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Several complex variables has enjoyed a renaissance in the past twenty-five 
years, reaching deeply into modern algebra, topology, and analysis for 
techniques to attack long standing problems. An important example is the 
question of identifying domains of holomorphy, i.e. those open sets in C + 1 

(or, more generally, in complex manifolds) for which at least one holomor-
phic function has no extension outside the set. Early in this century E. E. Levi 
defined a condition, now called pseudoconvexity, which he proved was neces­
sary, and conjectured was sufficient, to characterise domains of holomorphy. 
More precisely, for domains with smooth boundary one can define a Hermi-
tian form, now called the Levi form, on the space of holomorphic vectors 
tangent to the boundary. The domain is then called pseudoconvex (resp. 
strictly pseudoconvex) if the Levi form is positive semidefinite (resp. definite). 

Levi's conjecture for C"+1 was finally proved nearly fifty years later by Oka 
[16] (and simultaneously by Bremermann, [1] and Norguet [15]) after a long 
series of related papers. Efforts to extend the results to complex manifolds led 
Grauert [5] to discover a new, more general proof making extensive use of 
sheaf theory. A totally different proof was later obtained by Kohn [11] (using 
a crucial estimate of Morrey [13]) as a consequence of his solution of the 
"9-Neumann" boundary value problem in partial differential equations. 

Since Kohn's breakthrough on the problem there has been considerable 
interest in constructing solutions for the inhomogeneous Cauchy-Riemann 
(C-R) equations in a bounded complex domain and studying their boundary 
behavior. Kohn's methods, based on a priori L2 estimates, give only L2 

existence proofs for solutions of the C-R equations. (After Kohn's work 
appeared Hörmander [9] gave a simpler existence proof, using weighted L2 

estimates, in which boundary problems are completely circumvented!) 
Several explicit solutions have been constructed by the use of integral 
formulas, in particular, those of Henkin [8] and Ramirez [18]. Kerzman [10], 
Grauert and Lieb [6], Overlid [17], and others have obtained estimates for 
these solutions in terms of LP and Lipschitz norms. 

Recently Greiner and Stein were able to give an explicit construction of 
Kohn's solution and to obtain from this construction optimal estimates in Lp 

and other norms. The book under review is an exposition of this work, 
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announced in [7]. The techniques involved are taken from the theory of 
singular integrals, including operators on nilpotent Lie groups, as well as from 
the theory of "classical" psuedodifferential operators. Although the proofs 
may appear to be highly computational, the main ideas behind them can be 
stated in terms of elegant principles. The reader who is familiar with the 
subject should read the excellent but concise introduction where these prin­
ciples are enunciated. For other readers this review is intended as an intro­
duction^) that introduction. 

The 3-Neumann problem was proposed by D. C. Spencer in the early '50 s 
as an approach to studying the inhomogeneous Cauchy-Riemann equations 

W/dzj=fJ9 7 - 1 , 2 , . . . , « + 1, 

for {fj} satisfying the compatibility conditions 

dfj/dzk = dfk/dzj9 Kj,k<n + l, 

in a strictly pseudoconvex bounded domain M = {z GC"+ 1 : p(z) < 0}, p a 
smooth function. 

In particular, suppose the fj extend to smooth functions in a neighborhood 
of the closure M of M. (This extension property is written jÇ G C°°(M).) 
Then there should be a solution U E C°°(M). In Spencer's approach, one 
rewrites the above system as a single equation on forms: Let C^q be the space 
of smooth (0, q) forms, i.e. 

Q£ = [ifgdz^d^ = dzh A • • • Adz^\Q\ = ?}. 

If 30: C£0 -> Cgx is defined by 

9oS = 2 T3 dzj; 
y - i d2j 

and the definition extended to 3^: C0~ -» C0* + „ then the above system is 
equivalent to d0U = ƒ, with ƒ = 2jÇ dïj _satisfying 3, ƒ = 0. By choosing a 
metric on M, one can define adjoints 3* and a Laplacian • on C0^ by 
D=3*3i +3o3o- The equation Qu = ƒ leads to the following boundary 
conditions on u: u is in the domain of d$ and 3,u is in the domain of 3f. The 
3-Neumann problem is to prove existence and regularity for this boundary 
value problem. If 3, ƒ = 0, then U = d$u is a solution of dU = ƒ which is 
orthogonal to the space of homomorphic functions in M. 

Kohn solved the problem by proving the existence of an operator N9 called 
the Neumann operator, which inverts • ; i.e., N{J = D ^ = h where I is the 
identity operator Furthermore, N maps compactly supported forms in 
Q*ï(^0 t o C£i(M)9 and the following estimate holds on Sobolev spaces: 

m^w* c>o. 
Here 

L£ = {fe Lp: da/dxaf G U9 all \a\ < k) 

with norm 
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In the present work the authors explicitly construct the Neumann operator 
and obtain sharp estimates for solutions of • « = ƒ (and hence dU = ƒ) in 
terms of various function spaces. In particular, they prove the estimate 
\\Nf\\i4+l < Cll/lUr for 1 </? < oo, all k > 0. An Lp estimate for U = d$u 
may then be obtained from this. In terms of Lipschitz space Aa, U is shown 
to satisfy \\U\\A 2 < C||/||Loo. Examples show these estimates to be sharp. 
Further results show that derivatives of u and U in certain "allowable" 
directions enjoy greater smoothness than arbitrary derivatives. 

As the reader proceeds to the construction of N, he will soon notice that all 
operators involved are dealt with in terms of their symbols. Recall that the 
symbol of an operator A: C0°°(R

m)-H> C°°(Rm) is a smooth function a(x, £) 
such that 

m*) = TTV SKX^a{x, i)f (I) dt 
(27T) J 

A is a (classical) pseudodifferential operator of order k if the estimate 

3" 3^ 
3JC" 3£/* 

a(x, | ) < C ^ ( 1 + |€|> * - ! / * ! 

holds for all multi-indices a, )3, with x restricted to a compact set. (See e.g. 
[14].) The reader should be warned that not every operator whose symbol is 
calculated is actually a pseudodifferential operator. (Ga of Chapter 1 is not, 
for example.) Nevertheless, the theory of pseudodifferential operators enters 
in a crucial way. First, any elliptic pseudodifferential operator (i.e. one whose 
symbol is invertible, in a suitable sense, for f T^ 0) has an "inverse". Since • 
is an elliptic operator in the interior of M an inverse can be found in the 
algebra of pseudodifferential operators. Next, by a method going back to 
Calderón [2], the 3-Neumann boundary conditions on U may be expressed as 
a pseudodifferential on the boundary 3M of M. 

To understand this reduction to the boundary, it may help to consider a 
much simpler example where calculations can be easily carried out. Let 
R+ = {(x,y, t): t > 0} and let g(x,y) be a smooth function with compact 
support defined on {t = 0}, the boundary of R+. Suppose now that TJ = 
ad/dx + bd/dy + c3/3/ is a given real vector field. The problem then is to 
find a function v(x,y, t) harmonic in R^ (i.e. At) = (3 2 /3* 2 +32 /9y2 

+ d2/dt2)v = 0 in R3+) such that v E C°°(R3+) and the restriction of TJÜ to 
{/ = 0} is g. If PI is the Poisson integral for R^, then v = PI(vb) where 
»b(x>y) = v(x>y> 0)- Then 

r-0 

= -7TT2 fei(x^\i< + m2 - c\S\)f (I) dS. 
( 2 T 7 ) 2 ^R2 

Thus g = Avb, where A is a pseudodifferential operator on R2 with symbol 
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/a£i + ib%2 — c\£\- To determine vb, and hence v9 it suffices then to invert A. 
If c ¥= 0, i.e. if 17 is not tangential at any point, then A is elliptic and hence 
invertible. 

In the case of the 9-Neumann problem the computation of the symbol of 
the boundary operator requires two chapters (7 and 8) of clever calculations. 
At the end of this arduous climb the reader may feel ill-rewarded to discover 
that the pseudodifferential operator obtained, denoted •*> is not elliptic. 
However, this is to be expected since the 3-Neumann problem is a nonelliptic 
boundary value problem. Were it elliptic it would have been solved years ago 
and this book would not have been written now! Since •"*" does not have an 
inverse in the algebra of classical pseudodifferential operators one must look 
elsewhere. First the authors construct an operator • " such that D*D~ * 
• " • + = — Q,, where Q, is the "boundary Laplacian" of 3. (The above 
equalities hold modulo certain "acceptable" error operators. Also involved is 
an army of cut-off functions, which we suppress here.) Now if — AT is an 
operator which inverts Q» then K[J~ is an inverse for • + . Hence it would 
be sufficient to invert Q>-

The operator Q» which acts on (0, 1) forms on the boundary, has been 
carefully studied. For n > 1, Kohn [11] proved that Ub is hypoelliptic, i.e. if 
öibw ** 8 wi*h S smooth in an open set, then w is also smooth in that set. 
Folland and Stein [4] (see also [19]) constructed an "inverse" for Q, when 
n > 1, and this is where singular integral operators on nilpotent groups enter 
the picture. The Heisenberg group with appropriate dilative automorphisms is 
a local model for the boundary. An inverse for [Jb on the Heisenberg group is 
given by group convolution with a homogeneous function. A calculation of 
this function and of the symbol defining the inverse operator is given in 
Chapter 1. Going from the model case to the general one requires, among 
other things, a system of local group coordinates at each point in the 
boundary and a careful accounting of all errors resulting from this approxi­
mation by the Heisenberg group. 

To study estimates of the solution u, after the Neumann operator has 
finally been constructed, the whole process must be re-examined for a closer 
look at the operators used in the construction. The authors provide a brief 
summary in Chapter 4 of the four types of operators involved. The action of 
each of these operators on various function spaces is then studied and 
estimates for the Neumann operator in these spaces are obtained. From these, 
the estimates for 30 are easily derived. Finally, the estimates for Lipschitz 
spaces are shown to be optimal by counterexamples. 

This last part of the book contains a considerable amount of useful 
background material on known results. It includes, in particular, material on 
Lipschitz and Besov spaces and the boundedness properties of pseudo-
differential operators on these spaces. Since these results are not easily 
available elsewhere, readers who are interested in these topics might do well 
to turn first to Part HI. 

It should be obvious that this book is not intended as an easily digested but 
superficial survey of recent results in several complex variables. However, for 
the serious reader the prerequisites are not as foreboding as they may seem. 
Although one should probably look at [4], where operators on the Heisenberg 
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group are discussed, no other knowledge of nilpotent Lie groups is needed. 
Furthermore, most of the book uses only the very basic elements of the 
theory of pseudodifferential operators. With this background, and some 
determination, the reader can get through this carefully written exposition of 
important new results. 
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