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A stationary Gaussian process is a continuous map / -> & from the real line 
into the real L2 space of a probability measure, P, with the following 
properties: 

( i ) /£dP = 0forall/; 
(ii) ƒ£,£, dP depends only on the difference t — s (and so can be written as 

Q(t — s)9 where Q is a continuous positive definite function on the line, 
known as the covariance function of the process); 

(iii) every function in the linear span of the functions £, is normally 
distributed. 

By Bochner's theorem, the covariance function Q admits a representation 

Q(t)=feitxdA(x), 

where A is a positive measure on the line, symmetric with respect to the 
origin. This leads to what is called the spectral representation of the process: 
the map sending £, to the function eitx on the line extends to an isometry 
sending the span, in complex L\P), of the functions £ onto the space 
Z = L2(A). 

The Gaussian condition (that is, condition (iii)) enables one to give 
geometric interpretations to various probabilistic aspects of the process. The 
simplest instance is the statement that, in the L2 span of the functions £„ 
orthogonality is equivalent to stochastic independence. Because of the 
spectral representation, one can go a step further, translating probabilistic 
questions about the process into questions in analysis. The questions in 
analysis that arise usually involve the theory of Hardy spaces in the upper 
half-plane and the theory of entire functions of exponential type. It is to them 
that the book under review is devoted. 

The process is called deterministic if its past determines its future. This 
means, in probabilistic terms, that every function £ is measurable with 
respect to the a-algebra generated by the family {£: s < 0}. Because the 
process is Gaussian, the latter reduces to the condition that every £, belong to 
the span, in L2(P), of the family {£,: s < 0}. Application of the spectral 
representation now shows that the process is deterministic if and only if Z is 
spanned by the functions eisx, s < 0. A criterion is provided by a theorem 
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which originated, in a slightly different context, with G. Szegö in 1920: a 
necessary and sufficient condition for the process to be nondeterministic is 
/_oo(l + x2)~llogA'(x) dx > -oo, where A' is the derivative of A with 
respect to Lebesgue measure. Moreover, the preceding condition holds if and 
only if one can write A' = |A|2 where h is a function of a special kind-a 
so-called outer function-in the Hardy space H2. This result is the starting 
point of the analysis the authors develop. For most questions it is natural to 
limit one's attention to the case where dk — \h\2 dx with h an outer function. 

The prediction problem of Kolmogorov and Wiener is that of finding the 
conditional distribution of £, (/ > 0) given the a-algebra generated by {£,: 
s < 0}. The spectral representation transforms this to the problem of projec­
ting the function eitx onto Z~°°0, the span in Z of the functions eisx

9 s < 0. 
The problem can be handled by a suitable application of the Fourier 
transformation. One applies the Fourier transformation to the function heiix, 
multiples the transformed function by the characteristic function of (— oo, 0), 
and transforms back. 

A related but more complicated problem is the prediction problem of M. 
G. Krein. In analytic terms, this is the problem of projecting the function eitx 

(t > T) onto Z r , the span in Z of the functions eisx, \s\ < T. For Krein's 
problem one needs much more elaborate machinery, namely, Krein's theory 
of strings, to which more than half of the book under review is devoted. 

A string in the sense of Krein is, basically, a positive measure m on an 
interval [0, /) or [0, /] (/ = oo is allowed in the former case). Given such a 
string, one introduces a selfadjoint operator in the space L\m) corresponding 
to the formal expression d2/dm dx. (In the case of a string of finite length 
and finite mass, there is actually a one-parameter family of such operators.) 
Associated with the operator is a certain positive measure A on the line, 
symmetric with respect to the origin and satisfying f (I + x2)~l dA(x) < oo. 
The measure A is related to the spectral measure of the operator. Its precise 
connection with the operator is too involved to spell out here; suffice it to say 
that each measure A with the above properties corresponds to precisely one 
string operator. (The problem of going from A to the string is the "inverse 
spectral problem" of the book's title.) Connected with A is a pair of trans­
forms, an even transform and an odd transform, analogous to the Fourier 
cosine and sine transforms. To deal with Krein's problem, one introduces the 
string associated with the spectral measure A of the process. The space Z r , in 
case it is not all of Z, can be recognized as a space of entire functions of 
exponential type of the kind studied by L. de Branges. Whether a function in 
Z belongs to ZT is easily expressed in terms of the images of the even and 
odd components of the functions under the inverses of the even and odd 
transforms mentioned above. The upshot is that, once the machinery has 
been developed, the problem of Krein can be handled in much the same way 
as the problem of Kolmogorov and Wiener. 

The authors also apply the theory of strings to the problem of inter­
polation. In analytic terms, this is the problem of projecting the function eitx 

(\t\ < T) onto the orthogonal complement in Z of the span of the functions 
eisx

9 \s\ > T. It receives its first full solution in the final two sections of the 
book. One requires a wider class of strings than originally considered by 
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Krein, and the technicalities are more involved, but the general features of 
the solutions are similar to those for Krein's problem. 

The reviewer is in the uncomfortable position of not being an expert in 
prediction theory, the main topic of the book under review. Rather, I am 
someone who was brought up in Hardy spaces and developed a curiosity 
about how they get involved with prediction theory. For such a person the 
book is almost ideal. I imagine the same would be true for someone reared in 
probability theory who developed the complementary curiosity to mine. The 
book begins with three short but intense preparatory chapters which provide 
the needed background in function theory, Hardy spaces, and probability. 
The fourth chapter deals with various prediction problems, beginning with 
the Kolmogorov-Wiener problem mentioned above. The central theme is an 
effort to express in terms of the spectral measure A the amount of dependence 
between the past and the future of the process. In the two remaining chapters, 
Krein's theory of strings and its connection with de Branges spaces of entire 
functions are developed in detail and applied in the manner sketched above. 

I found the comparatively informal style of the book congenial and 
effective. Many details of proofs are left to the reader in the form of carefully 
prepared exercises. The authors have clearly made an effort to write a book 
that will be of value to the learner. If my experience is typical, they have 
succeeded. 

DONALD SARASON 

BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 84, Number 2, March 1978 
€> American Mathematical Society 1978 
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equations, by Harold J. Kushner, Academic Press, New York, San Fran­
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The analysis of the transition from Markov chains to diffusions, the 
convergence of solutions of difference equations to corresponding ones for 
differential equations and related approximation problems have been studied 
intensively for many years and appear frequently in so many different 
specialized contexts that it is practically impossible today to have a compre­
hensive idea of what goes on in the field. Kushner's work aims directly at a 
specific class of approximations for optimal diffusion processes which are 
associated with partial differential equations (PDE). In this way he limits the 
material to manageable size which one can divide, roughly, into two parts. 

The first one is the content of Chapters one to seven and Chapter ten and 
deals with background material, the theory of weak convergence of measures 
(without details), and the convergence of (nonoptimal) chains to diffusions. 
The second part, the main point of the book, is the content of Chapters eight 
and nine and deals with the approximation of optimal diffusions. Chapter 
eleven deals with a special topic, the separation theorem of stochastic control. 

Let us look into part one in some detail. The beginning of the theory of 
approximations of Markov chains by diffusions is probably the well-known 
work of Khinchine [1]. The analysis here is simple and direct. It is based on 


