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WHITEHEAD GROUPS OF FINITE GROUPS1 

BY MICHAEL R. STEIN 

In 1966, Milnor surveyed in this Bulletin [23] the concept of Whitehead 
torsion, focusing on the definition, topological significance and computation 
of Whitehead groups and their relationship to algebraic ^-theory and the 
congruence subgroup problem. As Milnor showed in that survey [23, Appen­
dix 1], an affirmative solution to the congruence subgroup problem for 
algebraic number fields would imply that for any finite abelian group G, 
SKX(ZG) = 0; i.e. that the Whitehead group of a finite abelian group G is 
torsion-free. At that time the status of the congruence subgroup problem was 
uncertain [23, pp. 360, 416]; it was subsequently shown to have a negative 
solution by Bass, Milnor and Serre [7]. Nevertheless, until 1972 all finite 
abelian groups for which computations could be made had trivial SKl (cf. [5, 
p. 624]) and the question of whether these groups could be nontrivial 
remained open [6]. 

An intensive study of Milnor's K2"l\mcior o n discrete valuation rings [10] 
and the application of Mayer-Vietoris sequences in algebraic ^-theory led to 
the first examples of finite abelian groups with nontrivial SKX and have 
provided an algorithm for the computation of such SKx's in general. In 
addition, the first steps towards the computation of SKX(ZG) for nonabelian 
finite groups have been taken by several authors. 

It is my purpose to survey these techniques and computations, beginning 
where Milnor left off in 1966.1 will rely heavily on his article for background 
material; all unexplained notations and terminology should be sought there. 

If G is a finite group, its order is denoted \G\ and its abelianization, Gab. A 
finite field with q elements is denoted F^. The units of a ring A are denoted 
A*orU(A). 

I would like to thank Bruce Magurn, Keith Dennis and Michael Keating 
for their helpful comments. 

1. Whitehead groups. Let R be an associative ring with 1, and suppose 
n > 1. Let GLn(R) be the group of all invertible n X n matrices with entries 
in R. We can embed GLn(R) in GLn+x(R) by sending an « X « matrix A to 
(o ?) G GLn+,(ƒ?). This yields homomorphisms GL{(R)-+GL2(R)^> ... ; 
their direct limit is denoted GL(R). 

An n X n matrix is called elementary if it differs from the identity by a 
single off-diagonal entry. The subgroup generated by all elementary matrices 
is denoted E(R\ and J. H. C. Whitehead proved that E(R) is precisely the 
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commutator subgroup of GL(R). We define KX(R) = GL(R)/E(R) = 
GL(Rf\ 

If the ring R is commutative, similar considerations apply to the matrices 
of determinant 1, and lead to the definition SKX(R) = SL(R)/E(R). In this 
case there is a direct sum decomposition 

Kx(R)œU(R)®SKx(R)9 

where U(R) denotes the group of units of R, since the inclusion U(R) = 
GLX(R) c GL(R) splits the determinant homomorphism GL(R)~* U(R) 
whose kernel is SL(R). 

If ƒ is a (two-sided) ideal in R, we let GL(R, I) = ker(GL(iî) -» GL(R/I)) 
and E(R, I) be the normal subgroup of E(R) generated by matrices with all 
off-diagonal entries in I. The relative group KX(R9 I) = GL(R9 I)/E(R91) 
fits into an exact sequence 

(1.1) KX(R,I)->KX(R)->KX(R/I); 

when R is commutative, similar definitions and remarks apply to SKX(R9 I) 
as well. 

The following theorem will be crucial to our calculations. 

(1.2) THEOREM [7, COROLLARY 4.3]. Let £) be the ring of integers in an 
algebraic number field F and let a be an ideal of £). Then SKX(£)9 a) is 
canonically isomorphic to a cyclic subgroup of order I of the roots of unity9 jx(F), 
of F, where I = 1 if a = £),or a = (0), or £) is not totally imaginary; and 

ord (̂û) j 
ord (/) = min 

P\P oràp(p) p - 1 
M 

where s = ord/?(/i(/
r)), otherwise. 

Here [x][0s]9 x E R, s E Z, denotes the nearest integer is the interval [0, s] to 
the largest integer < x. 

Let A be any commutative ring and G a finite group. The inclusion of A 
into the group ring AG splits the augmentation AG-*A and shows that 
KX(A) occurs as a direct summand of KX(AG). Also, the composite 

G-> U(AG) = GLX(AG) -» GL(AG) ~* Kx (AG) 

induces a homomorphism Gàh-*KX(AG) which is injective because the 
composition 

G&h^Kx(AG)^Kx(AGiib)â^U(AG&b) 

is just the usual inclusion. We define the Whitehead group, Wh(̂ 4G), to be the 
quotient of KX(AG) by KX(A) 0 Gab. When A = Z, we write Wh(G) for 
Wh(ZG). Bass has shown [4] that Wh(G) is a finitely generated abelian group 
of rank r(G) - q(G)9 where r(G) (resp. q(G)) denotes the number of 
irreducible real (resp. rational) representations of G. 

Note that when G is finite abelian, we have the decomposition 

(1.3) Wh(^IG) « (SKX (AG)/SKX (A)) ® (U(AG)/ (U(A) 0 G)). 

When A is the ring of integers in an algebraic number field, SKj(̂ 4) = 0 by 
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Theorem 1.2 and we have Wi(AG) « SK{(AG) 0 U(AG)/(A* 0 G). In 
this case Higman [13] has shown that A* © G contains all the units of finite 
order in AG, so the summand U(AG)/(A* © G) is torsion-free. We shall see 
later that SKt(AG) is finite. 

2. Group rings of finite abelian groups; some easy examples. Let F be a 
finite extension field of Q, G a finite abelian group, and x : G-»C* an 
irreducible character of G. Then x(G) is a finite cyclic group of roots of unity 
of order m dividing |G|. Let x be a primitive mth root of unity. Then x 
induces a surjective homomorphism, which we shall also denote x> from the 
group algebra FG to F(x). Since FG is semisimple (Maschke's theorem), x 
must be split and F(x) occurs as a simple component of FG. If O is the ring 
of integers in F, the restriction to © G of x has image £)[x]. 

Conversely, every simple component of FG affords an irreducible repre­
sentation, and thus an irreducible character, of G. This means that every 
simple component of FG arises in the way described above. 

It is possible, however, for distinct irreducible characters of G to give rise to 
the same simple component of FG. For example, if F = Q, two characters Xv 
X2 of G will give rise to the same simple component of Q G if and only if their 
kernels are the same. The relation "xi ~ Xi # *he simple components of FG 
they give rise to are the same" is an equivalence relation on the set of 
irreducible characters of G; we shall denote by SF(G) (or simply S when F 
and G are understood) a set of representatives for the equivalence classes 
under this relation. When F = Q, SQ(G) may be taken to be the set of 
irreducible rational characters of G. 

It follows from the preceding discussion that for any finite abelian group G, 
there is an isomorphism 

(2.1) a:FG^ ü F(x) 

wherea = IIxe (̂<7)X-
Let us write B = I^ee^Zfx] . The restriction to ZG of a is an injective 

homomorphism ZG ~» B. The conductor, c, from B to ZG is the largest ideal 
of B contained in ZG; equivalently, c = {x E ZG\xB c ZG}. Moreover, 
\G\B c c [5, Chapter IX, Corollary 1.2]. Similar remarks hold if we replace Z 
by the ring of integers in a number field F throughout. It is a theorem of Bass 
and Murthy [8, Lemma 10.5] that under the above hypotheses, the map 
SKX(ZG, c) -» SKX(B, c) is an isomorphism.2 Since jG|ZG c |G|J9 C c, ZG/c 
is a finite ring and has trivial SKX [5, Chapter V, Corollary 9.2]. We thus 
deduce from (1.1) that SKX(ZG) is a quotient of SKX(B, c). 

Following the decomposition B = IIxe5Z[x], we may write c = IIxeiScx; 
since SKX commutes with finite products, we see that SA'j(ZG), for G finite 
abelian, is a quotient of I^esSüT^ZJx], cx), and each term of this product is 
known by Theorem 1.2. Thus SA^ZG) is a finite abelian group and is 
precisely the torsion part of Wh(G) when G is finite abelian. (A more refined 
analysis shows that any exponent for G is also an exponent for SA^ZG).) 

2This property is special to the circumstances described here. In general if A is a subring of B 
and / is an ideal in both, SKX(A, I) is not necessarily isomorphic to SKX(B, I) [30]. 
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Similar arguments can be used to show that SKX{AG) is finite when A is the 
ring of integers in an algebraic number field. 

Here is an example. Suppose G is an elementary abelian 2-group of rank k 
(i.e. a product of k cyclic groups of order 2). All characters of G take values 
in {±1}; hence B « Z*, where q = 2* - 1. Thus SKX(B, c) = 
ïïxŒSSKx(Z, cx) = 0 (since Z has a real embedding), and SKX(ZG) = 0. 

3. Mayer-Vietoris sequences; K2. Early workers who tried to exploit the 
exact sequence USKx(Z[xl cx) -» SKX(ZG) -> 0 to compute Whitehead groups 
were frustrated by the absence of an extension of this sequence to the left. 
The algebraic K2 functor introduced by Milnor [24] and the resulting Mayer-
Vietoris sequences went far towards alleviating this difficulty. I will describe 
these techniques in some generality before specializing to our particular 
computational problems. 

Suppose 

(3.1) 4 IP 
A' -> B' 

ƒ' 

is a commutative diagram of rings and ring homomorphisms with the 
property that ƒ induces an isomorphism between the ideals I = ker a and 
J = ker /?. Such a diagram is a pullback in the category of rings. Let us 
assume, in addition: 

(3 2) ^ o r s o m c ' ^ '> Ki(4> I) ~~> Ki(B> -0 *s o n t o a n d 
K(_ X(A, I) -> À,_X(B, J) is an isomorphism. 

(In Milnor's original work [5, Chapter VII, §4] he took i = 1. We are 
assuming in this general discussion the existence of a "higher" algebraic 
^-theory as, for example, in [27].) Then an easy diagram chase shows that 
there exists a connecting homomorphism 9 such that the following sequence 
is exact: 

(3.3) 3 

-+Ki_l{A)^Kl_x{B)®Kl_x{A')^K{_l{iy). 
Such a sequence is called a Mayer-Vietoris sequence. It exists for i = 1 so 
long a s / ' or $ is onto. When i = 2, Milnor showed (3.2) is satisfied provided 
ƒ' and /8 are onto. This leads to an easy proof that SK^ZG) = 0 for a finite 
cyclic group G. 

Let us assume, first of all, that G is cyclic of prime order/? (we shall see in 
§5 that we can reduce to this case). Then 

ZG -» Z[£] 

i I 
Z -» F, 

is a pullback with all arrows surjective, where f is a primitive pth root of 
unity. Here a generator of G is mapped to f E Z[f ] and to 1 e Z, and the 
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other maps are reduction mod 1 — f and/?. From (3.3) with / = 2 we deduce 
the exact sequence 

K2(F,) -> SKX {ZG) -> SKX (Z) 0 5 ^ (Z[ J ]) 

whose last term is trivial by Theorem 1.2. Since K2 of a finite field is also 
trivial [29], we conclude that SKX{ZG) = 0. 

A second circumstance in which a Mayer-Vietoris sequence exists for / = 2 
is the conductor situation described above which was first studied by Bass 
and Murthy. More generally, we have: 

(3.4) THEOREM [9]. Let B = 117= î / be a direct product of {not necessarily 
commutative) rings and suppose A c B is a subring such that each projection of 
A into a direct factor Bt of B is surjective. Let I be any two-sided ideal of B 
contained in A. Then (3.2) holds for the square 

A -* B 
i i 

A/I -* B/I 
and i = 2. 

4. An algorithm for finite abelian groups. Let me now describe how 
Theorem 3.4 can be used to calculate, in principle, SKX{ZG) for any finite 
abelian group G. We return to the notation introduced in §2; in particular, 
B = nxE5Z[x] is the integral closure in QG of ZG, where S = 5Q(G). We 
choose an ideal I contained in the conductor from B to ZG and containing a 
rational integer (\G\B = I is one such choice). We obtain from (3.3) the exact 
sequence 

(4.1) K2(B) © K2(ZG/I) -» K2(B/I) -> SKX (ZG) ^ 0 . 

This involves noting that Kx can be replaced by SKX when the rings are 
commutative, and applying Theorem 1.2 and the fact that Z G / / is finite to 
conclude that 

SKX (B) = HSKX (Z[x]) = 0 = SKX (ZG/I). 

Our first task is to analyze the map K2(B) -» K2(B/I). This may be done 
componentwise by considering the exact sequences 

(4.2) K2(Z[x])^K2(Z[x}/Ix)^SKx(Z[xllx)-*<>. 

To simplify our task, let us assume henceforth that G is a /?-group for some 
prime p (we will shortly show how we may always reduce to this case). The 
group K2(Z[x]/Ix) has been computed by Dennis and Stein [10, Theorem 
5.1]; combining their calculation with Theorem 1.2 we conclude from (4.2) 
that K2(Z[x\) -> K2(Z[x]/I) is the 0-map unless x = ±1» in which case the 
map is onto. Thus we may rewrite (4.1) as follows: 

(4.3) K2(ZG/I)?> II K2(Z[x]/Ix)->SKx(ZG)-+09 

where S* is the subset of S = SQ(G) different from ± 1 (of course, x = — 1 
can occur only when p = 2) and <p is the product map induced by the 
characters in 5*. Since all the K2s which occur in (4.3) are generated by 
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Steinberg symbols [28, Theorem 2.13], explicit calculation is often possible. 
Here is a simple example which indicates the technique. 

Let f be a primitive cube root of unity and let x be the character of a cyclic 
group of order 3 which maps a fixed generator to £. Let G be the product of 2 
cyclic groups of order 3 with generators a, T, repsectively ( G is an elementary 
abelian 3-group of rank 2). 

Theny = (x„ x2> Xa> X4)> where Xi = X X 1, Xi = 1 X X> X3 = X X X and 
X4 = X ! x X (these are the elements of S*% and we may take Ix = (J — l)3. 
By [10, Theorem 3.8(f)] we know that K2(Z[Ç]/(£ - l)3) is generated by 
s * {f, 1 + (f - l)2}. Also, since each x maps the augmentation ideal, / , of 
ZG to (f - 1)Z[£], it follows that x ( / 3 ) » 0, and we may replace (4.3) by the 
exact sequence 

K2(ZG/(I,J3)) ^ Ai (Z[ f ] / ( f - lf)4^SKl(ZG)^0. 

Define elements $, e K2(ZG/(I, J3)) by 

5, = {a, 1 + (or - l)(ar2 - 1)}, s2 = {r, 1 + (ar - l)(a^ - 1)}, 

*3 - (r, 1 + (a - l ) (aV - 1)}, *4 - {a"1, 1 + (r - l)(ar2 - 1)}. 

Then x(^) = ^ (Kronecker delta), proving <p is surjective and SK^ZG) — 
0. 

Of course, the above result was known before the advent of the functor K2y 

and our wish is to produce examples where SKX(ZG) is not trivial. One 
method, based on [2], and suitable for machine computation, works as 
follows. Choose a collection of Steinberg symbols Sj which generate 
K2(ZG/I). Form the matrix with rows indexed by these symbols and 
columns indexed by S* whose ijth entry is the Steinberg symbol Xi(sj) *= 
K2(ZfXi]/Ix). This K2 is a cyclic group which may be identified with a 
subgroup of the roots of unity in Z[x] by interpreting X/(ty) as a norm residue 
symbol [10, §4]. Since explicit formulas for the evaluation of norm residue 
symbols are known [3], [14], we obtain a relation matrix describing the image 
of <p as a subgroup of tlxss*^2(^[x]/1^ and the order of SKX(ZG) = 
coker(<p) may be computed. This method has been used by Roy G. Fuller to 
obtain the following results by machine calculation: 

G 

Z/p2XZ/p2{p = 3,5,1) 
Z/p2 X Z/p X Z/p (p = 3, 5,7) 

Z/27 X Z/9 

Z/27 X Z/3 X Z/3 

Z/9 X Z/9 X Z/3 

SKt (ZG) 
_ _ 

(Z/p)p(p-l) 

(Z/3)4 

(Z/3)9 

(Z/3)'5 X (Z/9)2 

General computations of SKX(ZG) depend, of course, on finding a method 
for computing the image of <p. The only general result so far has been for 
elementary abelian /̂ -groups. In that case Jlxes*K2(Z[x]/1)) is an F -̂vector 
space of dimension (pk - !)/(/> - 1), where k is the rank of G. The 
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dimension of V = image(cp) as a subspace of this vector space may be 
computed by interpreting F as a certain vector subspace of the polynomial 
functions from the character group of G to Fp. The result is: 

(4.4) THEOREM [2]. Let p be an odd prime and G an elementary abelian 
p-group of rank k. Then SKX(ZG) is an elementary abelian p-group of rank 

Pk~l (p + k- l\ 
p-i \ p r 

In particular, SKX(ZG) ¥* Ofor k > 3. 

Some other results obtained by hand computation are given below [Dennis 
and Stein, unpublished]. 

G 

Z/4 X Z/4 
Z/2 X Z/2 X Z/4 

(Z/2)3 X Z/4 

SKX(ZG) 

Z/2 
Z/2 

(Z/2)3 X Z/4 

5. Reduction to /̂ -groups. The method outlined above for calculating 
SKX(ZG) when G is a finite abelian p-group applies more generally to the 
computation of SKX(£>G), where O is the ring of integers in any finite Galois 
extension of Q in which the prime p does not ramify. We obtain an exact 
sequence 

(5.1) K2(£)G/%)Ï» II K2(Q[x]/%x)-»SKl(DG)^0 
xesQ 

analogous to (4.3), where S0 is a certain collection of irreducible characters of 
G [2]. The norm N: 0 - * Z induces, by extension of scalars, compatible 
homomorphism O G / ^ - ^ Z G / / and 0[x]/Sx -> Z[x]//x . These, in turn, 
induce a map of (5.1) to (4.3), which is an isomorphism SKX(£)G) -» SKX(ZG) 
for p ¥* 2. (When p * 2, SQ may be larger than £*.) The precise result is as 
follows. 

(5.2) THEOREM. Letp be a prime and G a finite abelian p-group. Let Kx c K2 

be a finite Galois extension of number fields with rings of integers Ox, D2, 
respectively, in which p is unramified. Then SKX(€)2G) œ SKX(€)XG) in case p 
is odd, or, when p = 2, both Ox and 0 2

 are totally imaginary or both have real 
embeddings. 

I now want to indicate how Theorem 5.2 can be used to reduce the 
computation of SKX(ZG) from general finite abelian groups to the case of 
p-groups. For any finite abelian group G, let us write Gp for its Sylow 
/^-subgroup. Thus G = H X Gp, where H has order prime to p. The integral 
closure, C, of ZH in QH is, by the discussion in §2, the direct product of 
q(H) = q{G/Gp) factors of the form Z[J], where £ is a root of unity of order 
prime to/?. In particular, each factor Z[f ] satisfies the hypothesis of Theorem 
5.2, and it follows that iip is odd, SKx(C[Gp]) « SKx{ZGp)

q{G/G'\ In particu­
lar, SKx(C[Gp]) is a finite abelian/?-group (cf. §2). 

On the other hand, we have the homomorphisms 
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ZG = Z[H X Gp]*tZ[H][Gp] C C[Gp] 

and the induced map SKX(ZG)^> SKx(C[Gp]) kills all torsion other than 
/?-torsion, thus inducing a homomorphism 

SKx(ZG)p^SKx(C[Gp}). 

(5.3) THEOREM [2]. The homomorphism a is an isomorphism f or all p. 

Combining Theorems 5.2 and 5.3, we have 

(5.4) THEOREM. Let G be a finite abelian group with Sylow subgroups {Gp}. 
Then 

St f , (ZG)~ II 5/T1(Z(? / ))
? ( C / C p )X^1(ZG2)x5^1(Z[f3]G2)< 7 ( C / G 2 )"1 , 

p odd 
P\\G\ 

where f3 is a primitive cube root of unity. 

6. Induction theorems for finite groups. Let G be a finite abelian group. 
Since QG is semisimple, it follows from the stability theorems for Kx [5, 
Chapter V, Theorem 4.2 ff.] that the determinant map from KX(QG) to 
t/(QG) is an isomorphism, and, therefore, that ke^AT^ZG)-» KX(QG)) = 
SKX(ZG). We may thus generalize the definition of SKX to nonabelian finite 
groups by setting SKX{ZG) = k e r ^ Z G ) -» KX(QG)). (There is an alterna­
tive method of defining SKX using reduced norms [4, §1]; we will not need this 
definition here.) More generally, if A is the ring of integers in an algebraic 
number field F, we set SKX(AG) = k e r ^ ^ G ) - • KX(FG)). 

We have already seen in §§1 and 2 that when G is abelian, the torsion 
subgroup of Wh(^IG) is precisely SKX(AG). Our next task is to prove Wall's 
result that this remains true if G is finite, but not necessarily abelian (or, 
equivalent^, to show that tor(^(^G)) = tor(^*) © Gab © SKX(AG) where 
A is the ring of integers in an algebraic number field and G is finite). To do so 
will require a brief sketch of the use of induction techniques in algebraic 
/f-thcory, as developed by Swan, Lam and Dress. 

Our starting point is the calculus of induction and restriction for group 
representations. Let H be a subgroup of a finite group G. Any Z/f-module M 
can be made into an induced ZG-module /*(M) = M ®ZH ZG. Conversely, 
by restricting scalars from ZG to ZH, any ZG-module AT can be made into a 
Z//-module denoted i*(N). The maps /*, /* are, in fact, functors between the 
appropriate categories of modules, and are related by the Frobenius 
reciprocity theorem, which, for our purposes, can be formulated as follows. 

Let GZ(G) (resp. GZ(H)) be the Grothendieck group on the category of all 
finitely generated ZG (resp. Z//>modules which are Z-projective. Tensor 
product over Z induces ring structures on GZ(G) and GZ(H)9 and the 
Frobenius reciprocity law in this setting states that for x E GZ(G)9 

y G GZ(H), 

As usual, similar definitions and results apply when Z is replaced by a ring of 
algebraic integers A. 
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Now suppose tf) is some collection of subgroups of G, and let GA(G)^ be 
the ideal in GA(G) generated by i+(GA(H)) for all H E <3). 

(6.1) THEOREM [ARTIN]. Let Q be the set of all cyclic subgroups of the finite 
group G. Then 

\G\GQ(G) c GQ{G)e. 

We shall often be interested in the collection of hyperelementary subgroups 
of G. A finite group H is said to bep-hyperelementary (for some prime/?) if it 
contains a cyclic normal subgroup of index a power of/? (equivalently: if H is 
the semidirect product N >4 P with N normal cyclic and P a /?-group). Any 
dihedral group is 2-hyperelementary. All /^-groups are /^-hyperelementary. 

(6.2) THEOREM [WITT, BERMAN]. Let % be the collection of p-hyperele-
mentary subgroups of the finite group G for all primes dividing |G|. Then 
GF(G) = GF(G)% for any algebraic number field F. 

These theorems were extended by Swan [31], [32]. 

(6.3) THEOREM. Let R be a Dedekind domain with field of fractions K and let 
G be a finite group. Suppose D̂ is a collection of subgroups of G. If nGK(G) C 
GK(G)c& then 

(i) nGR/p(G) c GR/P(G)<% for all maximal ideals pofR; and 
(n)n2GR(G)cGR(G)^ 

Swan's work, in turn, was formalized and extended by Lam [21], who 
showed that whenever theorems such as (6.3) hold for GR(G)9 they are valid 
as well for F(G)> where F is any functor from finite groups and their 
monomorphisms to abelian groups which can be given the structure of a 
"Frobenius module" over GR. Examples of such functors are K0(RG), 
KX(RG), SKX(RG), Wh(RG). 

7. Some computations for nonabelian finite groups. We have seen above that 
SKX(ZG) = 0 when G is cyclic. Hence SKx{ZG)e = 0 for any finite group G, 
where G is the set of cyclic subgroups of G. Using the work of Lam together 
with Theorems 6.1 and 6.3, we see that \G\2SKX(ZG) = 0; i.e. that SKX(ZG) is 
a torsion group. Since it is also finitely generated (cf. [5, p. 553, (v)]), we 
conclude that SKX(ZG) is finite. 

Another corollary of the work of Swan and Lam is: 

(7.1) COROLLARY. If SKX(AH) = 0 for every hyperelementary subgroup H of 
a finite group G, then SKX(AG) — 0 as well. 

By restricting attention to/?-hyperelementary subgroups for a fixed prime/?, 
we can obtain information about the/?-torsion in SKX(ZG). For example: 

(7.2) THEOREM [SWAN-LAM]. If G has a cyclic normal Sylow p-subgroup, 
SKX(ZG) has nop-torsion. 

Let me now indicate, in outline, Wall's argument for proving SKX(AG) = 
tor(Wh(v4G)). Here A is the ring of integers in an algebraic number field F, 
and we write K[(AG) for the image of KX{AG) in KX(FG). We have an exact 
commutative diagram (cf. §1): 
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o i 
0^SKx(A)^Kl(A) 0G a b-> K[{A) 0Ga b-»O 

i i i 
0-+SKx(AG)^>Kx(AG) -* K[(AG) -»Q 

4 4 
Wh(^G) -» Wh'(AG) 

i i 
0 0 

Note that SKX(A) = 0 by Theorem 1.2. Wall shows that Wh'(AG) is torsion-
free, hence that tor(^*), Gab and SKX(AG) generate \xx(Kx(AG)). Since the 
diagram remains exact when we restrict to torsion subgroups, it follows that 
ior{A*) © Gab projects isomorphically to K[{AG\ which proves that 
SKX(A G) is a direct summand of tor(Kx(AG)). 

To prove that Wh'(̂ 4G) is torsion-free, Wall invokes the induction tech­
niques described above, showing that Wh'(AG) is/?-torsion free if Wh'(AH) 
is/7-torsion free for every/?-hyperelementary subgroup H of G. Next he proves 
that if A' is a normal /-subgroup of H for some prime / ^ p, Wh'(AH) is 
/Morsion free if Wh'(A[H/K]) is. This allows him to reduce to the case when 
H is a/7-group, for which direct arguments are possible. 

Theorem 7.2 has been used to prove that SK^ZD^) = 0, where D^ is the 
dihedral group of order 2p, p an odd prime. Let I be the ideal of ZZ)̂ , 
generated by all g - 1, where g lies in the Sylow ^-subgroup of Dlp. Then 
SKl(ZD2p/I) = 0, and it follows that SKx(ZD2p) is a quotient of 
SKx(ZD2p, / ) . Direct computation shows that this relative group is a/?-group. 
Since Theorem 7.2 implies that SKxÇZD2p) has no ̂ -torsion, it must be trivial. 
These results are due to Lam [21] for/? = 3 and to Keating [18] and Obayashi 
[25]. 

Similar arguments have been used by Keating to show SKX(ZG) = 0 for 
any metacyclic group G containing a normal subgroup H of prime index s 
relatively prime to \H\. He has also noted [19] that these methods prove the 
triviality of SKX(ZG) if the normal subgroup H has order/?, \G/H\ does not 
divide/? — 1 and G/H embeds in the automorphism group of H. 

Along slightly different lines, Keating [17] and Obayashi [26] have proved 
SKX(ZD) = 0 when D is a dihedral 2-group. Keating produces an order £) in 
QD and an ideal I c £) such that the usual map SKx(£)f I) -* SKX(£J) factors 
as 

SKX (£), ƒ) ^ SKX (ZD) A SKX (O), 

with a onto and /? injective. Explicit computation then shows that fia is the 
0-map. The same technique gives a similar result for semidihedral 2-groups 
[Keating, unpublished]. 

Finally, Magurn [22] has generalized the results of Keating and Obayashi 
to show SKX(ZD) = 0 for all dihedral groups D. His method uses Mayer-
Vietoris sequences reminiscent of §3 to proceed inductively from the cases 
\D\ = 2r and \D\ = 2p. Since these dihedral groups are hyperelementary, 
Magurn is able to apply his result in conjunction with Corollary 7.1 to prove: 
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(7.3) THEOREM. Let %n be the nth symmetric group. SKx(ZSn) = 0 for n = 4, 
5, 6. More generally, SKXÇLG) = 0 for any permutation group G of degree < 6. 

Similarly, SKX(ZG) = 0 when G is the binary tetrahedral or icosahedral 
group. The same is true for the binary octahedral group, provided that 
SKX(ZH) = 0 for the generalized quaternion group H of order 16. Whether 
this is, in fact, true, remains an open question. 
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