following map is a cofibration: 

Colimf^P')!?' < p}^™WW<r)Q>(p)-» *(ƒ>). (2.6) 

Then the functor category G? can easily be seen to be a category with a left 
homotopy structure. The following follows from the pasting lemma and 
induction on the size of 9. 

LEMMA 2.7. If <E>, \h 9 -»G are cofibrant, and T|: $ - > ^ w Ö weafc 
equivalence, then Colim(Tj): Colim($) -» Colim^) w Ö weak equivalence. 

COROLLARY 2.8. If 9 is a finite ordered set, the homotopy colimit functor 
exists on Ho(G^). 

If 6 satisfies the continuity axiom, the requirement that 9 be a finite 
ordered set in (2.8) is superfluous, and 9 can be replaced by any category. 
The proof, however, is somewhat indirect. We shall outline the proof, as it 
seems not to be obvious to us. 

THEOREM 2.9 (HOMOTOPY LEFT KAN EXTENSION THEOREM). If G is a 
category with a left homotopy structure which satisfies the continuity axiom, and 
if $: & -> % is any map of categories, let Ho($)*: Ho((^) -> Ho(6s) be the 
induced functor. Then Ho($)* has a left adjoint Ho L*. 

This theorem states that there is a homotopy theoretic left Kan extension 
along 4> given by Ho L*. Since, if ^ $ is defined, Ho(^$)* » 
Ho($)*Ho(^)*, we see that up to a natural isomorphism, Ho L*$ =• 
Ho L*HL*. Notice that we do not claim that there is a left homotopy 
structure on the functor categories 6® and S* in which Ho L* is just Ho(L*), 
where L* is left Kan extension along $. There is, however, a version of the 
Eilenberg-Moore spectral sequence for Ho L* despite the fact that this 
functor is not so explicitly defined. This spectral sequence has Ep\ ~ 
Lp(Hq(X)) and converges to Hp+ (Ho L*(X)), where H+ is an abelian group 
valued homotopy theory on fi, Lp is the/>th left derived functor of left Kan 
extension along $, X is in Ho(6<$), and H+ is extended to H+: Ho(S^) -» Ab% 
by objectionwise extension, where Ab^ is the category of graded abelian 
groups. In particular, if & is a group, ® consists of a point, Ho L? is the 
homotopy theoretic quotient functor. In this case, we see that the Eilenberg-
Moorc spectral sequence has Ep\q * Hp(&, Hq(X)) and converges to 
Hp+q(X/ /(&), where —//& is the homotopy theoretic quotient, X is an 
object of Q with an ^-action, and //*(<£, - ) denotes group homology. This 
is the form of the Eilenberg-Moore spectral sequence which is familiar to 
most people. 

The proof of the homotopy left Kan extension theorem is based upon an 
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analysis of a category in terms of its subdivisions. If 6B is a category, by 
Sd(&) we mean the category whose objects consist of pairs (n, 0) where 
n > 0 is an integer, 0 : n -> & is a functor, where n is the partially ordered set 
{0 -> 1 -» • • • -» /*} regarded as a category. We do not allow those (0, n) for 
which any 0(i)^>0(i + 1) is an identity map. Morphisms are defined by 
letting Sd(&) be the full subcategory with the objects described of the 
localization of the category of finite ordered sets over &, where localization is 
taken with respect to epimorphisms of finite ordered sets. 

(Notice that this is not the subdivision given by Mac Lane [CWM] which 
takes into account only n =«= 0, 1.) It is easy to see that Sd2(&) is always a 
partially ordered set. Further, it is a locally finite partially ordered set in the 
sense that every element has only a finite set of smaller elements. The 
definition of cofibrations in G? for a locally finite partially ordered set still 
makes sense and defines a left homotopy structure on G®. Further, Lemmas 
(2.6) and (2.7) both hold if G satisfies the continuity axiom. 

Let T: Sd(&)-+& be defined by T(/I, 0) = 0{n). Then the category r/A 
for A in â has as objects all diagrams A0-* • • • -*An-+A. From this 
observation, the following lemma is not difficult to prove. 

LEMMA 2.10. If % is any category with colimits, the map %r: %&-± %sm) 

has a left adjoint which is also a left inverse. 

The left adjoint to 3C is, of course, left Kan extension along T. The 
previous lemma, together with the following lemma, will yield the subdivision 
corollary from which the homotopy direct image theorem follows easily. 

LEMMA 2.11. If <? is a locally finite partially ordered set, tf) any category, <p: 
9 —> tf) a functor, then if G is a category with a left homotopy structure which 
satisfies the continuity axiom, the left Kan extension functor L*: G? -» G^ takes 
weak equivalences between cofibrant objects to weak equivalences. 

COROLLARY 2.12 (SUBDIVISION COROLLARY). If D̂ is any small category, G 
any category with a left homotopy structure satisfying the continuity axiom, then 
the functor Ho((3^) -» H o ^ 2 ^ ) has a left adjoint which is a left inverse. Thus 
it is a full and faithful functor. Thus the existence of homotopy colimits for 
QSd (<?>) implies ^e existence of homotopy colimits for G®. 

If 0 is the category of finite ordered sets, let s G be the category of 
contravariant functors 0 -> G. We call sG the category of simplicial objects 
over G. The homotopy colimit functor from Ho(sQ) to Ho(S) is related to 
the geometric realization functor, when that functor exists. It is now a matter 
of calculation to show that there is, for any homology theory ^ on 6, a 
spectral sequence for //*(Ho colim(Ar)) which has Ep\q * Hp(X(q)). 

The opposite category to a category with a left homotopy structure is called 
a category with a right homotopy structure. The opposite to a weak equiva­
lence is again called a weak equivalence, and the opposite to a cofibration is 
callled a fibration. The opposite to a cofibrant object is called a fibrant 
object. If S is a category with a left homotopy structure, the opposite 
category clearly has the property that Ho((2°) * Ho(6)°. 

If we have a commutative square 
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w +x 

Y >Z 

in a category G with a right homotopy structure, W is called a homotopy 
theoretic fiber product of Y with X over Z if, in the category of squares over 
6, this square is weakly equivalent to one which is homotopy cartesian. If 
Wy X, y, Z are all fibrant, the square will be weakly equivalent to a 
homotopy cartesian one if and only if for some (or equivalently, for all) 
factorizations Y -» Y' -» Z, where Y -» Y' is a weak equivalence and Y' -> Z 
is a fibration, W-> y ',-,z A" is a weak equivalence. 

If Q, tf) are two categories with right homotopy structures satisfying the 
continuity axiom, we call a functor <£: 6 -> ^ a homotopy continuous 
functor if it preserves fibrant objects, weak equivalences between fibrant 
objects, sequential limits of fibration up to weak equivalence, and homotopy 
fiber products. It is now possible to show that homotopy continuous functors 
preserve homotopy limits. 

3. Further structures for homotopy theory. There are numerous extra 
structures which can be imposed upon a category with weak equivalences 
which will enrich its homotopy theory. The main ones which we shall discuss 
have to do with Quillen's axioms (as given in his [RH]) which deal with both 
left and right homotopy structures and the relationship between these. A 
subsidiary structure will have to do with "enriched" homotopy theory, where 
one has categories equipped with Hom-functors which take their values in 
some fixed category theory of such categories as the category of topological 
spaces upon which some topological group acts. Unfortunately, we know of 
no proofs that homotopy limits or homotopy colimits exist in general in such 
enriched settings, though in many individual cases (particularly when the 
"enriching" is in terms of simplicial sets), one ,can construct homotopy 
colimits and limits by special means. Indeed, I would expect that in the near 
future homotopy limits and colimits will be shown to exist whenever the 
appropriate enriched limits and colimits exist. 

Quillen's axioms are self dual, in the sense that if they hold for a category, 
they hold for its opposite when the opposite of a cofibration is a fibration, 
etc. These axioms show that the weak equivalences and the fibrations (resp. 
the cofibrations), the cofibrations (resp. fibrations) are determined as those 
maps which admit solutions to certain "lifting problems." More specifically, if 
f: A -* B9 g: C-*D are two maps in C, we say that ƒ has the left lifting 
property (LLP) with respect to g if for all u: A -» C, v: B -» D with vf = gu, 
there is w: B -» C with gw « v9 wf •= u. If ƒ has the LLP with respect to g, we 
also say that g has the right lifting property (RLP) with respect to/. 

If ƒ: A -» B, g: C -> Z>, we call g a retract of ƒ if there are maps u: A -» C, 
t;: B-+ D, u'\ C-*A,v':D-±B with gu = vf, fu' « v'g, and both uu' and 
vv' are the identity 

The axioms given here are equivalent to those given by Quillen in [HA] for 
what is there called a "closed model category," while a "model category" 
satisfied slightly weaker axioms. Since there are no important examples 
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(indeed, to my knowledge, there are no examples) of "model categories" 
which are not "closed model categories", I propose that the term "closed" be 
dropped, as the term "closed category" already has an accepted meaning. 
Later, I shall refer to "model closed categories" as model categories which are 
closed categories in the conventional sense and enjoy certain additional 
properties. 

A model category is defined to be a category G which has a notion of weak 
equivalence, and in which two classes of morphisms have been designated as 
cofibrations and as fibrations, respectively, such that the following axioms 
hold: 

MO G has finite limits and finite colimits. 

Ml (Retraction axiom) Every retract of a cofibration, weak 
equivalence, or fibration, respectively, is again a cofibration, 
weak equivalence, or fibration, respectively. 

M2 (Lifting axiom) Every cofibration has the LLP with 
respect to every fibration which is also a weak equivalence. 
Every fibration has the RLP with respect to every cofibration 
which is also a weak equivalence. 

M3 (Factorization) Every map ƒ can be factored as ƒ = pi * 
qj, where i,j are cofibrations,/?, q are fibrations, and i and q 
are weak equivalences. 

Notice that the factorization axiom for a model category is much stronger 
than the combination of the factorization axioms for left and right homotopy 
structures. The usual projection of a mapping cylinder (for a map of topo­
logical spaces) onto its base is a quasifibration, but not a fibration. However, 
Strom shows that with the usual cofibrations and with weak equivalences 
taken to be homotopy equivalences, the axioms above are all satisfied by the 
category of topological spaces when the fibfations are taken to be the 
Hurewicz fibrations (see Strom [HCHC]). 

Notice the complete duality between cofibrations and fibrations in these 
axioms. Quillen shows in [RH] that the fibrations and cofibrations determine 
one another. If 911 is a class of morphisms in a category, let LLP(9IL) be the 
class of morphisms which have LLP with respect to all elements of 9It, and 
let RLP(9H) be analogous. A fibration or cofibration is called trivial if it is 
also a weak equivalence. What Quillen proved can be summarized as follows: 

(a) LLP (fibrations) = trivial cofibrations, 
(b) LLP (trivial fibrations) = cofibrations, 
(c) RLP (cofibrations) = trivial fibrations, 
(d) RLP (trivial cofibrations) = fibrations. 

Quillen also showed that a morphism ƒ in G is a weak equivalence if and only 
if its image y(f) in Ho(<2) is an isomorphism. Finally, he shows that our 
axioms for both a left and right homotopy structure are satisfied. 

There are several technical points which are worth noting about model 
categories. 

LEMMA 3 A. If A is cofibrant, X fibrant, then the left homotopy classes of maps 
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from A to X agrees with the right homotopy classes, and both sets equal [A, X], 

LEMMA 3.2. If A is cofibrant, X fibrant, A -+ B a trivial cofibration, every 
morphism A -> X extends to B. 

LEMMA 3.3. If A is cofibrant, X fibrant, f,g: A-> X, F: 1(A) -» X a left 
homotopy from ƒ to g, then for any other interval J (A) on A, there is a left 
homotopy G; J (A) -> X from ƒ to g. 

If 7r: X-* Y, and F: I(A)-+X is a left homotopy, we say that F is a 
vertical homotopy if TTF » fp, where/?: I(A)->A is the projection, and/ : 
A -» Y is some map. 

LEMMA 3.4. Iff: A -» B is a trivial fibration between cofibrant objects, there 
is g: B -» A with f g * \B, and such that gf is left homotopic to \A by a vertical 
homotopy. 

Notice that (3.4) states that any map between cofibrant objects factors into 
a cofibration followed by a fibration with a section which is a left vertical 
homotopy equivalence. If the map is a weak equivalence, the cofibration in 
the factorization is, of course, trivial. It was pointed out to me by my student, 
Chris Reedy, that (3.4) can be used to prove the only difficult part of the 
Continuity Axiom for model categories which have colimits. Thus the 
Continuity Axiom is, for model categories, just a matter of the existence of 
colimits. 

The categories of simplicial sets, pointed simplicial sets, compactly genera­
ted topological spaces, and pointed compactly generated topological spaces 
are all closed categories in the sense that they possess "internal Hom-func-
tors" and a related symmetric monoidal operation (Cartesian product or 
smash product). It is possible to show that the homotopy categories are also 
closed in this sense. To do this requires some further work. 

Recall from Mac Lane [CWM] that a closed category S is one which 
possesses two functors — ® — : S X S -> 6, HOM: (2° X G -> G, such that 
® defines symmetric monoidal structure with a unit (which we write E) on 
G, and such that there is a natural equivalence for all A, B, C: Hom(A, 
H 0 M ( 5 , C)) - HOM(A ® B, C). Notice that Hom(^, B) -
Hom(£, HOM(A, B)) for all A, B. 

A model category which is a closed category will be called a model closed 
category if either of the following (equivalent) axioms holds: 

(MCI) Given a cofibration /: A -* B and a fibration p: 
X -+Y, the following map is a fibration. It is also a weak 
equivalence if either / or/? is: 

HOM(B, X) -> HOM04, X)~HOU{AtY) HOM(2?, Y). 

(MCI*) Given cofibrations /: A -» B, j : C-+D, the follow­
ing map is a cofibration. It is also a weak equivalence if 
either i or y is: 

{A ® D)^SA®C) (B®C)-*B®D. 

Choosing cofibrant representatives for each isomorphism class in Ho(C), it 
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is easy to see that ® can be defined on Ho(G), and up to a unique 
isomorphism, does not depend upon the choices of representatives. Further, 
choosing fibrant representatives, we can define HOM on Ho(G) so that 
Ho((2) is a closed category. For example, this means that in the homotopy 
category of pointed simplicial sets or in the homotopy theory of pointed 
compactly generated spaces, the smash product of homotopy types and the 
pointed function complex (resp. function space) between homotopy types is 
well defined and enjoy the usual adjointness properties: [A /\B, C] = 
[A, CB] (here by homotopy type, I mean isomorphism classes in the 
homotopy category; I assume that representatives are chosen in each class). 

Finally, if S is a model closed category, it can provide an "enrichment" for 
other model categories. For example, if Gis a topological group (all spaces are 
assumed compactly generated), in the category of spaces with G actions, the 
Horn-sets naturally have topologies, and so are themselves topological spaces. 
We wish for this "enrichment" to be passed along to the homotopy 
categories. The following discussion will show how to do this. 

If Q is just a closed category, by a Q -enrichment of a category 911 we 
mean a functor (which, by abuse of notation, we write as HOM) HOM: 
9It° X 9lt -» S, together with a naturally associative pairing HOM(^, L) ® 
HOM(L, M).-* HOM(tf, M) and a unit E -> HOM(Ar, K) for all K, L, M in 
911. The enriched category 911 is said to be tensored if there is a naturally 
associative functor - ® - : 6 X 911 -» 9H and a natural isomorphism 
Hom(C, HOM(#, L)) = Hom(C ® K, L). The enriched category 911 is said 
to be cotensored if there is a functor HOM: 6° X 911 -> 911 such that there is 
a naturally associative isomorphism HOM(AT, HOM(^4, L)) s 
HOM04, HOM(*, L)). 

We call a model category 911 a 6 -enriched model category (or simply a 
C-model category) for a model closed category 6 if it is 6-enriched, tensored, 
and cotensored, and such that either of the following axioms holds. 

(EMI) If i: A -* B is a cofibration in 6, p: M-* N is a 
fibration in 9!t, the following is a fibration which is a weak 
equivalence iîp is: 

HOM(5, M) -» HOM(5, N)„HOMiAtN) HOM(A, M). 

(EMI*) If /: A -* B is a cofibration in Q9 j : K-*L is a 
cofibration in 9lt, then the following is a cofibration which 
is a weak equivalence if y is: 

04 ® L)—<^®*>(£ ® ^ ) ^ 5 ® L. 

In this case, it is not difficult to show that if/: # -> L is a cofibration in 9lt, 
p: M -> JV is a fibration in 911, then the following is a fibration in G and a 
weak equivalence, whenever y or/? is a weak equivalence: 

HOM(L, M) -> HOM(L, #)~H O M ( J W V ) HOM(#, M). 

It is possible to have a stronger enrichment structure. We say that a 
C-enriched model category 9!t is strongly C-enriched if in addition the map 
in (EMI) (or equivalently (EMI*)) is a weak equivalence whenever i is also a 
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weak equivalence. In this case, Ho(<3H) is a tensored and cotensored 
Hom(C)-enriched category. 

4. Simplicial objects and their homotopy theory. Let 6 be the category 
whose objects are the finite ordered sets n = {0, 1 , . . . , n} for n > 0. Let 0„ 
be the full subcategory of those m for m < n. 

If G is any category, a simplicial object over G is just a contravariant 
functor X: 0 -» 6. Notice that in this terminology, a simplicial set is a 
"simplicial object over the category of sets." A "simplicial object up to a 
dimension n over G" is defined to be a contravariant functor X: 6n -» G. We 
write s G for the functor category of simplicial objects over G, and snG for the 
functor category of simplicial objects up to degree n over G. The restriction 
of functors gives us a functor pn: sG-*snG. From the general abstract 
nonsense of Kan extensions, if G has finite colimits, pn has a left adjoint on, 
and if G has finite limits, pn has a right adjoint on. The composition onpn: 
sG -» sG is called the w-skeleton functor, and is denoted by skn. The compo­
sition o"pn is called the w-coskeleton functor and is denoted by c sk*. These 
are determined by the property that for all simplicial objects X, Y, maps 
X\&n -> Y\6n are in a 1-1 correspondence with maps sk„X-> Y and with 
maps X -» c skT. For simplicial sets X, (sk,,^),,, consists of those m-simpli-
ces which are the image under a degeneracy of a simplex of dimension < n. 
It is more difficult to describe (c sk"^),^ though when n = 0, it is just the 
wth power of X0. 

If G has finite colimits, s G is tensored over the category of finite simplicial 
sets. The tensor construction is given as follows. If X is a simplicial object 
over 6, and if A is a finite simplicial set, let (A ® X)n be the coproduct of 
one copy X£ of Xn for each a G An. Face and degeneracy maps act by their 
separate action on both X and A. If G has finite limits, G is cotensored over 
the category of finite simplicial sets. This is less easy to show than the 
previous case, but it is not deep. The simplest way to construct HOM(A, X) is 
as the right Kan extension along the Yoneda functor of X, evaluated at A. In 
either case, sG is enriched by simplicial sets if we let HOM(Ar, Y)n be 
Hom(A" ® X, Y) or Hom(*, HOM(A", Y)) respectively, and if both finite 
limits and colimits exist, these two definitions of H O M ^ , Y) will agree. This 
follows from general nonsense involving the Yoneda lemma, and is left to the 
reader. 

The following result, so far as I know, is due to Reedy. His proof is quite 
ingenious, but it is too long to give here. It is curious that his proofs use both 
the cofibrations and the fibrations in essential ways, which has kept me from 
being able to extend them to prove similar results about categories with just a 
left homotopy structure. Indeed, I do not know whether sG will have a left 
homotopy structure if G does. 

THEOREM 4.1. If G is a model category, sG and each snQ will have the 
structure of a model category which is tensored and cotensored over finite 
simplicial sets so that EMI* and EMI are satisfied. If G has colimits and limits, 
sG and each s G are simplicial set model categories. 

The choice of the cofibrations which Reedy makes is as follows: f: X -+Y 
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is a cobifration if for all m, skm(Y)m+{>-Jkm{X)m+l Xm+X -» 7m+1 is a 
cofibration. Fibrations are defined in a dual manner using coskeletons. 

If 6 is a simplicial set model category with colimits, one can define a 
geometric realization functor R: sQ-+Q as follows. Let R(X) be the 
quotient of the disjoint union of all An ® Xm by the relation which, for all 0: 
A" -> Am, coequalizes the pair of maps Am ® Xm «- A" ® Xm -* A" ® Xn 

which are 0 ® Zm in the first case and A" ® X{9) in the second. The functor 
R has a right adjoint Sing: sQ-*Q given by Sing(y)n « HOM(A", y). The 
following is due to Reedy, and is proved by careful application of the Pasting 
lemma. 

THEOREM 4.2. R: sQ -» Q preserves cofibrations and weak equivalences 
between cofibrant objects. 

Notice that since Sing preserves fibration and weak equivalences between 
fibrant objects, R and Sing determine an adjoint pair of functors on the 
homotopy categories. If (2 is a strongly simplicial set enriched model 
category, for all fibrant Y we have HOM(A°, Y) « Y9 and HOM(A°, Y)^> 
HOM(A/l, Y) is always a weak equivalence. Thus Ho(Sing) is naturally 
equivalent to the constant assignment functor k, where k(Y)n = Y. Thus 
Ho(i?) is a homotopy colimit functor. 

There is an instance where the geometric realization functor has a particu­
larly simple form. Since s&, the category of simplicial sets, is a model closed 
category, we have the realization functor R: ssë -*s&. We have a second 
functor, D: ssê -> se given by the diagonal: D(X)n * (X„)n. I claim that 
these are the same functor. To do this requires showing that D is left adjoint 
to Sing. 

First, we observe that the Yoneda elements in ss& are the Am'" given by 
(Am'%- * (AD X (A?). Notice that for all X, Hom(ùr*9X) » Xmn. Thus, 
Hom(Am-n, Sing(y» - HOM(An, Y)m * Hom(Am X A", Y). However, 
D(Amn) - Aw X A", so R{Am*) - D(Amrt) for all m, n. However, every 
object of ss& is the colimit of a diagram of the Am'n's, so D * R. 

5. Groupoids. A groupoid is nothing more than a category in which every 
map is an isomorphism. These arise in topology from the fundamental 
groupoid construction which assigns to a space X (or a simplicial set X) the 
groupoid U{(X) whose objects are the points of X (rcsp. the O-simplices of X) 
and whose morphisms between any two points (resp. O-simplices) is the set of 
homotopy classes of paths between them. Associated to the groupoid H\(X) 
is the collection irn{X) of group valued functors on n ^ ) , where for a given 
object x of Ui(X)9 7rn(X)(x) is the nth homotopy group 7rn(X, x) based at x. 
It is well known that every path from x0 to xx gives a homomorphism 
irn(X, x0) -» iTn(X9 xx) for all n > 1 (if n » 0, this is also defined, though we 
now always have the identity map, and TT^X) takes its values in the category 
of pointed sets). This gives us a group valued functor 7Tn(X) on U{(X). Iff: 
X -» y is a weak equivalence of either spaces or simplicial sets, ƒ*: HX(X) -» 
n,(y) is an equivalence of categories, and this equivalence extends to the 
functors ttn. 

If A" is a simplicial set, there is a well-known theorem which states that 
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UX(X) is the free groupoid generated by the 0-and l-simplices modulo the 
relations (d0oXd2o) = dxo for each 2-simplex o of X. In particular, if we look 
at n^A"), we see that it is just the complete localization of the partially 
ordered set n ~ {0 , . . •, n). Thus, since the classifying space B§ for a 
category § is defined to be the simplicial set with (B§)„ « Hom(n, §), we 
see that for all n, Hom(A", B§) - Hom(II1(A'1), §) if § is a groupoid. More 
generally, the result mentioned above implies that for all X, Hom(Ar, B§) = 
HomCn^X), S), and that thus Ux is left adjoint to B (not in the category of 
all small categories, but just the category of small groupoids). Indeed, the 
adjointncss of Hx and B is equivalent to the description of U\(X) given in 
terms of low dimensional simpliccs. Notice that the 0-simplices of B§ are just 
the objects of §. Thus, the map @ -> 11,2*0 is an isomorphism, so Ux is both 
left adjoint and left inverse to B. 

One of the remarkable features of the category of groupoids is that it 
admits a model structure. The weak equivalences are the natural equivalences 
of categories. The cofibrations are the functors which are monomorphisms on 
objects. The fibrations are the functors which are carried to fibrations of 
simplicial sets by the classifying space construction. Every groupoid is both 
cofibrant and fibrant, so the homotopy theory is particularly simple. If G, H 
are two groups, [G, H] is just the quotient of the set of group maps from G to 
H modulo the relation of being conjugate under the action of some element 
of H. Since every groupoid is naturally isomorphic to a disjoint union of 
groups, it is very easy to calculate the set of homotopy classes of maps 
between two groupoids. 

Notice that both II, and B preserve weak equivalences, and so directly 
determine a pair of adjoint functors on the homotopy theory. Further, Ux 

clearly preserves cofibrations and colimits, and B preserves fibrations and 
limits. 

A slightly deeper fact is that II, preserves fibrations. Indeed, notice that if 
<p: § -» % is a map of groupoids, <p is a fibration if and only if for each g in 
ë, h in 3C, and a: <p(g)->/*, there is a g' in § and an a': g-*g' with 
(p(a') =•= a and thus <p(g') » g. Fibrations between groupoids needn't be 
epimorphic on objects, but if an element of % is in the image of a fibration <p, 
so are all isomorphic elements. Also, except when the target is a disjoint 
union of groups, a fibration needn't be full. However, every full functor is 
clearly a fibration if it is epimorphic on objects. 

Let U^X) be the "wreath product" of u^*) with the direct product of all 
TTn(x) for n > 2. That is, Il00(A

r) has the same objects as X, but Hom^x^y) 
consists of pairs (a, X) where a E Hom(x,>>) and X G U{irn(X9y)\n > 2}. 
Composition is defined by (/?, JU,X«> \ ) ~ (/&*> M + /^(A)), where /?* is the 
action of the path /? on higher homotopy. If X has a single vertex x, then 
noo(A

r) is just the wreath product of UX(X, x) with the product of the higher 
homotopy groups. If X is simple, it is just the product of all the homotopy 
groups of X. Notice that if p: X -± Y is a map of spaces, 11^^): U^iX)-* 
H^iY) will be a fibration of groupoids if Ilx(p) is a fibration and if for every 
vertex x of X, the maps irn(X, x) -» irn(Y,p(x)) are epimorphic for all n > 2. 
The following is a standard result in homotopy theory, rephrased in terms of 
groupoids. It holds for both spaces and simplicial sets. 
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LEMMA 5.1. Ifp: X -» Y is a fibration, q: Z-+Y is any map, the map 

n^Xr-y z) -* iujr^n^) nœ(z) 
is always an epimorphism. It is an isomorphism if II00(Jp) is full (that is, p+: 
*nn(X, x) -+irn(Y,p(x)) is epimorphic for all x and all n > 1). 

We will refer to a fibration/?: X -» Y of spaces or of simplicial sets as a full 
fibration if H^p) is full. Notice that the class of full fibrations is closed 
under composition, base extension (pull back), and retraction. Furthermore, 
any two fibrations which are weakly equivalent have the property that they 
are either both full or neither is full. Thus one may, without ambiguity, call a 
map ƒ: X -» Y a full map if, whenever it is factored as ƒ = pi, p a fibration 
and i a weak equivalence, p is full, and the property of being a full map 
depends only on the isomorphism class of ƒ in the homotopy category. 
Finally, if ƒ = gh and ƒ is full, so is g. 

If p: § -> % is a map of simplicial groupoids, p will be a fibration (of 
simplicial groupoids) if and only if for all trivial cofibrations K -» L of finite 
simplicial sets, the following map is a fibration of groupoids: 

HOM(L, g)0-»HOM(*, g)0̂ HOM(*,oc)o HOM(L, %)Q. 

If this map is also full and % is fibrant, we shall refer top as a full fibration 
of simplicial groupoids. If % and % are simplicial groups, the condition is 
equivalent to the condition that on the underlying simplicial sets, p is a Kan 
fibration. It is a result of John Moore (see May [SOAT]) that a map of 
simplicial groups will be a Kan fibration if it is an epimorphism. 

More generally, we refer to a map p: § -» % of simplicial groupoids as 
being full if for some weak equivalence % -» %' with %' fibrant and some 
factorization of % -» %' into a weak equivalence % -» §' and a fibration/?': 
S' -» %',p' is full. As usual, if this is true for some choice of §', %',p', it is 
true for all choices. 

Finally, we refer to a map ƒ: X ~> Y of simplicial spaces or of bisimplicial 
sets as a full fibration if Tl^if) is full. Notice that this is a property which 
depends only on the weak equivalence class of/. We call a simplicial space or 
simplicial set fully fibrant if the map to the terminal object is a full fibration. 

THEOREM 5.2. If Y is fully fibrant, and if K is any weakly contractible finite 
simplicial set, the map n j H O M ^ , Y)\ -> HOM(Ü:, TIJJ))Q is an 
isomorphism. 

PROOF. This is always true for K a simplex. We proceed by double 
induction on the dimension of K and on the number of nondegenerate 
simplices in K. Since any retract of an isomorphism is an isomorphism, if the 
theorem holds for K, it holds for any retract of K. 

Next, suppose that the theorem holds for weakly contractible simplicial sets 
A, B, C, and K = 2L-/* C, where A -» B is a cofibration, A -» C is arbitrary. 
Since Y is fully fibrant, the map H0M(5, noo(7))0 -» HOM(^, Tl^Y)^ is a 
full fibration, so inductively, so is HOM(5, Y)0 -> HOM(^, 1% Thus by the 
Pasting lemma, the theorem is true for K. 

We have proved that the class of those K for which the theorem holds 
includes the simplices and is closed under retraction and under the attach-
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ment of simplices along weakly contractible subcomplexes. Thus the class 
includes all weakly contractible finite simplicial sets. 

COROLLARY 5.3. If Y is a fully fibrant simplicial space or bisimplicial set, and 
Ex is Kan's extension functor, îl00(Ex(Y)) = Ex(II00(î

r)). 

PROOF. Recall that Ex(y)„ = HOM(Stf(An), 1% However, the subdivision 
of A" is again a finite simplicial set which is weakly contractible. 

6. Realization and fibrations. The category ss& of bisimplicial sets has a 
curious technical advantage for us over the category of simplicial spaces. The 
realization functor R: ss8 -» s& has a left adjoint Q: s& -> ss&. Thus, if we 
have a map ƒ: X -> Y of bisimplicial sets, and we wish to know whether or 
not R (ƒ) is a fibration, we merely have to verify that ƒ has the RLP with 
respect to the image under Q of every trivial cofibration. This will be our 
approach. 

If A' is a bisimplicial set, we write Xn for the simplicial set (Xn)m =*= Xnm. 
Then Xn * HOM(A", X\. We will write, for a simplicial set K, Hom(A; X) 
for HOM(A', X\. Recall that/: X -» Y is a fibration in ss& if and only if for 
all cofibrations i: A -> B of finite simplicial sets, the map 

Hom(2?, X) -> Hom(^, X)~Hom{A,Y) Hom(5, Y) (6.1) 

is a fibration of simplicial sets. We will call ƒ an epifibration if for all trivial 
cofibrations i: A -» B of finite simplicial sets, the map (6.1) is an 
epimorphism. Since the map is a fibration, it suffices that the map be an 
epimorphism on components. Our main technical result (which requires the 
promised ad hoc argument) is the following: 

THEOREM 6.2. If f: X-+Y is an epifibration of bisimplicial sets, R(f): 
R(X)->R(Y) is a fibration. 

We call a map with the LLP with respect to all epifibrations an 
epicofibration. Since an epifibration is a fibration, every trivial cofibration is 
an epicofibration. Thus if i: A -> B is a cofibration of simplicial sets, j : 
K-+ L is a trivial cofibration, the following map is an epicofibration: (A X 
LyjA*K)(B x K)^BX L. 

A fibration is an epimorphism if and only if it has the RLP with respect to 
all <J>->A*. Thus, since the inclusion of a vertex in a weakly contractible 
("trivial") simplicial set is a trivial cofibration, a fibration of simplicial sets is 
an epimorphism if and only if it has the RLP with respect to all <j> -» T for T 
trivial. Thus for all cofibrations i: A -» B and all trivial T,A X T-+B X Tis 
an epicofibration. 

To begin the proof of (6.2), we must investigate the functor Q. The 
existence of Q is automatic, as it is simply the left Kan extension of functors 
along the diagonal 0 -» 0 X 0. On a simplex A*, we have automatically, 
from the Yoneda lemma, that Q (A") * A"'w. Since Q preserves colimits, and 
since every simplicial set is the colimit of a diagram of simplices, this 
describes Q completely. If A, B are simplicial sets, let A X B be the bisim­
plicial set given by {A X B)mn * Am X Bn. Then R(A X B) = A^B, so 
the diagonal map A -+A r—>A defines for us, by adjointness, a map Q(A) -» 
AXA. 
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In order to prove (6.2), it suffices to show that Kan's lifting criterion is met 
by R (f). This states that when A C A" is the inclusion of all but one face of 
dimension n - 1, the map A -» A* has LLP with respect to R (ƒ), or, equiva-
lently, that Q(A) ->> Q(kn) is an epicofibration. Now the map g (A) -> g(An) 
= A" X A" factors through the epicofibration A X A -» A" X A", so it suffices 
to show that Q (A) -» A X A is an epicofibration. We first show that it is a 
monomorphism, and then show that A X A is obtained from 0(A) by 
repeated cobase extensions of epicofibrations. 

It is not always the case that the map Q(A) ~» A X A is a monomorphism. 
A counterexample is given by letting A be the quotient of A2 obtained by 
collapsing a face. 

LEMMA 6.3. If A is a subcomplex of A" for some n, Q(A)->A X A is a 
monomorphism. 

To prove this lemma, we need some way to show that a map of bisimplicial 
sets is a monomorphism» The next lemma gives us such a criterion. 

LEMMA 6.4. Iff: X ~* Y is a map of bisimplicial sets, f is a monomorphism if 
and only if R (J) is. 

PROOF. Iff is a monomorphism, clearly so is its restriction to the diagonal. 
If m, n are arbitrary, there exists a k9 together with monomorphisms 5': 
m ~* k, Ô": n ~» k and epimorphisms a': k -» m, a": k -* n with a'ô' and a"fi" 
the identity. If R(f) is a monomorphism, X(o\ o")\ Xnn~+Xktk has a left 
inverse, and thus is a monomorphism. Since fkik. Xkk -» Ykk is a 
monomorphism, so is fmn\ Xm^n -* Ym^n. 

Suppose that A is a subcomplex of a simplex A*. Then every nondegenerate 
simplex Am-+/1 of A is a face of A*, and thus a retract of A. Thus 
Ö(Am) ~+ Q(A) is a monomorphism as is RQ(àm) ~» RQ(A). Suppose T„ T2 

->A are two nondegenerate simplices of A, T « Tl^A T2. Then T is either 
empty or it is another nondegenerate simplex of A. Notice that also we have 
T « Ty—>A* r2, since the fiber product of two subcomplexes is their inter­
section. However, RQ(Tt)^RQ^ RQ(T2) ~ (Tx ~ Txy~,m„m (T2r-,T2) 
* Tr-*T= RQ(T). Thus the intersection in RQ(kn) of RQ(T{) and 
RQ(T£ is RQ{T)- Thus the intersection of RQ(TX) with RQ(T2) in,4, which 
includes RQ(T% cannot be any larger than the intersection in RQ(kn), and 
thus it is also RQ(T). Since RQ(A) is the union over all nondegenerate 
simplices 7J-*A of the subcomplexes RQ(TÙ~*RQ(A\ and since these 
subcomplexes have the same fiber products over RQ(A) as over RQ(An), and 
since each RQ(Tf)9 RQ(Sn) is a monomorphism, RQ(A) -* RQ(A") is a 
monomorphism. This finishes the proof of (6.3). 

LEMMA 6.5. If A c A* & f/ie tm/on #ƒ «// but one face of dimension n - l> 
j2(A) -» A X A w an epicofibration. 

PROOF. Let r l f . . . , r„ c A be the faces of A of codimension one. Each 7J 
is the cone, based on the vertex opposite the missing face, on some subcomp-
lex of A. Thus, any subspace made from the Tt by intersections and unions 
will always be a trivial space, as it will be a cone. 

Notice that A X A is the union of the subcomplexes Tf X 7}, and that 
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Ô(A) is the union of the 7) X Tf. We can construct A X A from 0(A) by 
attaching the Tt X 7} for / ¥* j along appropriate subcomplexes. If we can 
show that A X A can be constructed from Q(A) by attaching along 
epicofibrations, since the cobase extension of an epicofibration is again an 
epicofibration, we will see that Q (A) -* A X A is an epicofibration. 

We now construct an increasing sequence Q (A) = Y0 c Yx C * • • C Yn 

= A X A so that each Yf -* Y^x is an epicofibration. 
We call a subcomplex U C A a complete intersection if it is of the form 

7}f O * • • H Tif. Since each 7) is the face opposite a vertex of the missing 
face, the complete intersections are the faces of A" opposite the various faces 
of the missing face. Further, their representation as an intersection without 
repetition of the Tf is unique up to order. If U is a complete intersection, let 
U* be the union of all the 7) which do not contain U9 and denote by dU the 
intersection of U with U*. Notice that every inclusion 3£/-> U is a trivial 
cofibration. 

We now filter A X A by an increasing filtration A x A = Yn^x 3 • • • D 
Y0 * 0(A). To do this, let Ye be the union of all U X V for U, V complete 
intersections of r and s terms respectively with r + «y = rt + l — t. Notice 
that if U and V have a term, say 7), in common, U X V c 7; X Tif C g (A). 
Thus we may assume that y, is obtained from Yt„x by attaching each £/ X K 
with no terms in common, and with ranks r, s respectively such that r + 5 » 
n+\- t. Now ((/ X V) n F,-, is just ((dU) X V) U (U X dV). Further, 
any pair U X V9 U' X V' as just described which are different, have their 
intersection inside Yt„v Thus Yt is obtained from Yt„x by the cobase 
extension of a coproduct of maps of the form (31/ X V)^?Uxdv U X 3K-* 
U X V, which are all epicofibrations. Thus Ö(A)~» A X A is an epico­
fibration. This completes the proof of (6.5), and thus the proof of 6.2. 

Suppose now that X, Y are fully fibrant simplicial sets. Then if ƒ: X -» Y is 
a fibration of simplicial sets, it will be an epifibration if %(ƒ): ^X) -» TT^X) 
is a Kan fibration. To see this, observe that 7r0(ƒ) is a Kan fibration if and 
only if for all trivial cofibrations i: A -> B of finite simplicial sets, the map 

Hom(2*, 7T0(X)) -> Hom(^, TT0(X))~Hom(A,*0m) H°m(5, * 0 (r ) ) 
is an epimorphism. However, since X is fully fibrant, Hom(J5, n^X)) — 
770(Hom(2?, A")), etc., so we see that ƒ will be an epifibration precisely when 
770(f) is a fibration of simplicial sets. 
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