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In the Foreword to his book of 1960, Linnik described decomposition of 

(probability) laws as "a field which in relation to mathematics employed lies 
between the theory of probability and the theory of functions of a complex 
variable", nowadays one would add "and of several complex variables." This 
field stands isolated from the mainstream of probability theory and is largely 
ignored. Thus it behooves us to be specific about its main concepts, problems, 
and representative results with their dates, in order to point out the evolution 
of the field before and after the crucial Linnik book which described its state 
as of 1960. 

Until recently the central problem of probability theory was, and in large 
part still is, that of behaviour of sums of independent random variables. The 
inverse problem of decomposition of random variables, more precisely of 
their laws, was born-with its concepts, problems, and methods-during its 
heroic period 1934-1938 thanks to P. Levy, Cramer, Hincin, and Raikov. For 
twenty years it attracted little attention except mainly during 1947-1951 when 
Cramer, Levy and Dugué produced various examples and counterexamples 
and Dugué introduced "ridge functions" which were to play an important 
role in factorizations of analytic characteristic functions. Thereafter Linnik's 
deep results, the impact of his book of 1960, and his personal influence 
attracted to the field a number of bright young mathematicians, especially 
Ostrovskiï-the joint author of the book under review. It presents the most 
exhaustive survey there is of the present state of the field. 

The law £ of a random variable X is described by its distribution or by its 
distribution function F or by its characteristic function/, all with same affixes 
if any. The set of all laws is metrized by the Levy metric d(Fl9 F2). If 
X = Xx + X2 is sum of independent random variables Xx and X2, then its law 
£ = £j £2 is described by the convolution, or composition, F = Fx * F2 or by 
the product ƒ x fxf2. £ = ^£2 is "decomposable," or "factorizable," into 
"components" tx and £2 if neither tx nor £2 is degenerate. Decomposability 
is in fact if not in terminology a property of types of laws. P. Levy (1937) 
produced "indecomposable," i.e. nondecomposable nondegenerate laws. On 
the other hand there are "infinitely divisible" or "infinitely decomposable" 
laws, "i.d." laws for short: £ =* £" for every integer n > 0. They were 
introduced by de Finetti (1929) and the characteristic functions of those with 
finite second moments were described explicitly by Kolmogorov (1932). The 
general form of i.d. characteristic functions was obtained by P. Levy (1934) as 
a consequence of his exhaustive sample analysis of decomposable processes, 
i.e. of processes with independent increments. Hincin (1937) gave a direct 
purely analytical proof of it: ƒ is i.d. iff ƒ * e* with tj> =•= (a, ^) given by 
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$(t) = iat + ( °° h(x, t) d*(x)9 

where a G R, ¥ is a nondecreasing function of bounded variation, and 

h(x91) « [eixt - 1 - — S L . J L±JE! ( = - | at x = 0-by continuity). 

The factorization idea and the superficial resemblance of indecomposable 
laws to prime numbers led to naming the field "Arithmetic of laws," a name 
which is fast disappearing. At present, decomposition theory abounds in 
counterexamples to every similarity to arithmetic and to offhand conjectures. 
It contains a large number of examples of decomposition properties of 
specific laws and of more or less restrictive classes of laws, but only a few 
relatively general results. 

One may distinguish several kinds of results. I. The celebrated Lévy-
Cramér theorem and its consequences. Its seminal role, the importance of 
normal laws in Probability and Statistics and its use in extending the usual 
normal limit theorems, ought to lead to the inclusion of the theorem and of 
its consequences into Probability theory. II. Hincin's fundamental decompo­
sition theorem and various indecomposability examples, most of which 
require only the analytical apparatus of a graduate probability course, may 
interest probability students. III. Properties of laws with no indecomposable 
components, or "/0-laws", which require delicate and intricate investigations 
of analytic characteristic functions and, especially, of entire ones. IV. 
Generalizations to the multidimensional case and more abstract spaces as 
well as to "a-factorizations." 

I. In 1934 P. Levy stated without proof that normal laws are decomposable 
into normal components only. In 1935 he deduced normal decomposition 
"stability": If a law is approximately normal so are its components, 
"approximately" being defined in terms of the Levy metric. Furthermore, he 
extended his normal convergence theorem omitting the usual asymptotic 
negligibility requirement. In 1936 Cramer proved the Levy decomposition 
conjecture, and in 1937 Raikov proved a similar decomposition of Poisson 
type laws into Poisson type components only. Both proofs used Hadamard 
factorization theorem for entire functions. In 1955 Linnik combined both 
results: If a law is composed of a normal law and a Poisson type one, so are 
all its components. Normal decomposition stability was extended to all 
decompositions by Linnik (1960). The following property is primarily due to 
him: If Fn * Fnl * Fn2 and d(Fn, F)-*0 as n -» oo, then maxy.^ ^GŒKF 

d{Fnjy G) -» 0, where KF denotes the set of all components of F. Meanwhile 
Sapogov (1951, 1959) obtained an estimate of normal decomposition stability. 
It was shown to be the best possible of its kind by MaloSevskiï (1968), who 
wrote the book's chapter on stability. Together with Nikitin he wrote the next 
chapter on limit theorems without asymptotic negligibility condition. There 
one finds the extended Poisson convergence theorem (Macis, 1967), the 
extended Lindeberg-Feller normal convergence one (Zolotarev, 1968), and 
others. Not included are Zolotarev extensions of general limit theorems 
(1970). 
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II. The fundamental decomposition theorem (Hincin, 1937/38) says that 
every law can be represented as a composition of at most two laws, one law 
consisting of a countable number of indecomposable ones and the other one, 
or 70-law, having no indecomposable components. This decomposition is not 
necessarily unique. Example: The uniform distribution on [—1, + 1] with 
f(t) = (sin i)/t has a set of distinct decompositions (into indecomposable 
components) of the power of the continuum. 

The 70-laws are i.d. so that any law whose characteristic function has at 
least one zero has at least one indecomposable component. The 70-laws form 
a proper subset of i.d. laws: The geometric distribution with ƒ(*) » (1 -
p)/{\ — pe*'), 0 < p < 1, is i.d. but its components are indecomposable. 
Every i.d. law is composed of a countable number of 70-laws. 

Indecomposable laws. The set of all indecomposable laws is a G$-set dense 
in the complete metric space of all laws; in fact, the set of all purely 
discontinuous indecomposable laws is dense in this space. See Parthasarathy, 
Rao, and Varadhan (1962). 

EXAMPLES. Let the "spectrum** S(F) of a law be the set of all points of 
increase of its distribution function F. Call a set A c R "decomposable" if 
A * B + C where B and C have each at least two points; otherwise A is 
"indecomposable." If for every two distinct pairs (x,y) and (*', y') of points 
of Ay x - y ¥= x' — y ', then A is indecomposable. 

If S(F) is indecomposable and inf S(F) or sup S(F) is finite, then the law 
with F is indecomposable. For every perfect set & there is an indecomposable 
law with S(F) « S. Similarly for every compact set S, and there are laws 
which are not discrete if & is uncountable. Arcsine law is indecomposable 
while absolutely continuous. 

III. Inlaws with normal components. Let 9(¥) be the "Poisson spectrum" 
of an i.d. law with ^ = (a, ¥), i.e. the set of nonzero points of increase of ¥ ; 
the law has a normal component when ^(+0) — ^ ( - 0 ) > 0. We say that an 
i.d. law with normal component is a "Linnik law" if it has a countable 
Poisson spectrum 9(9) such that for any two of its elements of same sign, 
one is an integer multiple of the other. 

Linnik (1958): Every /0-law with normal component is a Linnik law. The 
proof is very intricate and long (pp. 95-130). 

Linnik (\959)-Ostrovskn (1965): If f\A>yd*(x) * O^-**2) for y -* oo and 
some a > 0, then a Linnik law is an 70-law (with normal component). 
Ostrovskiï simplified Linnik's proof while weakening his sufficiency condition 
to the stated one; the proof is intricate and long (pp. 145-168). The condition 
cannot be omitted altogether, for there are Linnik laws which have 
components which are not even i.d. (Goldberg and Ostrovskiï, 1971). 

Inlaws without normal components. Let us mention only three representative 
and related results. 

Cramer (1949)-Shimizu (1964): The i.d. law (without normal component) 
given by 

yp(t) » iat + c [ (eixt - 1) dx, 0 < a < b/2 (< oo), c > 0, 
•'a 

is not an 70-law. A consequence of a somewhat more general Shimizu result: 
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Except for the normal law all nondegenerate stable laws have indecompo­
sable components. 

Ostrovskiï (1965): If the Poisson spectrum of an i.d. law without normal 
component Hes in [a, b] with 0 < a < b < 2a, then this law is an /0-one. 

Cuppens (1969): Let an i.d. law with \f/ = (a, ¥) be such that J*\{0}(1 + 
x2)/x2 d^(x) < oo and ¥ has a continuous derivative ^' (the law has no 
normal component). It is an 70-law iff the set {x: <k'(x) > 0} lies in (a, 2a) or 
in (-2a, - a) where a > 0. 

IV. Decompositions of multidimensional laws. Extensions to the multidimen­
sional case appeared at birth of the decomposition problem. Cramer (1936) 
did it for the Lévy-Cramér case. Levy (1937) did it for the i.d. laws represen­
tation and in 1948 showed that Wishart distribution-of interest to 
statisticians, r *» -. -1 n 

ƒ('., hh) - [ ( l - » lX l -»3 ) + £] ' 
is indecomposable while its projections are i.d. Starting in 1965, primarily 
Ostrovskiï and Cuppens extended almost all main results of the one-dimen­
sional case to the multidimensional one. This required and continues to 
require delicate investigations of analytic characteristic functions in several 
complex variables. The decomposition problem is, in fact, that of factorizing 
Fourier transforms of probability measures on euclidean spaces into same 
kind of factors. This suggests at once that it ought to be studied in full 
generality within the framework of abstract harmonic analysis. The first 
results in this direction can be found in Parthasarathy's book (1968). 

a-factorizations. A characteristic function ƒ is "a-factorized" into two 
"a-factors" if ƒ = fffS2 where ax and <x2 are positive. In general, ƒ{*» and ƒ22 

are not characteristic functions so that there is loss of contact with probability 
theory. This kind of factorization was introduced by Linnik (1955). It is a 
purely analytical generalization and emerged as a tool for Darmois-Skitovich 
characterization of the normal law by means of independence of two linear 
forms in independent random variables. The characterization problems in 
mathematical statistics and the various methods used are discussed in the 
book on the subject by Kagan, Linnik, and Rao (1972, English translation 
1973). 

There are three recent books by authors who made significant 
contributions to decomposition theory and which overlap with the book 
under review. Lukâcs, Characteristic functions (2nd éd., 1970) consists of an 
almost exhaustive survey of characteristic functions including their factori­
zations and contains a lucid introduction to the main results-in the one-
dimensional case. Ramachandran's book on Advanced theory of characteristic 
functions (1967) is a penetrating introduction to the methods and results of 
decomposition theory-in the one-dimensional case. Cuppens' book (1975) is 
devoted to Decomposition of multivariate distributions, and this brings us to a 
first criticism of the Linnik-Ostrovskiï book: It is regrettable that Levy's 
"quite profound results" obtained in his investigation of 70-membership i.d. 
laws with no normal component and with finite Poisson spectrum are not 
given therein-if only in an Appendix; in Cuppens' book some of Levy's 
results are given in an extended and generalized form. Also the title is slightly 
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misleading: In decomposition theory random variables and vectors figure 
only in terms of their laws, and the theory, while its origin is probabilistic, is 
purely analytical. However, those defects- at least in the eyes of the reviewer 
-are of very little importance. For the book ought to be considered as a 
classic-the best of its kind. It is well written and very instructive. 

The total impression about the state of the theory is somewhat disturbing. 
The ingenuity and power of the methods and the great wealth of results still 
leave the basic problem unsolved: Find applicable general criteria so that, 
given a law one can find all its components, and, in particular, find whether it 
is an indecomposable or an 70-law. It is hoped that the Linnik-Ostrovskiï 
book will serve as a catalyst for further search in this direction. 

The untimely death of Linnik was a great loss for mathematics and for 
those who knew him. 
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Completeness and basis properties of sets of special functions, by J. R. Higgins, 
Cambridge Tracts in Mathematics, no. 72, Cambridge Univ. Press, 
Cambridge, London, New York, Melbourne, 1977, x + 134 pp., $19.95. 

The questions considered in this book arise from our wanting to represent a 
given function as a linear combination of particularly interesting or useful 
auxiliary functions-for example, the eigenfunctions of a boundary value 
problem. In this setting the idea has been traced back to Daniel Bernoulli, 
who used the expansion as a formal device; it was Fourier who showed that 
(sometimes) the formal solution is really a solution. There are natural 
questions to ask about Fourier series (apart from their use in solving eigenval­
ue problems): Does the series converge? Does it converge to the function we 
got it from? If so, is it the only series of its kind that represents that function? 
A collection of functions <pn such that every function ƒ (in a suitable class) has 
a unique expansion *2anq>n that converges (in a suitable topology) to ƒ is called 
a basis. This notion, when formulated in abstract terms, can be considered in 
any Banach space, or even in more general spaces; a given set {<p„}, regarded 
as abstract elements, may or may not form a base depending on which space 
they are taken to belong to. Thus for example the trigonometric functions 
{einx} form a basis in L2 (periodic functions of integrable square) but not in 
C (continuous functions under uniform convergence). The trigonometric 
functions also form an orthogonal set, but this is only a feature that is 
convenient for computing the coefficients in the expansion, not an essential 
part of the idea of a basis. Most of the familiar separable Banach spaces turn 
out to have bases, but we know (only since 1973) that there are separable 
Banach spaces that have no bases [5]. 

A similar idea entered mathematics in a different way and beginners 
sometimes confuse it with the idea of a basis. In abstract terms, a set {<p„} of 
elements of a Banach space is called total if every element of the space can be 
represented as the limit of a sequence of finite linear combinations of the 
<pH, i.e. as limAr^002fa(/:, N)<pk rather than as limiV^002fa(^)<p/fc. This is the 


