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1. We give a simple axiom system for the lattice Ln of faces of the «-cube, 
which is independent of dimension, and we construct a partition of the lattice in­
to a minimum number of chains, or Dilworth partition. This partition turns out 
to enjoy some notable symmetries. 

We use the representation of the faces of an rt-cube as signed subsets of an 
w-set, say of the set {1, 2, . . . , n}. A signed subset A0 = (Alf A2) is an or­
dered pair of disjoint subsets, where At is called the positive part, and A2 the 
negative-part If Ba is also a signed set, write Aa < B a when Ax DBX and A2 

D B2. Add a minimum element 0—the improper face-to the ordered set of 
signed sets, thereby making it a lattice Ln. The maximum element I of Ln is the 
signed set I = (0, 0). We use the terms "face" and "signed set" interchangeably. 

On the lattice of signed subsets one defines diagonals A{Aa, ' ). For a given 
face Aa, such a diagonal is a function defined on the segment [0, Aa] of Ln, 
and A(Aa,Ba) = Ca, where Cx = (Alf B2) and C2 = (A2, Bx). On the improper 
face one sets A(Aa, 0) = 0. Geometrically, the diagonal A(Aa, • ) associates to 
each face contained in Aa the unique opposite face inside the face Aa. When 
Aa = ƒ, the diagonal A(7, • ), written A( • ), is a cubical analog of complementa­
tion in a Boolean algebra. 

2. Main Theorem. Let L be a finite lattice with minimum 0 and maximum 
ƒ. For every x =£ 0, let A^ be a function defined on the segment [0, x] and tak­
ing values in [0, x]. Assume: (1) if y <x, then Ax(Ax(y)) = j;;(2) ifa<b 
<x, then Ax(a) < Ax(b); (3) if a < x, then a \ Ax(a) = 0; (4) let a < x and 
b < x. Then the following two conditions are equivalent: Ax(a) A b < x and 
a A b = 0. Then L is isomorphic to the lattice of faces of an «-cube for some 
n, and conversely. 

3. A symmetric Dilworth partition. By Dilworth's theorem there exists a 
partition of Ln into [n/3] chains. We explicitly describe one such partition, one 
that is invariant under the main diagonal A. 

Consider a signed subset as a sequence uxu2 • • • un whose digits ui range 
over the alphabet {x, 0, 1}. Set ut = x if the element / is unsigned; otherwise, 

AMS (MOS) subject classifications (1970). Primary 05B40; Secondary 05 A17. 
1 Work supported by US Energy Research and Development Administration under 

Contract W-7405-ENG. 36 and partially supported by NSF MCS 7701947. 
Copyright © 1978, American Mathematical Society 

284 



THE LATTICE OF FACES OF THE w-CUBE 285 

ut = 0 or 1 according to whether ut belongs to the positive or to the negative 
parts. We call 0 and 1 significant digits in contrast to x. A vertex is a sequence 
uxu2 ' • • un where no ut = x. 

The chains issuing from the vertices are constructed one step at a time, up­
wards from the vertices, according to the following rule: 

(1) Change the last two digits of the vertex u1u2 • • • un, according to the 
following table: 11 —> be, 00 —* Ox, 10 —> xO, 01 —* xl. Denote the result­
ing face by vxv2 * • • vn. 

(2) Change the two rightmost adjacent significant digits of vxv2 • • • vn by 
the same rule. 

(3) Repeat until the resulting face contains no two adjacent significant dig­
its. 

(4) Now the preceding algorithm assigns to chains issuing from vertices all 
faces uxu2 • • * un for ux = u2 = x, where Uj is a significant digit for some ƒ > 2, 
and no two successive digits are significant. 

(5) For faces containing three successive digits JCOO, xOl, xlO or x l l use 
the following bracketing algorithm: (a) Bracket #01 to (xOl), etc., by inserting 
brackets at the appropriate places. In the resulting bracketed face, two digits are 
successive if they are successive in the sequence obtained after all bracketed dig­
its have been removed, (b) Repeat the bracketing algorithm (a), for successive 
digits, until no unbracketed digits can be bracketed, and obtain a completely 
bracketed face, (c) On the set of completely bracketed faces having the same 
bracketed digits and the same bracket structure, remove bracketed digits and pro­
ceed as in steps (1)—(4), and then reinsert the bracketed digits in their original 
places. One obtains in this way a partition into chains of such a set. (d) The 
only remaining faces to assign to chains are those which have only x's in their 
unbracketed sequence, which is nonempty. 

Let u = ulu2 ' • * un be one of these remaining faces. If u = ƒ, the maxi­
mum element, assign it arbitrarily to any chain, say, the chain containing Qxx 
• • • x. If u # ƒ, let uk be the first significant digit, and let um be the first un­
bracketed digit, which must be an x. Then assign u to the chain containing vxv2 

• • • vn where um = uk and vt = ut otherwise. 
The preceding technique for constructing Dilworth partitions can be ex­

tended to families of k disjoint subsets, ordered similarly to the case k = 2 of 
the cube, and even to certain sublattices of the lattice of partitions of a set. 
These constructions will be presented elsewhere. 
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