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CHAPTER 1. 
This survey is for mathematicians but is about physics. We have in mind a 

reader who hasn't worked on physics since sophomore days but is familiar 
with tensor algebra, differential topology and Riemannian geometry on the 
introductory graduate level. The theory of Lie groups is needed for discussing 
examples but not for the fundamental ideas* 

This chapter gives some physics background. Chapters 2-6 discuss basic 
general and special relativity, including a very brief introduction to the theory 
of black holes. Chapter 7 gives a sample application, cosmology. We should 
point out that §7.2 summarizes the basic facts of cosmology and is entirely 
descriptive; it can be understood by a reader who ignores all but the basic 
definitions of this survey. Chapter 8 gives some examples of mathematics 
used in current research. 

We concentrate on basic current physics at the textbook or folk theorem 
level. Bibliographical references will be sparse. [14], [20] and [9] are physics 
texts which give historical background and far more details. [18] is in the 
same style as this article. 

1.1. Conventions. We give a few examples of our notation and terminology. 
Smooth means C00. For us, a manifold is paracompact, Hausdorff, real, finite 
dimensional and smooth. M denotes a manifold throughout. TM is the 
tangent bundle with projection TT; thus if M^ denotes the tangent space of M 
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at x, then TM = \J X^MMX. A tensor field on a manifold is by definition 
smooth unless explicitly indicated otherwise. Let F be a vector field on M ; 
thus V: M -» TM such that m <> V =• identity. The value of V at x G M is 
denoted by Vx, or sometimes V(x); thus Kx G Mx. 

Let JV be a manifold and <J>: JV -> M be a smooth map. <J>* will denote the 
pullback and <t>* the differential. <£> is a homeomorphic imbedding iff <£>„, is 
everywhere nonsingular and <J>: iV —> </>(A0 is a homeomorphism with respect 
to the topology induced on <f>(N) c M by that of M. 

Suppose the dimension of M is at least two. A Lorentzian metric on M is a 
symmetric (0, 2)-tensor field g on M such that, Vx G M, the quadratic form 
gx on Mx has signature ( + , + , . . . , + , — ) . Thus gx is nondegenerate and 

max (dim A\A is a vector subspace of Mx and g|^ is negative definite} = 1. 

Then (M, g) is a Lorentzian manifold. Suppose <J>: M -» M is smooth. <J> is an 
isometry for (M, g) iff <f> is a diffeomorphism and <£*g = g. Define (M, g) as 
time-orientable iff there is a vector field V on M such that g(F, K) < 0 
everywhere; this key definition will be examined much more closely in §2.3. 

Let y: F-» M be a continuous cwn>e, i.e. F c R is a connected subset 
which contains more than one point, y goes from x to y iff F = [a, 6], x = ya 
eind y = yè. Let y: F ^ M b e a smooth curve, y*: F-> FM will denote the 
tangent vector field. For example, suppose y is a homeomorphic imbedding. 
Then there exists a vector field V on M such that V ° y = y*, du and d/du, 
respectively, denote the canonical 1-form and vector field on F c R. For 
example, let </> and N be as above, <o be a 1-form on M, y: F-> N be a 
smooth curve. Then 

"((«» ° Y)*) = (4>*V)(Y*) = (y*<f>V)(</M): F ^ R . 

For R" = R X • • • X R, ul denotes the /th projection. Thus, on any open 
submanifold of Rn, (du1, . . . , dun) is a basis for the 1-forms. (3 t, . . . , dn) will 
denote the dual basis. 

The rest of this chapter contains little mathematics and can be skimmed. 

1.2. General relativity. General relativity is a theory of nature, especially of 
gravity. Its central assumption is that space, time, and gravity are merely 
three aspects of one entity, called spacetime, and modeled by a time-
orientable Lorentzian 4-manifold (M, g). General relativity analyzes space-
time, electromagnetism, matter and their mutual influences. The models deal 
with the complete history of a physical process, viewed as a whole. For 
example, a point particle is modeled by a curve which represents the past, 
present, and future of the particle. Thus a point z G M represents, e.g., 
here-now. 

Now in microphysics, gravity counts as a very minor effect. For example, 
the mutual gravitational attraction between two electrons is believed to be 
smaller than their electrostatic repulsion by a factor of more than 1040. But 
gravity is long-range and cumulative. In the realm of stars and galaxies, it can 
dominate. For example, the discovery of pulsars has shown that there are 
some stars which avoid gravitational collapse only by a last-ditch effort, at a 
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circumference of perhaps fifty miles. For such stars, and for the universe as a 
whole, general relativity is the best available theory. In principle, it applies 
throughout macrophysics, as we now discuss. 

Newtonian physics can handle weak gravitational effects. It cannot ade­
quately handle very strong ones, nor the high-speed effects which occur when 
relative speeds comparable to the speed of light are involved, nor quantum 
effects. Here, and throughout, "quantum" is used loosely; it refers to the 
"fuzzy, jumpy" behavior of small objects. Special relativity can handle high 
speed and quantum effects, but not gravitational ones. Current general 
relativity unifies Newtonian theory and nonquantum special relativity into 
one theory which can handle both high-speed effects and strong gravitational 
ones. Thus its one known limitation is that quantum effects cannot be 
handled systematically; they must be neglected or incorporated ad hoc. In 
particular, the only known interactions in nature are gravity, nonquantum 
electromagnetism and certain quantum interactions [21]. Thus the only inter­
actions which current general relativity can treat in a fully systematic way are 
nonquantum electromagnetism and gravity. 

As just indicated, we presently have two fundamental physical theories: 
general relativity for macrophysics and special relativistic quantum theory for 
microphysics. No one really knows how to combine these, although many 
attempts have been made. 

1.3. Past, present and future. Nonquantum special relativity was introduced 
around 1905 by Einstein, Lorentz, Poincaré, Minkowski and others. Some ten 
years later, Einstein introduced general relativity, generalizing from flat to 
curved Lorentzian manifolds to include gravity. The Newtonian limit of 
general relativity, special relativity and quantum theory have each been 
checked literally billions of times. But for many years, only small and poorly 
measured effects within the solar system indicated that general relativity gives 
better answers than combining Newtonian physics and nonquantum special 
relativity ad hoc. 

Today, more accurate measurements within the solar system, the apparent 
success of general relativistic models for white dwarf stars and neutron stars 
(e.g. pulsars), the possible discovery of the black holes and perhaps even of 
the gravitational radiation predicted by the theory, and the tentative success 
of general relativistic cosmology have given the theory a somewhat firmer 
empirical foundation (cf. [14], [20]). It will eventually be submerged in a 
theory which somehow unifies microphysics and macrophysics. But its basic 
ideas will probably be essential in formulating this more accurate theory. 

1.4. Time and motion. We shall always use units such that the speed c of 
light is the dimensionless number 1. Thus a distance L of 2 seconds means 
L = 2 (light-) seconds ^ 6 x 108 meters. 

We outline how some fundamental concepts of macrophysics have changed 
during this century. For example, one used to model physical time by 
Newton's absolute time. Around 1900, it was realized that this model is 
inaccurate. Nowadays, a very private time called comoving or proper time, 
modeled by arclength with respect to a Lorentzian metric, is the only 
corresponding basic concept. 
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To see roughly what is involved, imagine in elementary Newtonian physics 
a small body moving in a straight line. Suppose the motion is described by a 
smooth function x: R -* R with x(t) the Euclidean position* x(t) the Newto­
nian velocity, and \x(t)\ the Newtonian speed for each Newtonian time 
1 E R . Assume gravity is negligible. 

As in freshman calculus, the function x(t) can be analyzed to advantage 
through its graph, i.e., the smooth curve y in R2 such that y: R-»R2 with 
yu = (x(u), u) Vu E R. The game is to supply R2 with the Lorentzian metric 
g = du1 ® du1 — du2 ® du2 and then replace x by y up to certain reparame-
trizations of the domain R and up to isometries of the image space (R2, g) 
(definitions as in §2.1 following). 

(R2, g) is time-orientable (§§1.1, 2.3). In the present context, time-orienta-
bility simply means that the following convention makes sense. For y E R2, a 
vector V E (R2)y is future-directed iff both g(V, V) < 0 and du\V) > 0 
hold; this convention then time-orients (R2, g). For example, if ƒ E R2, then 
the vectors d2y and d2y + d[y are future-directed, but d2y + 23,^ and 
— d2y are not. 

Throughout the rest of this section, (R2, g), the time-orientation, x: R ~» R 
and y •» (x, identity map of R) are as above. However, each formal definition 
below generalizes automatically if (R2, g) is replaced by a spacetime (M, g) as 
defined in §2.4 and y is replaced by a smooth curve into M; the definitions 
thus apply throughout general and special relativity, y is future-directed iff 
y+u is future-directed Vw E R. 

Now, in our units, the Newtonian speed is no greater than the speed of 
light iff \x\ < 1, where equality holds iff the Newtonian speed equals that of 
light. On the other hand y* = (*» 0> s o g(Y*> Y*) ~ *2 "" !• Tlms 

g(ï*> T*) < 0 iff the Newtonian speed is no greater than the speed of light. 
This suggests, though it does not prove, how one can replace the criterion 
|JC| < 1, which involves the physically inaccurate concept of Newtonian time. 
Note that g(y*, y*) is a function R -» R. 

DEFINITION 1.4.1. y models motion at the speed of light (resp. at less than the 
speed of light) iff y is future-directed and g(y*, y*) = 0 (resp.< 0) every­
where. 

Now, as long as R2 is regarded concretely, replacing x by y as above still 
does not excise Newtonian time t: if u2: R2 -> R is regarded as a distinguished 
function one can identify u2 and t conceptually. But the crucial Definition 
1.4.1 makes sense even if we regard R2 merely as a manifold, with the C00 

structure, g, the above time-orientation, and the usual R2 orientation as the 
only given structures. One thus says that "the speed of light is absolute". 

This shift to a basis-free viewpoint corresponds to genuinely new physics. 
The natural automorphisms of (M, g) are now those isometries <f>: M -* M 
which preserve the orientation and preserve the time-orientation, i.e. for every 
vector V, <j>+ V is future-directed iff V is itself future-directed; note here that if 
V is future-directed, 

gfaV,*tV) - (*•*)(K, V) = g(K, V) < 0. 

A standard computation shows that <f>: M ~» M is such a natural automor­
phism iff there exist a\a\ /? E R such that 
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" l o < A (ar\ . /cosh/? s i n h 0 \ / M i \ 
u2**} \a2) Uinh)8 c o s h ^ / U 2 / 

In general, u1 <> <f> =* u\ indeed <(>*du2 ¥* du1. Thus the phyisically inac­
curate concept of absolute time has been done away with thereby* One might 
try the whole set {u2 ° <^\a\ /? E R} as a replacement. This leads to the 
standard effects discussed in elementary special relativity texts. For example, 
if /? ^ 0, the level surfaces of u2 © <j> are not those of u2 ("relativity of 
simultaneity"), and (<t>*du2)(d2) > du2(d2) ("time dilation"). Similarly, 
|(***!X9i)l > l^!(3i)l for $ ¥* 0 ("Lorentz contraction"). 

But a different replacement for Newton's absolute time is the fundamental 
one physically. Since arclengths are intrinsic, it makes mathematical sense to 
define the proper time interval, 

* - lUl\g{y*u*y*u)\ du> 

for y between yux and yw2 whenever y is a smooth future-directed curve which 
models motion at a speed less than that of light (1.4.1). A proper time interval 
is interpreted as time measured on any good clock moving with the body 
modeled by y. This interpretation has been checked empirically very many 
times; most of the checks are indirect; none is infinitely accurate; all have 
yielded consistency (cf. §1.5). 

Proper time intervals are conceptually very different from absolute time. 
Suppose we have two curves y, f as above both of which model motion at a 
speed less than the speed of light and intersect at exactly two points. Then the 
two relevant arclengths, in general, differ ("one twin ages more than the 
other"; in the early days of special relativity, this effect was regarded as 
paradoxical by some people). In particular, suppose y is a geodesic of the 
Levi-Civita connection of (R2, g), i.e. y is a straight line. Then y is not a 
geodesic. A short calculation shows that y ages more than y (Riemannian 
geometry here incorrectly suggests less). For each spacetime, this "twin 
inequality" has an algebraic counterpart (§2.2) and a global geometric one 
(§2.6). 

Replacing the Newtonian concept of the speed of light by 1.4.1 and 
replacing absolute time by arclengths as above were perhaps the most 
important changes effected by relativity. But every other Newtonian concept 
was either replaced by some intrinsic concept or dropped entirely. We give 
one more example. 

Imagine a small body falling in the earth's gravity. Suppose air friction, 
changes in the gravity due to the body itself, etc. are negligible. Galileo and 
Newton knew that the history of such a body is determined by an initial 
position and an initial Newtonian velocity, independent of the body's mass, 
composition, etc.-a bullet can have the same orbit as a spaceship. Einstein 
perceived that geodesies have a similar property: given a point and a tangent 
vector at the point, one gets a unique inextendible geodesic, independent of 
mass, composition, etc. Thus in the current theory, one uses future-directed 
geodesies of the Levi-Civita connection to model small bodies that are freely 
falling. The physical interpretation of free fall is that the net external force 
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due to electromagenetism and quantum interactions is negligible, so that only 
gravity is relevant. Using geodesies then makes gravity simply one aspect of 
spacetime. For example, a short calculation shows y above is a geodesic iff 
the Newtonian velocity x is independent of Newtonian time. The Newtonian 
interpretation of x = constant (equivalently, x = 0, or no acceleration) is that 
no net external force, gravitational or otherwise, acts on the body. The 
relativistic interpretation is two-fold: y geodesic <-» only gravity acts on the 
body; gravity negligible <-> (R2, g) has zero curvature. Taken together, the two 
relativistic interpretations are consistent with the Newtonian one. 

1.5. Asides on physics vs. mathematics. "As far as the laws of mathematics 
refer to reality, they are not certain; and as far as they are certain, they do 
not refer to reality" (Einstein, as quoted in [14, p. 43]). For later reference we 
mention some examples and implications of Einstein's comment. 

To regard Definition 1.4.1 as a purely mathematical definition would be a 
swindle, since "speed of light" has an empirical meaning; nature not being a 
theorem, the empirical meaning can never be made fully precise mathemati­
cally. In what follows, definitions will be more important than theorems since 
many will be, like 1.4.1, physical postulates in disguise. To handle the 
extra-mathematical connotations, considerable discussion will be needed in 
some cases. 

The discussion above 1.4.1 does not in any sense prove 1.4.1. One reason, 
among many, is that Newtonian physics was used and Newtonian physics is 
inaccurate. Generally speaking, physical theories are guessed, not deduced. In 
particular, general relativity cannot really be proved from anything simpler 
than itself. 

The physical interpretation of arclengths in §1.4 might be regarded as a 
prescription for checking whether a Lorentzian metric really exists and 
measuring if it does exist: sufficiently many such arclengths will determine 
the Lorentzian metric uniquely. But there are many other ways to check for 
the existence of, and measure, the Lorentzian metric in general relativity. The 
real point is that one has an overall mathematical theory which is, by the skin 
of its teeth, mathematically consistent. The theory has a rich supply of 
extra-mathematical interpretations as in §1.4. These are at least sufficiently 
precise so that one can check the theory as a whole against nature as a whole 
a few billion times. In the absence of contradictions, the theory remains 
acceptable. 

CHAPTER 2 
We define the models for space, time and gravity, ignoring matter and 

electromagnetism for the time being. 

2.1. Lorentzian manifolds. Let M be an «-manifold, n > 2. There exists a 
Lorentzian metric g on M iff there exists a nowhere zero vector field on M. 
(One direction is immediate: If V is such a vector field, we may assume that 
F is a unit vector field relative to some Riemannian metric h on M. Let co be 
the 1-form dual to V relative to h. Then g = /*-2<o®(oisa Lorentzian 
metric. The converse assertion needs some algebraic topology.) In particular, 
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if M is connected and noncompact, there exists a Lorentzian metric on M. 
Let (M, g) be a Lorentzian manifold, D be the Levi-Civita connection of g, 

i.e. Dxg = 0 and Dx Y - DYX = [X, Y] for all vector fields X, Y on M. The 
curvature tensor is the unique (1, 3)-tensor field R on M which obeys 

/?(to,*, y, z ) = ^(DjJVY - z)zz>r* - D[YZ]X) 

for each 1-form <o and all vector fields X, Y, Z on M. The Ricci tensor is the 
symmetric (0, 2)-tensor field Ric defined by 

Ric(*,r)« S *(<o«,*,*a, y), 
a - 1 

with (co1 , . . . , cow) any local basis of 1-forms and (Xx,..., A"w) the dual basis. 
A basis (Xx,..., Xn) for A/x, x E M, is defined as (ordered and 

Lorentzian) orthonormal iff the dual basis (co1 , . . . , co") obeys 
A 7 - 1 

Let 71 be a (0, 2)-tensor field on Af. We define trace T as that smooth function 
on M which obeys 

(trace r ) - 2 r ( ^ */) - T(XH, XH), Vx E M 
i - i 

and for an orthonormal basis (Xv . . . , Xn) of Mx; the definition is indepen­
dent of the choice of {Xa}. The scalar curvature is s = trace Ric. 

Asides (A) For Lorentzian manifolds, paracompactness need not be pos­
tulated independently; indeed the Lorentzian metric (or any affine connec­
tion) allows one to construct a Riemannian metric on the principal bundle. 
(B) In classical notation: the Levi-Civita connection D is characterized by the 
pair of equations 

g^p = 0 and X$Y9 - YfvX
v = X$Y9 - Y*X'; 

R is characterized by ^R^ = ij„;p;a - %.a.p\ (Ric)^ = R£pv by definition; 
5 = (Ric)fU,g/u' by definition; (Xl9. . . , A"w) is orthonormal iff 

BitpXIiXi = • • • = g^XJï^{X^_ 1 « 1 « — g^XjfXZ, 

and g^XfXf = 0 V/ ^y'. Though it happens to be best for relativity, we shall 
not use this classical index notation at all. 

2.2. Lorentzian algebra. Let (M, g) be a Lorentzian «-manifold and suppose 
x E M. We need many details about the vector space Mx together with the 
quadratic form gx on Mx. Let A c M^ be a vector subspace. The cörwsa/ 
character of A is: spacelike iff g|^ is positive definite, lightlike iff g|^ is 
degenerate, timelike otherwise. The cawsa/ character of V E Mx is that of 
span V. Thus F is: timelike iff g(V, V) < 0; lightlike iff g(V, V) = 0 and 
V ¥= 0; spacelike iff g( V, V) > 0 or V = 0. F is azwstf/ iff F is timelike or 
lightlike. For example, if V is causal, F ^ O . 

The span of a causal vector corresponds to physically realizable motion 
(§1.4). We shall always assume no information can travel faster than the 
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speed of light. On this assumption, a nonzero spacelike vector is of little or no 
physical interest. 

The next two results can be obtained by standard, though slightly tedious 
algebra. We shall use the standard notation: 

V\\=\S{V,V)\X/2 VVEMX, 

and 

A± ={V EMx\g(V, W) = 0VWEA} VA C Mx. 

2.2.1. The wrong-way Schwarz inequality. Suppose V, W E Mx are causal. 
Then |g(K, W)\ > \\V\[||JF||, where equality holds iff span V = span W. 

This implies: (A) a timelike vector V and a causal vector W are never 
orthogonal, i.e. g(V, W) ^ 0; (B) two lightlike vectors are orthogonal iff they 
are proportional (!); (C) A vector V is timelike iff the (n - l)-dimensional 
subspace Vx is spacelike; (D) V is timelike iff there exists an (ordered, 
Lorentzian) orthonormal basis (Xl9 • »., Xn_v V/\\ V\\). 

2.2.2. Open solid cones. (A) The set (öx c Mx of timelike vectors is open 
and has two connected components, say 9J ; V E §+ iff ( - V) E ?Tj. (B) 
Each connected component is a solid cone, i.e. a > 0, b > 0 and V, W E 9J 
imply aV + bW E ?T .̂ 

M 
X 

We illustrate the preceding with a figure, drawn for the case n = 3. 
Locally and globally, physically and formally, this solid cone structure is the 
heart of relativity, as we shall gradually explain. For example, the existence of 
two connected components means one can draw a distinction, at least locally, 
between "heading towards the future" and "heading towards the past" 
(compare §1.4). 

Combining 2.2.2 and 2.2.3 gives the following. 
2.2.3. Wrong-way triangle inequality. Suppose V9 W E ?T+. Then 

*<mnn<\\v+n> 
where equality holds iff span V = span W. The same holds for V9 W E ?T~. 

2.3. Time-orientability. Let (Af, g) be a Lorentzian manifold, ?T = 
{(JC, V) E TM\g(V, V) < 0} be the timelike subset of TM, supplied with 

the induced topology. Thus ^ = (TT~1X) n 9\ Vx E M. 
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PROPOSITION 2.3.1. Suppose M is connected. (A) ?T is open; it has at most two 
connected components; \/x E M, the intersection of TT~XX with any connected 
component is nonempty. (B) ?T has exactly two connected components iff there is 
an everywhere timelike vector field on M. 

(A) follows from the algebraic counterpart 2.2.2 in a rather routine way on 
using the bundle isomorphism \p: TM -> TM given by \p(x, V) = (JC, - V). 
Now to prove (B), assume ?T has two connected components, say 5"* • Then 
Vx E M, there is a neighborhood %x and a vector field Vx: 9lx -> 7 ^ n 
?T+. Let {^} be a smooth partition of unity such that each <f>x > 0 and has 
support in %<. Then V = 2</>x K, is a vector field with value in ?T+ since the 
solid cone property 2.2.2(B) holds pointwise. Thus an everywhere timelike 
vector field V exists. Conversely, suppose such a V exists. Take ?T+ = 
{(x, W) E $]g(K, W) < 0} and ?T = ?̂T+ for ^ as above. Then ?F+ n 3"~ 
= 0 . ?T+ U ?T" = ?T, and each of 5* is open. Thus (B) holds. 

By 1.1 and 2.3.1(B) (M, g) is time-orientable iff ?T has exactly two 
connected components. 

EXAMPLE 2.3.2. Let Sl be the circle R/TTZ, and let M = R X S1. Let the 
natural projections be w: M->R, <#>: Af -> 51 , where we regard 0 < <j> < n* 
Thus </</> is a smooth 1-form on M. With g = du® du - d$® d& (M, g) is 
time - orientable. Now define 

(o = cos </> dw + sin <ƒ> rf</>, TJ = — sin </> du + cos <|> rf</> 

on the open submanifold {<ƒ> 7* 0}. Take g = <o®îj + 7j®<o and extend g to 
a Lorentzian metric on all of M by continuity at </> = 0. Then (M, g) is not 
time-orientable. The following schematic diagrams illustrate both of these 
possibilities: 

(M,g) time-orientable (M,g) not time-orientable 

In our later definition of a spacetime, we shall demand time-orientability. 
This is standard: one is interested only in those universes whose beings can 
distinguish between heading towards the future or the past (cf. [9] for more 
detailed motivations). 

Suppose (M, g) is time-oriented, i.e. (M, g) is time-orientable and one 
component of 9" has been designated ?T+. Then V E Mx is future-directed iff 
V 7*= 0 and (x, V) E Closure ?T+. Thus a future-directed vector is causal, and 
a causal vector is nonzero and either future-directed or past-directed. Here, as 
elsewhere, we take for granted dual definitions and results concerning past 
and future, e.g. the definition of past-directed. The terminology for vectors is 
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carried over to vector fields and curves in the way indicated by the following 
examples. 

A smooth curve y: F-> M is causal iff y^u is causal Vw E F; a vector field 
V is future-directed timelike iff Vx is future-directed timelike Vx E Af; etc. 
Thus a geodesic y must be either timelike, lightlike or spacelike, but a general 
curve need not have a well-defined causal character. 

Asides. (A) If a manifold M admits a Lorentzian metric g, then it also 
admits one, to be called g, such that (M, g) is time - orientable. (B) If a 
Lorentzian manifold either has a lightlike vector field or is simply connected, 
then it is time - orientable. (C) Neither converse of (B) holds. (D). Time-
orientability and orientability are independent conditions. 

2.4. Spacetimes. We now give our key definition. 
DEFINITION 2.4.1. A spacetime is a connected, oriented, time-oriented, 

Lorentzian 4-manifold (M, g). 
We mention some motivations (cf. §1.5). (A) Four dimensions, rather than 

three, are needed to model a complete history since intuitively there are three 
spatial dimensions and one time-dimension. In this context, "disconnected" 
would connote "always has been, is, and always will be disconnected", so one 
takes M connected. (B) Some physicists do not regard orientability as 
essential, but most do. (C) By our definitions, M and g are smooth. As in 
other physical theories, the motivation for assuming smoothness is obscure. 
(D) The Lorentzian metric g plays many roles. Going from Newtonian 
physics to relativity is mainly a matter of excising extraneous structures; 
somehow g remembers just the right things (cf. §1.4). Concepts of time, 
distance, gravity, speed of light, acceleration, rotation, causality, etc. are 
modeled using g, to the extent that they are retained at all. 

Literally thousands of modifications of general relativity have been sug­
gested; [14] and [20] discuss a few. Some of the modifications use a connec­
tion with torsion. We shall ignore all the modifications here. In particular, the 
Levi-Civita connection (§2.1) of a spacetime (M, g) will always be implied. 

Henceforth, (M, g) is a spacetime. A geodesic y: F - > M is complete iff 
F = R; (M, g) is (geodesically) complete iff each inextendible geodesic is 
complete. For an example of a complete spacetime, cf. §2.5 following. For an 
example of an inextendible geodesic which is not complete, and thus also of a 
spacetime which is not complete, cf. 3.1.5 following. 

The spacetime equivalence class of (M, g) is the set [(Af, g)] = 
{(AT, g')|(M', g') is a spacetime and there exists an orientation and 
time-orientation preserving isometry between M and M'}. An essential 
connotation of the word "relativity" is that [(M, g)], rather than (M, g) 
viewed concretely, is the object of interest (cf. §1.4). 

2.4.2. Isometry groups. Let (M, g) be a spacetime. The isometry group of M 
is 

§M = [<f>: M -* M\<(> is an isometry} 

(cf. §1.1). §M is a Lie group of dimension less than or equal to ten (cf. 
Kobayashi and Nomizu [12, p. 238]). Let # be a vector field on M, and LK be 
the Lie derivative. K is Killing iff LKg = 0. Suppose K is complete. Then K is 
Killing iff each element of its flow is an isometry. Suppose K is Killing and y: 
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F -* M is a geodesic. Then g(y*, K) is a constant, i.e. a constant function 
from F to R. 

If (M, g) is a really detailed, realistic model, then §M simply consists of the 
identity map, just as a faithful model for the surface of the earth, mountains 
and all, would be a Riemannian 2-manifold without any nontrivial isometries. 
S M is nontrivial iff some symmetry idealization-time independence, spherical 
symmetry, spatial homogeneity, plane wave symmetry, etc.-is being used. For 
example, suppose A' is a complete, future-directed timelike Killing vector field 
on M. Imagine an observer whose history is modeled by an integral curve of 
K. Since each element of the flow of K is an isometry, the observer "sees 
nothing changing" in the geometry as he proceeds towards the future. A 
spacetime is defined as time-independent (= stationary) iff there is a timelike 
Killing vector field on it. This corresponds to the Newtonian concept of a 
time-independent gravitational field. Somewhat oversimplified in principle, 
such symmetry idealizations are often essential in practice. 

Let % c @M be a Lie subgroup and suppose x G M. The orbit of % 
through x is {y G M\<j>x = y for some </> G %}. An orbit is a submanifold: 
indeed if % is the subgroup of % leaving x fixed, then the orbit of % 
through x is diffeomorphic to the quotient manifold %/%. 

2 A3. Physical equivalence. For each j> G M, let M* denote the dual tangent 
space; gy then determines an isomorphism \py: My-* M* (the "index-lowering 
map") via ( ^ V)( W) = g( V, W),\/V, W G My. V and the covector ^ V are 
by definition physically equivalent. The concept of physical equivalence ex­
tends in the natural way to tensor fields on M or on subsets of M, as 
indicated by the following examples. Let 5" be a (1, l)-tensor field on M. The 
unique (0, 2^-tensor field <$ physically equivalent to % is characterized by 
#( K, W) = ^(xpy V, W\ \/y G Mjind V F, W G My. The unique {2X 0)-tensor 
field <$ physically equivalent to <$ is similarly characterized by ?F((o, rf) = 
5"(I/JTV \py~

lri), Vy G M, V(o, TJ G A/,?. If one tensor in a physical equiva­
lence class has a physical interpretation, e.g. as an electromagnetic field 
(§5.4), the same interpretation is assigned to all other members. For example, 
suppose ƒ is a smooth function on M. Then the 1-form df is past-directed 
timelike iff, Vy G M, the vector ^y~

x[{df)y] is past-directed timelike. 

2.5. Minkowski spacetime; special relativity. The most important spacetime 
in physics is defined as follows. 

3 

M = R4, g = 2 du' ® <&' - </w4 ® </W
4, 

the orientation is determined by dw1 A * ' * A du4 and the time-orientation is 
determined by requiring 34 to be future-directed. (M, g) is called Minkowski 
spacetime. Let [(M, g)] be the spacetime equivalence class of Minkowski 
spacetime. A spacetime (AT, g') is in [(M, g)] iff (M', gr) is simply connected, 
is complete, and has zero curvature tensor. This occurs iff the isometry group 
@M' is the Poincaré group: a ten-dimensional Lie group with four connected 
components which generalizes the natural automorphism group of §1.4, and 
can be defined as the semidirect product of 0(3, 1) with the group R4 under 
the usual representation of O (3, 1) on R4 [20]. 

t(Af, g)] models the trivial gravitational field: no gravity at all. One uses 
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[(M, g)] iff one is doing quantum or nonquantum special relativity. Note the 
obvious fact that not every causal curve in M is a geodesic. Thus the 
assertion, found in some popularizations, that special relativity cannot handle 
accelerations is (grotesquely) false. 

2.6. Elementary global properties. Recall that (M, g) is a spacetime. 
Compact spacetimes are almost never used. One reason is this: Let M be a 

compact spacetime. Then its universal covering M is a noncompact spacetime. 
Here, the spacetime structure of M is obtained by pulling back from M the 
Lorentzian metric, the orientation and the time-orientation via the covering 
map. The following topological reasoning shows that M is not compact. If M 
were compact, its first Betti number would vanish by simple connectivity, and 
so would its third Betti number by Poincaré duality. The Euler characteristic 
of M would then be positive. Since M admits a Lorentzian metric, it has a 
nowhere zero^vector field (cf. 2.1). This implies that its Euler characteristic is 
zero so that M cannot be compact. 

(M, g) is defined as maximal iff there is no spacetime (iV, h) such that M is 
a proper subset of N and h\M = g. Suppose (Af, g) is not maximal and (N, h) 
is as above. Then one can "see into or out of' M in the following sense: There 
is a lightlike geodesic of N which intersects both M and N — M. The proof, 
here omitted, consists of choosing a point on the boundary of M and using a 
local argument. In practice, this result gives a convenient way to check 
spacetimes for maximality, as we shall see. In particular, note that a complete 
spacetime is maximal. 

Whenever possible, one uses maximal spacetimes. But sometimes one is too 
lazy or insufficiently clever to work out a full model that is maximal. For 
example, it is often convenient to model (the history of) the earth's exterior, 
ignoring (the history of) the inside, which is much more complicated and to 
some extent unknown. In such a case one uses a spacetime which is not 
maximal (compare 3.2). Even a maximal spacetime is usually not complete. 
Incompleteness of causal geodesies has rather deep interpretations and im­
plications (Chapters 3, 6 and 7). Incompleteness or completeness of spacelike 
geodesies is not of much interest physically. 

The global structure of spacetime is subtler than that of a Riemannian 
manifold. Roughly, the key extra question is "who can communicate with 
whom?" For example, in most cosmological models, not all of spacetime can 
be observed from the point "here-now", even in principle. Roughly, looking 
outward in space involves looking backward in time and we get no signals 
from points which are too distant-late. It has turned out that to analyze such 
questions, one needs two basic objects, a chronology relation and a chrono­
logical distance, which we now define. Henceforth, as a mnemonic device, the 
use of the specific letter z E M is usually an invitation to interpret z 
intuitively as here-now; then y E M will usually be "earlier" and x E M 
"still earlier". 

Suppose (x, z) E M X M.x chronologically precedes z iff there is a smooth, 
future-directed, timelike curve y: [a, b] -» M from x to z. Here, "chronologi­
cally" refers to the fact that the arclength of y models proper ("comoving") 
time interval, as explained in §1.4. Define the chronology relation < by: x < z 
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iff x chronologically precedes z. We shall sometimes regard < as a subset of 
M X Af. The chronological past of z is I ~{z} s {x E M|JC < z}. As before, 
the definitions of dual objects, e.g. the chronological future / + {z} of z, will 
often be taken for granted. 

EXAMPLE 2.6.1. Make Minkowski spacetime into a spacetime (N, g) such 
that N is diffeomorphic to R3 X S1 by identifying (H>, a) E R4 with (w, 
a 4- l)Vw E R3 and Va E R. Then each point chronologically precedes every 
point, in particular, itself. < is then all of M X Af, and Vz E M. 7~{z} = M 
« ƒ + {*}. 

A spacetime obeys the chronology condition iff no point chronologically 
precedes itself. Apart from the present example, we will in this article 
consider only spacetimes which obey the chronology condition. One reason is 
that physics would be very confusing if someone could in principle murder 
his own ancestors. Thus the following comments are merely asides. (A) A 
spacetime obeys the chronology condition iff each timelike curve is never 
closed [16]. (B) No compact spacetime obeys the chronology condition [16]. 
(C) Certain spacetimes which model rotating black holes violate the chronol­
ogy condition [9]. (D) It seems clear that if one wants to impose the 
chronology condition for physical reasons, one should go whole hog and 
impose a more stringent condition (cf. Chapter 8). 

We now consider chronological distance. Suppose x < z. Corresponding to 
the wrong-way triangle inequality 2.2.3, short, smooth timelike curves from x 
to z are a dime a dozen. The reader can check that by putting in enough 
smooth wiggles one can reduce the arclength below any pre-assigned positive 
value. But if there exists a longest such curve, the curve is a timelike geodesic, 
by essentially the same argument as in Riemannian geometry. 

Take (0, oo] as (0, co) u {oo} with the usual order, order topology and 
addition; thus a + oo = oo Va E (0, oo]. Regard < as a subset of M X M as 
before. The chronological distance function of spacetime M is </:<-» (0, oo], 
where d(x, z) = supremum {arclength y|y is a smooth, future-directed time­
like curve from x to z}, V(x, z) E < , In Example 2.6.1, d(x, z) = oo Vx, 
z E Af, and d is useless. But we shall be mainly interested in cases where d is 
much better behaved. For example, on Minkowski spacetime, 

3 

[</(*, z ) ] 2 - - 2 (M^ - M?*)2+ (u*z - u*x)2 v ( * > z ) E <• 
The chronology relation and chronological distance have as their basic 

properties global versions of the algebraic properties 2.2.2 and 2.2.3. The 
globalization of the solid cone property 2.2.2 (B) is that < is transitive. This 
follows from a corner rounding argument [16]. So does the fact that d obeys 
the global wrong-way triangle inequality: whenever x<&y < z, d(x, z) > 
d(x, y) + d(y9 z). Finally, recall that, Vz E Af, the set ?Tf of past-directed 
timelike vectors is open. The global version is the following. 

THEOREM 2.6.2 (PENROSE [16]). I~{z) is open Vz E Af. 

Since the constraint that a curve be timelike is an open condition, the 
theorem is plausible. However, some work is required because I~*{z) need 
not be in the image of the exponential map expz. The proof requires two 
lemmas. Recall that a geodesically convex subset % c M is characterized by 
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the fact that Vx,.y E %, there is a unique geodesie in %, y: [0, 1] -» 9l, from 
x to j . Further, given .y E Af, a neighborhood % of ^ is called a normal 
neighborhood iff the inverse exponential map restricted to %, exp^1]^ is a 
well-defined smooth map. 

LEMMA 2.6.3. Given y E Af, f/zere « a geodesically convex open neighborhood 
% #ƒ >> wA/cA w af the same time a normal neighborhood of each of its points. 

This well-known lemma, due to Henry Whitehead, is valid not just for the 
Levi-Civita connection but for every affine connection as well (cf. Helgason 
[10] or Kobayashi and Nomizu [12]). 

LEMMA 2.6.4. Let (%, g) be a geodesically convex spacetime such that % is 
itself a normal neighborhood of each of its points. Let x,y E %. Then x <&y iff 
the geodesic y: [0, 1] -» % from y to x is past-directed timelike. 

PROOF. It suffices to prove the "only if" part. Let exp^: & -» % be the 
exponential map, where & c ^ is the maximal domain of definition of exp r 

The assumption on % imply that exp |ô is a diffeomorphism. Let 5^ c ^ 
be the two open solid cones of timelike vectors (§2.2), and define %± s 
expy(& n S'±) C $1. Then %+ and %"" are open and disjoint since exp^ is a 
diffeomorphism. Define the "square distance" function/: % -» R by 

fw = g(exp;-y exp"!w), Vw E %; 

ƒ is smooth. Now fw < 0 if f w E <?L+ u 91T, iff the geodesic from y to w is 
timelike. Moreover, the vector field R physically equivalent to df is radial 
[16]: V w £ % - {y}, Rw = a(aj), where a E (0, oo) and a: [0, 1] -* % is 
the unique geodesic fromj> to w. In particular, Rw is past-directed timelike iff 
w E %". 

Now suppose x<&y. By definition there exists a smooth past-directed 
timelike curve y: [0, 1] -> % from >> to x. A computation gives: (ƒ o y)(0) = 
0, d(f(yu))/du\um0 « 0, and rf2(/(yu))/</u2|M=0 < 0. Thus there is an e > 0 
so small that the image y[0, e] c %~. In particular, ƒ (ye) < 0. Now the point 
is that y cannot escape from %" ; specifically, suppose yl 2 %~, and we will 
derive a contradiction. There exists a u E (e, 1] such that /(yw) > 0. Thus 
there is a u0 E (e, u) such that yw0 E %~ and df(y^u0) > 0. But R(yu0) and 
ŷ Mo are both past-directed timelike, whence df(y*u0) = #(/?, y^w0) < 0 
(§2.2). Contradiction. Thus yl E %~, and the geodesic from y to x is 
past-directed timelike. • 

PROOF OF THEOREM 2.6.2. This is now straightforward. Suppose x E I~{z) 
and let % be a geodesically convex open neighborhood of x which is a 
normal neighborhood of each of its points (2.6.3). Since there is a smooth 
future-directed timelike curve from JC to z, there is a y on this curve which is 
in Gll. Then x « . y « z . By Lemma 2.6.4, x E %~ where %~ is as in the 
proof of that lemma. Thus %' is an open neighborhood of x in M. By 
transitivity of < , w E I ~{z} \fw E %~. Hence <?L~ c /~{z} . • 

2.6.5. Conformai invariance. Computing the chronology relation can often 
be simplified by the following remark. Suppose ƒ: Af -» (0, oo) is smooth and 
tet £o * /#• Then (M, g0) is a spacetime in the natural way and clearly 
« 0 = « . 



GENERAL RELATIVITY AND COHOMOLOGY 1115 

For physical purposes, one sometimes needs the causal past ("observable 
past") of z EL M, defined as the set of those points from which there is a 
smooth, future-directed causal curve to z together with z itself. Clearly I~{z} 
is a subset of the causal past of z. Causal pasts are much clumsier than 
chronological ones so one avoids them as much as possible. Fortunately they 
are not much bigger: 

THEOREM 2.6.6 [16]. If x is in the causal past of z, then x is in the closure of 
the chronological past of z. 

Asides (cf. [16]). Suppose z G M; let I~{z) be its chronological past and 
J~{z) be its causal past. (A) / ~{z} is perfectly open, i.e., 

Interior [Closure (ƒ " {z})] = I~ {z}. 

(B) It now follows from 2.6.6 that Closure (ƒ ~{z}) = Closure (I~{z}), and 
similarly for the interiors. (C) Sometimes J~{z] is closed, but in general it is 
neither open nor closed. To get examples, remove one point from Minkowski 
spacetime. (D) As one might have guessed, the boundary of / ~{z} contains 
lightlike geodesies; however, their behavior is very tricky. (E) A smooth 
timelike curve intersects the boundary of I~{z) at most once. (F) x E 
Closure ƒ "{z} iff I~{x) c / "{z} . 

CHAPTER 3. EXAMPLES OF SPACETIMES 
We discuss in this chapter the spacetimes which rank next to Minkowski 

spacetime in importance. 

3.1. Einstein-de Sitter spacetime. The spacetime used most often in current 
cosmology concisely illustrates most of the points in Chapter 2. For the 
moment we treat it mainly as a geometric example; a more detailed discus­
sion is given in Chapter 7. Let h be the ordinary Euclidean metric on R3. 
Take M = R3 X (0, oc), with projections p: M -^ R3 and t: M -H» (0, oo). Then 
g = t4/3p*h — dt ® dt is a Lorentzian metric on M. Orient M via 

[p*(dulAdu2Adu3)]Adt; 

take tnat time-orientation for which 3, is future-directed, where 3, is defined 
by p*3, = 0 and dt(dt) = 1. (M, g) will denote Einstein-de Sitter spacetime, 
defined as above, throughout the rest of this section. 

We will shortly show that t and 3, are intrinsically attached to the 
Lorentzian metric and can therefore be defined without reference to the 
explicit direct product representation of M as R3 X (0, oc). In Chapter 7, we 
will motivate the following interpretation rule: Ms a cosmological time, 
increasing from t almost zero near the "big bang" (= the hypothetical 
"moment of creation" of our universe, or the hypothetical hypersurface 
{/ = 0} which is not in M) to a value of roughly 1010 years at here-now; 
moreover, the history of (the center of) any galaxy is modeled by an integral 
curve of 3 r Given these interpretations, the spacetime equivalence class [(Af, 
g)] is a surprisingly accurate model for the history of our universe, at least 
near here-now. We now consider [(M, g)] geometrically. 

3.1.1. Another representation (Cf. 2.4). With M, p, /, h as above, we define a 
new Lorentzian metric g = (t/3)\p*h — dt 0 dt) and choose the orientation 
and time-orientation in the obvious manner. Then (M, g) E [(M, g)]. To see 
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this, use the fact that f -» / 1 / 3 is a diffeomorphism (0, oo)-*(0, oo) which 
induces an isometry between (Af, g) and (A/, g). 

All our subsequent discussion will refer to (M, g) rather than to (M, g) 
unless otherwise specified. (Af, g) is sometimes useful for technical reasons; 
compare 3.1.7. 

3,1.2. Curvature, The Ricci tensor of Einstein-de Sitter spacetime (Af, g) is 
Ric = (2/9t2Xg + 2dt ® <#) and the scalar curvature is s = (4/9f2). The 
quickest proof consists of introducing the global, orthonormal basis 
(t2/3p*du\ t2/3p*du2, t2/f3p*du*9 dt) of 1-forms. Then one can compute the 
connection forms, curvature forms, curvature tensor, Ric and s much as in 
Riemannian geometry (cf. §2.1), Note that / = |^~ l / 2 , so that t is an 
invariant of the Lorentzian metric, as mentioned earlier. Note also that the 
scalar curvature obeys s -» oo for t -* 0 ("big bang**). 

Each level surface of s is a homeomorphically imbedded 3-manifold 
diffeomorphic to R3. Let <J>: R3 -» M be such an imbedding; then <|>R3 is a 
level surface of t; <|>R3 is called a space-slice. (R3, <J>*g) is isometric to 
Euclidean 3-space (via u* ~» f2 /V, for / = 1, 2, 3); one thus sometimes says 
the "spatial curvature" vanishes. Each space-slice corresponds to the popular 
notion of "our physical universe at a given instant". Though very intuitive, 
such space-slices are almost completely useless in analyzing actual data: given 
z E M, e.g. z « here-now, the space-slice through z is disjoint from the 
chronological past of z (cf. 2.6). Note further that w''° <f> (i = 1, 2, 3) is not in 
any sense a spatial distance. 

,future 

u 
>̂  history of our galaxy 

-space-slice 

lightlike geodesic 

/ 7 J Nat in/M / / / Big/Bangi^ 7 
t = 0 

FIGURE 3.1.3 
EIKSTEIN-DE SITTER SPACETIME. TWO dimensions are suppressed. The closed shaded region, 

corresponding intuitively to / < 0, is not in M. z models here-now. The other structures shown 
are all described in the text. The fact that the big bang, which is not in M, does not look like a 
point is consistent with such spacetime boundary constructions as that of Chapter 8. Intuitively, 
the big bang here is best regarded as a copy of R3 with zero first fundamental form and infinite 
second fundamental form. 

6f can be characterized intrinsically as the vector field physically equivalent 
to — dt. Moreover, let Z be a future-directed vector field such that: 

( A ) g ( Z , Z ) - - 1 ; 
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(B) there exists a function /i: M -» R such that R ic^ , Z) = ixg(X> Z) VX. 
Then Z = 9,. This eigenvector characterization makes sense in more general 

cases, e.g., those discussed in Chapter 7. 
Fixing an integral curve y0 of 9,, we shall briefly discuss the behavior of 

nearby integral curves relative to y0. If M (= R3 X (0, oo)) is regarded as the 
positive half-space {u4 > 0} of R4, then the integral curves of 9, are just the 
^-coordinate curves. Consider the following one-parameter family of integral 
curves {ys\ < s < 1} containing yQ: 

ys
x Yo + s(al9a2,a3,0), 

where (av a29 a3, 0) is a fixed vector in the hyperplane {w4 = 0} of R4, and 
addition is in the sense of vector addition of R4. The transversal vector field Y 
(= 2/.10/3,) is the infinitesimal version of {ys}; it enjoys the property that 
along y0, g(Y9 Y) is a monotone increasing function of /, namely, (2/a?)/4/3. 
Recall that each integral curve of 9, is used to model the history of a galaxy. 
As y0 and (av a2, a3, 0) are arbitrary, g(Y, Y) being monotone increasing 
then implies that nearby galaxies (i.e., the y/s) are running apart. Very 
loosely, one says "the universe is expanding". Note also that each such 
integral curve is a geodesic but (g(Y, Y))x/1 along such a curve is not a linear 
function of arclength as it would be if the curvature tensor were zero. In fact 
(g(Y, y))1/2 has negative second derivative along an integral curve of 3 r 

Intuitively: nonzero curvature <=> nontrivial gravity =>"slowing down of the 
expansion rate" in our present case. 

3.1.4. Isometry groups. Let S M be the isometry group of (M, g) (cf. 2.4.2), 
OR3 be the usual six-dimensional isometry group of Euclidean 3-space. By 
inspection of g, %M contains a subgroup isomorphic to OR3. Now by the 
above, each isometry <J> must obey s ° §~ s and 0*9, = 9,. It follows that two 
isometries which coincide on a level surface of s coincide everywhere and 
then that the only isometries are the obvious isometries; thus §M is isomor­
phic to § R3 ("spatial homogeneity and isotropy"). 

3.1.5. Lightlike geodesies. Define a smooth curve À: (0, oo)~~» M by Xu » 
(3M , / 5 , 0, 0, w3/5) Vw E (0, oo). A routine computation, e.g. using Killing 
vector fields (2.4.2), shows X is a future-directed, inextendible lightlike geo­
desic. Moreover, X is fully representative: if X: F-»Af is an inextendible 
lightlike geodesic, there exists an isometry <ƒ> E %M and an affine reparame-
trization a: F-» (0, oo) such that X = <j> ° X ° a. 

PROPOSITION 3.1.6. (A) (Af, g) is maximal. (B) Each inextendible carnal 
geodesic is incomplete. 

PROOF. (A) By our criterion of maximality in §2.6 it suffices to consider 
lightlike geodesies of M\ by 3.1.5 it suffices to consider X as in 3.1.5. X cannot 
be extended beyond oo at the upper end. (Roughly: "Af cannot be extended 
beyond f = oo"; this does not follow from the C00 structure alone since (0, 1) 
is diffeomorphic to (0, oo).) X cannot be extended to 0 at the lower end since 
s o X -> oo as u -» 0 ("M cannot be extended to include the big bang"). Thus 
(Af, g) is maximal. (B) is fairly routine: every inextendible causal geodesic 
approaches the big bang. Incidentally, (B) also holds for the spacelike 
geodesies, but this fact is not of physical interest. 
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3.1.7. Chronology. The quickest way to analyze the chronology relation for 
(M, g) is to use the representative 3.1.1 and conformai invariance (2.6.6). 
Suppose z e M. The following hold. (A) t{z) is the chronological distance to 
the big bang, i.e. t(z) = sup{rf(x, z)\x < z}. (B) I~{z} is the open dotted 
region in Figure 3.1.3 bounded by lightlike geodesies. For example, if z = 
(0, 0, 0, /(z)), then x E I~{z} iff 

/ 3 \ 1 / 2 

(C) Vx < z, there is a unique timelike geodesic y: [0, 1] -» M from JC to z, and 
its arclength is d(x, z). This is a very special situation. (D) Let 8: (0, oo) -> M 
be an inextendible integral curve of 9, such that z is not on the image of 8. 
Thus with z = (here-now), (part of) 8 can model the history of some galaxy 
different from our own. Then up to reparametrization, there is at most one 
inextendible lightlike geodesic whose image intersects 8 and contains z; there 
is exactly one iff the image of 8 intersects / ~{z}. This is again very special. 
Roughly, some galaxies are so distant that they have not yet had a chance to 
signal z at all ("cosmological horizon"). 

We now have an example for each key definition and result in Chapter 2. 
3.1.8. Generalizations. To study the universe, one needs some general 

theorems and at least one very explicit spacetime; the reasons are outlined in 
Chapters 7 and 8. Each explicit cosmological spacetime considered in this 
article will be qualitatively very similar to Einstein-de Sitter spacetime. In 
particular, each will be topologically trivial. Now the reader has probably 
read about "closed universes", "spatial curvature", "ultimate collapse", 
"rotating and shearing universes", "Mach's principle", the cosmological con­
stant, "variable gravitational constant" cosmologies, the steady state cosmol­
ogy, "tired light" cosmologies, "quantum cosmology", torsion in cosmology, 
or other famous concepts (cf. [14] or [20]). Not one of these will be men­
tioned, let alone discussed, henceforth. We feel they are interesting, but are 
neither basic nor needed to analyze the main features of the current empirical 
data and have been grossly overemphasized. Einstein-de Sitter spacetime is 
basic, very intuitive, mathematically instructive, as accurate physically near 
here-now as any other explicitly known cosmological spacetime, and-mel-
lowed by 55 years of vigorous give-and-take-free of all inessentials. Regard­
ing it as an exact model of nature would be sheer nonsense (Chapter 7). But it 
is a truly elegant zeroth order approximation. 

3.2. Kruskal spacetimes; black holes. This section will not be needed until 
Chapter 8, but it belongs here as it nicely illustrates most of the concepts 
discussed so far. 

In 1799, Laplace pointed out that a "heavenly body" might be so massive 
and small that not even light can escape from the surface [9, appendix]; this 
shows remarkable prescience. Nowadays, "black hole" is the term employed 
to indicate a region of spacetime in which resides a gravitational field so 
strong that it allows neither light, nor matter, nor a signal of any kind to 
escape from the region. It is believed that certain stars with large masses 
collapse in their final stage of evolution to create black holes. For empirical 
evidence, pro and con, on whether black holes exist, compare [4] and [19], In 
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this section, we will give the exact definition of a spacetime which contains a 
subregion from which future-directed causal curves cannot escape. Part of 
this spacetime is used to model that part of any spherically symmetric 
situation which is "vacuum", i.e. contains no matter or electromagnetism. A 
more general and more formal definition of a black hole spacetime is 
discussed in Chapter 8; there the special assumptions of spherical symmetry 
and vacuum are unnecessary. 

To analyze such a spherically symmetric black hole, or the sun, or a 
spherically symmetric neutron star, etc., we now introduce a maximal space-
time, called Kruskal spacetime. Kruskal spacetimes will seem rather tricky 
and rather anti-intuitive at first. 

Let S2 be the ordinary unit 2-sphere. Let h be the usual Riemannian metric 
on S2 induced from the Euclidean metric of R3. Each Kruskal spacetime is 
diffeomorphic to R2 X S2. Specifically, ulu2 < 1 defines an open subset 
A c R2 (Figure 3.2.1). We take M = A X S2, with projections a: M -+A and 
a: Af-»S2 . Roughly, A will correspond to radius and time while S2 will 
correspond to angles. Note that M is connected, simply connected and 
orientable. 

NOT IN 

FIGURE 3.2.1 

THE KRUSKAL DIAGRAM FOR A. The shaded regions, including the hyperbolae ulu2 * 1, are 
not in A. Every other point, including the origin, has as complete inverse image in M a copy of 
S2. The figure shows the a-projections of the Schwarzschild black hole B, normal spacetime iV, 
white hole W, and queer duplicate Q; each is defined in the text. Vz € M, al + {z) is to the 
upper right as indicated. 

Define v( = w''° a: M -> R for i = 1, 2. Suppose /A E (0, oo) is given; /i 
will play the role of mass for our black hole, or neutron star, etc. There is a 
unique, smooth, onto function r: M -> (0, oo) such that (r - 2/i)exp(r/2jw) = 
-2/JIÜ1Ü2 because (JC exp(x/2]Lt)y > 0 V X E ( - 2 / A , OO). r is sketched in 
Figure 3.2.3 below; for reasons to be discussed, it is called the area-type 
radius on M. For the moment interpret r by: for r much bigger than 2JW, r is 
not too different from Euclidean radius. The above properties of r imply that. 

g s {-(16/i3 /r)exp(-r/2fi)(* ! ® dv2 + dv2 ® dvl) + r2o*h) 
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is a Lorentzian metric on Af. This strange form insures Ric = 0, as discussed 
below. Let dt be the obvious vector field on A/, i.e. dvl(dx) * 1, rfü2(3j) = 0 
= (7*9,. Then dY is lightlike and we time-orient M by taking 3, as future-di­
rected. The analogously defined 32 will also be lightlike and future-directed; 
see Figure 3.2.1. Orient M in the natural way. (Af, g) then becomes a 
spacetime, the Kruskal spacetime for mass 8TT/X. For the rest of this section, 
(Af, g) will denote a Kruskal spacetime. 

To indicate, in a preliminary way, how such spacetimes are used, we draw 
some intuitive pictures, (a) indicates the region {r > | - lOfy, v2 > 0} of Af. 
(b) indicates roughly how this region is used, (c) indicates very roughly a 
spherically collapsing star. 

history outside 

_̂ . the sun; S 

used, 

/ -y; 
/ history / / 
inside;the / 
sun ; M not 

future 

ioV 

(a) M 

singularity 

r = 0 

history outside 

collapsing star; 

open submanifold of 

M used 

r decreasing î future 

(c) 

These illustrate fairly well the not-so-simple relationship between the vari­
ous portions of Af and the corresponding real physical situation. The special 
features of this relationship that are most likely to confuse may be roughly 
summarized as follows. (A) Usually only a proper subset of Af can be used to 
model a real physical situation; this is because M is a vacuum (cf. 6.2 and 
3.2.4 following). (B) Only a part of any real physical situation can be modeled 
by Af; this is again because where matter or electromagnetism is present, 
Kruskal spacetime Af is not applicable. 

Black hole theory is heavily concerned with who can communicate with 
whom. Anticipating the fact that the subregion {vl > 0, v2 > 0} of Af will be 
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used to model (the history of) a black hole, we start with a brief general 
discussion of Kruskal spacetime from the viewpoint of §2.6. The full story is 
quite complicated, but projecting with a gives very simple results. To see the 
latter suppose y: [a, b] -> M is a smooth, future-directed timelike curve. Then 
from the form of g, y = (a ° y, o{ya))\ [a, b]-+ A X 52=*= M is also smooth, 
future-directed and timelike, and we have a ° y = a <> f. Thus to judge the a 
projections we can confine attention to curves which are "radial", i.e. a ° y -
constant (the North Pole, for instance). By virtue of our remark on conformai 
factors in 2.6.6, this comes down to analyzing < for (A, du1 ® du2 + du2 ® 
du1), which is easy. One finds the following: Vz E M, the a projection of the 
chronological future of z is the open upper right quadrant with vertex at az 
(Figure 3.2.1); in particular, no signal can leave the quadrant aB and none can 
enter the quadrant aW. In this sense B = {V > 0, v2 > 0} is "black". 

We next consider curvature. By a direct computation of the curvature 
tensor R, one finds R ^ 0, Ric = 0 and the following convenient lemma, Let 
C: M-+R be the "quadruple trace" of R ® R, where R (resp. R) is the (4, 
0)-tensor field (resp. (0, 4)-tensor field) physically equivalent to R. Thus, if 
{to**} and {X^} are dual bases a t w G M , 

4 

cw s 2 R K , « '> «A < 0 ^ (*,> *,> xP> x, )• 
fi>v,p,a— 1 

Roughly, C is the overall square curvature, though the fact g is Lorentzian 
means that not every term in the sum is positive. 

LEMMA 3.2.2. C = I44(i2/r6. 

Thus r is intrinsically defined. Note vlv2 -» 1 iff r -* 0, iff C -» oo ("curva­
ture singularity"). C -* 0 iff r -» oo ("spatial infinity"). From the lemma, we 
find that (Af, g) is maximal. The proof is much as in §3.1, e.g. M cannot be 
extended to r * 0 because C -» oo there. We sketch r by showing the « 
projections of some level surfaces. 

FIGURE 3.2.3. AREA-TYPE RADIUS 
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3.2.4. Submanifolds. We now define some submanifolds of (M, g) which 
have geometric, physical or historical interest. (A) The throat is the set of 
points on which dr = 0; it is the 2-sphere of area-type radius r = 2/x repre­
sented by the origin in Figures 3.2.1 and 3.2.3. (B) The horizon is the set of 
points on which dr is lightlike or zero. It corresponds to the axes in the figures 
and thus to r * 2/x. Part of the horizon will be interpreted below. (C) The 
normal Schwarzschild spacetime N is the complete inverse image under a of 
the open upper left quadrant in the figures, i.e. N = {vl <Q,v2 > 0} ~ {r > 
2p, v2 > 0}. Like the next three submanifolds, it is a spacetime in its own 
right whose equivalence class was found by Schwarzschild in 1916; gluing the 
four together took physicists nearly 50 years, mainly because the concept of 
maximality was not well understood. (D) The Schwarzschild black hole B, 
white hole W, and queer duplicate Q correspond to the remaining three 
quadrants as indicated. The only intrinsic difference between W and B is 
furnished by the time-orientation. N and Q are intrinsically identical. But B 
and N are very different from each other, e.g. chronological futures are 
trapped by B as above. (E) Having mastered the preceding, the reader will be 
pained to learn that most physical models use still other submanifolds. For 
example, let /x be the solar mass in the sense /x = (1/8TT) (Newtonian 
gravitational constant)(mass of the sun as found in tables). Then, in our units 
(§1.4), /x is roughly \ • 10"5 seconds. The area-type radius r0 of the sun's 
actual surface is much bigger, about \ • 106/x. As the black hole B is defined 
by r < 2/x, the sun is far from being a black hole. To model the history of the 
outside of the sun, one uses merely that open submanifold of N on which 
r > r0. This model is in rather good agreement with observations and 
constitutes one of the main empirical checks in general relativity ([14], [20]). 
By W and Q are irrelevant to the model. (M, g) cannot be used at all to model 
the inside of the sun since Ric = 0 corresponds to no matter (§6.2). A model 
valid for both inside and outside has to be more sophisticated. 

Of the various pieces of (M, g), N, B and their common boundary are those 
most often used. Indeed it is primarily via the effect of the curvature of N on 
other nearby objects, e.g. a companion star, that one hopes to detect black 
holes empirically. On N9 especially for r » 2/x, r has (to good approximation, 
but not exactly) the properties Newtonian intuition assigns to radius in 
addition to the exact property area = Amr2 (see 3.2.5). By way of contrast, 
— dr\B is future-directed timelike. To have an area-type radius also act as a 
kind of time, as —r\B does in this case, is very different from anything 
Newtonian intuition can handle. 

The above interpretation for r\N is more evident in the Schwarzschild 
representative (N, g) of [(N9 g)]; this is the form of (N, g) discovered by 
Schwarzschild and is the following. Take N = S2 X (2/x, oo) X R with projec­
tions a: N -> S2, r: N -» (2/x, oo) and t: N -> R. Let 

£ . fVA + (l - y ^ ] dr®dr-(l-j^\dt®dt, 

where h is the usual metric on S2 as before. Then <j<-»a, ?<r*r and 
f<->2/xln( — v2/vl) determine an isometry </>: N<r*N. r is then clearly dis­
played as a "radius" via </>. Moreover, V a 6 R , t -* t 4- a determines an 
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isometry N -> N. Let 3, be the corresponding vector field on N, i.e. a*</>*3, = 
0 = dr(dt), dt(<f>*dt) * 1. By 2.4.2, 3, is Killing; 3, is also timelike. Thus (N, g) 
is time-independent (2.4.2 again). The intrinsic characterization of 3, is the 
following. Let K be the Killing vector field on M such that K\N is future-di­
rected, timelike and that g(K, K) -» — 1 at spatial infinity (i.e. for r -* oo). 
ThenK\N * 3,. 

3.2.5. Spherical symmetry. Let (M, g) be a Kruskal spacetime. By construc­
tion, the isometry group §M contains at least one subgroup isomorphic to the 
ordinary rotation group 0(3) since each isometry <j>: S2-*S2 induces a 
unique isometry <j>: M -> M which leaves A pointwise fixed, i.e. a ° ^ = a. 
Call this subgroup %. Each orbit (2.4.2) of DC is a homeomorphically 
imbedded 2-submanifold diffeomorphic to S2. Indeed the form of g implies 
t}iat the orbit through x E M has the inner geometry of an ordinary 2-sphere 
with area 47rr2(x); hence the name "area-type distance". (Actually the con­
nected component of the identity of S M is isomorphic to SO (3) X R, as a 
result of the existence of the Killing vector field K in 3.2.4.) In general, a 
spacetime (M0, g0) is called spherically symmetric iff §M0 contains at least one 
subgroup 3Qj isomorphic to 0(3) such that no orbit of %Q is more than 
2-dimensional and that each 2-dimensional orbit has the intrinsic geometry of 
an ordinary 2-sphere. Thus Kruskal spacetime is spherically symmetric. 
Newtonian intuition about a spherically symmetric spacetime such as radius 
and angle is sometimes useful, but not always, as we have seen in 3.2.4. 
Specifically, note in the case of Kruskal spacetime that no orbit of % is 
merely a single point; intuitively speaking the geometry is so screwed up near 
a black hole (the portion of M where r is small and therefore one expects to 
find a point orbit oi %) that there are no centers of rotation, even though 
there are rotations. Thus one certainly cannot interpret r as "distance from 
the center". 

The following characterization of Kruskal spacetime holds. As we have 
discussed, Kruskal spacetime is not flat, is Ricci flat, maximal, simply 
connected and spherically symmetric. Conversely, let (Af0, g0) be a spacetime 
which is not flat, is Ricci flat and spherically symmetric; then there is exactly 
one /A E (0, oo) such that (M0, g0) is locally isometric to the Kruskal spacetime 
of mass 87771. Furthermore, if(M0, g0) is simply connected and maximal, then the 
isometry is a global one [9]. We give an application of this characterization. It 
was already mentioned in 3.2.4 that a Kruskal spacetime cannot be used to 
model both the inside and the outside of a star. If one wants such an overall 
model, one needs a different spherically symmetric spacetime for the inside, 
as shown intuitively in the pictures (a)-(c) earlier in this section. However, 
because of the preceding characterization of Kruskal spacetime (M, g), the 
following makes sense for either the sun, or a star, or a star collapsing 
towards a black hole. Whatever happens inside the star, Ric = 0 outside so 
that the outside is always modeled locally by part of (M, g). Thus the star 
leaves behind its outside gravitational field, like the grin of the Cheshire cat, 
whenever the whole process is spherically symmetric. 

3.2.6. The black hole B. In the opening paragraph of this section, we gave 
some intuitive background information concerning black holes. We now 
discuss some mathematical properties of the black hole spacetime B which 
show that indeed B lives up to intuitive expectations. 
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It has already been shown earlier that no future-directed timelike curves 
can escape from the black hole B; the same then holds for all causal curves, 
by Theorem 2.6.6. By putting in more details, one can verify the following: 
Suppose x E B; then r decreases along any future-directed causal curve from x; 
moreover, the chronological distance to the singularity {r ** 0}, i.e., 

s\xp{d(x9y)]x<y}1> 

exists and is less then TTJUL For \x the solar value as in 3.2,4, the chronological 
distance is about 10~5zr seconds. Finally, we remark that B is not time 
independent (2.4.2); the K of 3.2.4 is spacelike on B. 

Now imagine yourself as a future-directed timelike curve in B c M. You 
notice "gravity is increasing": r is decreasing and the total square curvature C 
(Lemma 3.2.2) increases. No matter how you twist and turn, you must head 
for the future where infinite curvatures (C-* oo) are waiting. You have at 
most TT/x seconds, e.g. less than 10~4 seconds, of your own proper time to live 
(cf. 1.4). 

The boundary, {r « 2/ut, vl > 0}, between N and B is part of the horizon. 
Intuitively, this boundary models the history of the surface of the black hole 
region in space. It can best be visualized by using the vector field K of 3.2.4. 
On restricting to the boundary, one finds the integral curves of K lie within 
the boundary and arc future-directed lightlike geodesies. One can regard 
these integral curves as light signals "running outward as fast as anything 
can" in a desperate attempt to escape the gravity; they "nonetheless just stay 
in the same place" in the sense that each element of the flow of K is an 
isometry. Intuitively, these light signals are trapped in the surface of the black 
hole region (in space), forever marking time by keeping the same distance 
from the center of the region. (But one should not push this intuitive 
comment too far, in view of the remarks about r in B of the preceding 
sections.) Thus imagine the boundary as the history of a 2-sphere which 
expands at the speed of light but nevertheless retains constant area-type 
radius 2/A! 

It is fatally easy to fall into B. Indeed, if a spaceship hovering above the 
North Pole of a black hole at r = 10ft turns off its motor, it will follow a 
timelike geodesic y with an initial tangent y^O) f°r which dr(yj = 0 = 
<**(Y*)- Each such geodesic eventually enters B as one can see by a computa­
tion of the geodesies, e.g. via Killing vector fields (2.4.2). Figure 3.2.7 
illustrates this situation. 

Note that the line segments in aN or aB parallel to the coordinate axes in 
R2 are lightlike geodesies; this is a straightforward computation. Thus suppose 
another spaceship f continues to hover above the North Pole of the black 
hole at r = 10/x. Then the signal sx which y sends out at his proper time tx 

before falling into the black hole ("I seem to be in a funny gravitational 
field.") will reach y in finite time, but the signal s2 which y sends out at his 
proper time t2 after entering the black hole ("Help!") will never reach y. See 
Figure 3.2.7. 

Finally, we remark that signals can leave but not enter the white hole W 
and that the queer duplicate Q has no known application other than simply 
replacing N by Q. 



GENERAL RELATIVITY AND COHOMOLOGY 1125 

FIGURE 3.2.7 

CHAPTER 4. MEASUREMENTS AND PARTICLES 
Since general relativity is supposed to cover all of macrophysics, we 

proceed to deal with observations, matter, and electromagnetism in this 
chapter and the next. (M, g) is a spacetime (2.4.1) throughout. 

4.1. Instantaneous observers. At one instant of her own proper time, an 
actual observer in M not only determines a point z E M, but also determines 
a timelike direction at Mz tangent to her history as she heads towards the 
future (cf. §1.4). Abstracting, and normalizing the direction for convenience, 
suggests the following definition. 

DEFINITION 4.1.1. An instantaneous observer (z, Z) on M is a point z E Af 
and a vector Z E Mz such that g(Z, Z) - -\ and Z is future-directed. 

Note that then Mz = (span Z)® Z1-, with Z x 3-dimensional spacelike 
(§2.2). 

Let (Af, g) be Minkowski spacetime (2.5). A (global) inertial frame on 
Minkowski spacetime is a vector field Z on M such that: (A) Vx E M, 
(x, Zx) is an instantaneous observer; (B) Z is covariant constant, i.e. 
DXZ = 0 V vector X. For example, 34,̂  f (534 + 43,) and \(5d4 *- 333) are 
global inertial frames on (M, g). If Z, Z are two such frames, there exists an 
isometry >̂: Af-> M such that fy+Z = Z. The concept of an inertial frame 
cannot be generalized to other interesting spacetimes; for example there is no 
covariant constant nonzero vector field on Einstein-de Sitter spacetime or on 
a Kruskal spacetime. 

Minkowski spacetime together with a preassigned inertial frame Z0 will be 
denoted by (Af, g, Z0). The instantaneous observers (z, Z0z), Vz E M, are 
called the inertial observers. Once an inertial frame Z0 has been fixed on 
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(M, g), the resulting physics is extremely naive and harks back to Newton 
and beyond. For instance, there will be absolute time, absolute rest and 
absolute distance. To see this, let <o0 be the 1-form physically equivalent to 
Z0; the simple-connectivity of M and the covariant constancy of Z0 imply 
that co0 = - dt for some t: M-»R. t will then serve as a universal time 
function for M. Each level hypersurface {t = t0 for some t0 E R} is then a 
Riemannian manifold in the induced metric (2.2) and is "the universe at time 
/0". Furthermore, a particle is at absolute rest iff its history is modeled by an 
integral curve of Z0. It follows that a spatial distance between any two points 
z9 z' E M may be defined by: If t(z) = a and Ma = {t = a}9 let the integral 
curve of Z0 through z' intersect Ma at z". The spatial distance between z, z' is 
by definition the number d(z, z') = the Riemannian distance between z and 
z" on Ma. It is elementary to see that this is well defined. 

Although (M, g, Z0) is too naive for doing honest physics, it can be used to 
give intuitive motivation for some of the definitions in this chapter and the 
next. 

4.2. Observations. Let (z, Z) be an instantaneous observer. How does (z, 
Z) observe? Often he can measure "just as in special relativity" by "pretend­
ing part of M is part of (Afz, gz)". Indeed, (Afz, gz\ regarded as a spacetime, 
is isometric to Minkowski spacetime used in special relativity (cf. §2.5). The 
transition from (M, g) to a tangent space parallels the prescription in 
Riemannian geometry for actually measuring, for instance, an angle between 
two intersecting curves on a nonflat manifold. Postponing temporarily the 
question of how measurements are made in special relativity, we give an 
example of the transition (M, g) -* (Afz, gz). Thus given a neighborhood % 
of z, we shall treat 9l as part of Minkowski spacetime (Mz, gz) via the 
exponential map expz. Precisely, suppose % is so small that there is a 
neighborhood & of 0 E Mz such that expz: 6£ -» % is a diffeomorphism; we 
wish to replace all considerations in (9i, g) by those in ($, gz) via exp7l. 

expz not being an isometry of (6£, gz) onto (%, g), the amount of distortion 
incurred in this process must be estimated. For this purpose, first consider the 
Riemannian case. Suppose AT is a 2-dimensional Riemannian manifold, 
x E N, and expx: ® -» T is a diffeomorphism of a neighborhood ® of 
0 E Nx onto a neighborhood T of x. Let C0 c T be a rectangular strip and 
expxC = C0. Further assume that x is (roughly) equidistant from the four 
vertices of C0. A fairly precise estimate of the deviation of the region C in the 
euclidean space Nx from C0 in the nonflat iV can be made via a detailed study 
of curvature and Jacobi fields. Falling short of such a full analysis, one can 
nevertheless make the rough estimate that if the Gaussian curvature AT of TV at 
x is small in absolute value, and if the area A of C0 is small, then C is 
probably a good approximation to C0. Thus the product \Kx\A is a crude 
numerical invariant to measure the deviation of C from C0: the smaller the 
number |Ajc|i4, the smaller the deviation. Note that \Kx\A is independent of 
units (cm , inches, . . . ). 

To return to the original situation of expz: &(c Mz) —» 9 l ( c M), consider 
the case of observing a distant galaxy for T seconds by using a telescope of 
length L seconds (~ 3 X 108L meters). We will neglect the other dimensions 
of the telescope. Thus the history of the telescope in T seconds is modeled by 

file:///Kx/A
file:///Kx/A
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a rectangular strip %> in the spacetime M with sides of roughly L units and T 
units. Let us place z in the "center" of %> and assume %) c %. Let further 
^ e f t be such that expz6l = %>. HOW does one measure the deviation of 
<3l from %>! Guided by the Riemannian case, we inspect the number \sz\LT, 
where s is the scalar curvature of M. Note that, in drawing this analogy, we 
have made two drastic simplifications: (1) instead of examining the behavior 
of the sectional curvature of M near z, we merely use the scalar curvature, 
and (2) to replace the area A above, we use the product LT because it 
corresponds to the intuitive notion of the "area" of % in M. In any case, the 
size of this dimensionless number |^z|Lr will be used as an indicator whether 
replacing %> by 61 would lead to catastrophic consequences: the smaller this 
number, the safer the replacement. In practice, suppose L = 3 meters ^ 10"8 

seconds and T = 1 second. If (M, g) is a typical cosmological spacetime, then 
\s\ at z — here-now is about 10"35(seconds)~2 (cf. Chapter 7). It follows that 
\sz\LT ~ 10"43, which is very small indeed. Thus for the purpose of analyz­
ing the actual measurement (though of course not for analyzing how the 
light got from the distant galaxy to the telescope), the telescope can, and for 
convenience should, be modeled by an object in the flat spacetime M2 rather 
than in the curved spacetime M. 

Such use of dimensionless numerics is a basic fact of life in physics. 
Granting that measurements often in effect take place on Mz rather than 

M, how does (z, Z) measure special-relativistically? Until he learns his job 
properly, he can often measure "just as in Newtonian physics" by "pretend­
ing (Z-1, g\z±) is Euclidean 3-space". Indeed, (Z-1, g\z±), regarded as a 
manifold, is Euclidean 3-space. We give an example. 

Suppose we have two future-directed lightlike vectors V, V E M2, due to 
two light signals from two distant galaxies. Corresponding to M2 = (span Z) 
© Z x , there is an orthogonal projection/?: A/z -» Zx. The Newtonian angle 
(z, Z) measured between V and V is the ordinary Euclidean angle 9 between 
pV andpV, i.e., 

co&O - g(pV,pV)/\\p^\\pV\\. 

Of course 9 depends on Z and not just on V and K, an effect called aberration 
by astronomers. To get at the intrinsic physics one must amputate Z. Thus a 
really competent observer would try to tabulate V and V directly rather than 
tabulating pV,pV, Z, coordinate components, or other nonphysical garbage. 

Aside. The Z dependence above corresponds exactly to the set of confor­
mai transformations of the ordinary 2-sphere onto itself. 

4.2.1. Asides on precision, the principle of equivalence, etc. The reader not 
puzzled by the preceding example should omit these asides. (A) In any 
discussion of actual measurements, the physics vs. mathematics problems 
mentioned in §1.5 become acute. (B) In 4.2, a heuristic argument was given 
for using the number |sz|Lr as a criterion for whether or not to neglect the 
curvature of M near z. It was pointed out that this number is a very crude 
estimate. Suppose in the same situation an instantaneous observer (z, Z) is 
specified in advance. Then this "numerical criterion of empirical accuracy" 
could be refined by replacing \sz\ with 6z, where bz is the maximum of the 
absolute value of the sectional curvature of the 2-planes which are in Z -1 or 
which contain Z. In general, as soon as (z, Z) is given, this bz can be used in 
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other situations to decide whether, empirically, local curvature can be ignored 
and Minkowski spacetime be employed. When physics texts talk of "local 
inertial frames", some such region of "negligible curvature" is involved. (C) 
The principle of equivalence says, very roughly, that in an appropriate region 
as above, special relativity holds to high accuracy. Attempting to make this 
fully precise is not only hopeless but also tends to destroy the enormous 
heuristic power of the principle. We shall not define, or explicitly use, the 
principle of equivalence here. 

43. Mass in general relativity. In Newtonian physics, the inertial mass of a 
particle is measured by collision experiments which do not involve gravity [1]. 
The corresponding relativistic concept is that each particle is assigned a fixed 
rest-mass m E [0, oo). For m ^ 0, the term "rest-mass" refers to one special 
way of measuring m, i.e. in a collision where all relative speeds involved are 
negligible compared to the speed of light. For m = 0, the term "rest-mass" is 
rather misleading, as indicated in the next section. 

In Newtonian physics, one also uses the active-mass O'gravity-pnxlw^g 
mass"), conceptually independent of inertial mass [1], The corresponding 
general relativistic concept has already been used in §3.2. 

We shall henceforth use units in which the constant G of gravity has value 
G = 1/8TT, in addition to c = 1 (§1.4). Then each mass comes out in seconds. 
For example, the active-mass of the sun is roughly 10~5 seconds (3.2.4). For 
translations of our units to more familiar, less convenient ones, cf. [20] or [14]. 

Asides. Newtonian physics even uses a third kind of mass, passive-mass 
("gravity-responding mass"). But general relativity does not, since the geo­
desic law (1.4) already specifies how bodies respond to gravity. Older texts on 
special relativity sometimes also talk of an "inertial mass which depends on 
speed"; this concept is obsolete and will not be used. 

4.4. Particles. To model the history of a small object, one needs a curve. 
Specifically, a particle on spacetime is a smooth, future-directed curve y: 
F-+ M such that, for some fixed m E [0, oo), g(y+, y*) = - m2, m is then 
defined as the rest-mass of y (§4.3). For example, suppose m ¥* 0. Then 
Vw E F, y^u is timelike. 

The tangent vector field y* for a particle y is defined as the energy-momen* 
turn of y. Energy-momentum replaces and unifies two Newtonian concepts, 
namely, energy and momentum. To clarify this and other similar points, we 
now introduce some auxiliary concepts by using instantaneous observers 
(4.1). However, it will be useful to keep in mind that y# is the only basic 
object involved and there is only one basic equation needed: g(y*, y*) « — 
m2. The rest follows. It is therefore the energy-momentum y*, not the energy 
defined below, nor the 3-momentum defined below, nor even the pair 
(energy, 3-momentum), which models something present in nature even when 
no observers are actually measuring. 

Throughout the rest of this section, y: F-> M is a particle with rest-mass 
m; c = 1 is the speed of light. For simplicity, assume y has no self-intersec­
tions, i.e. for t *£ t\ yt ^ yt'. 

4.4.1. Auxiliary concepts and results. Let (z, Z) be an instantaneous ob­
server such that z «• yu for some u E F. Then we have the orthogonal 
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decomposition y # « * £ Z + ; , £ £ R and/? E Zx (4.1). E is defined as the 
energy (2, Z) measures for y; p is the 3-momentum (2, Z) measures for y. The 
,s/?m/ <>ƒ y relative to (2, Z) is by definition the number v = \\p\\/E. Note that 
the last is well defined because E > 0; this follows from the fact that both 
y+u and Z are future-directed and Z is timelike and £ = ~ g(y*u, Z) (§2.2). 

In this paragraph and the next, we shall give an interpretation of the 
preceding definitions using Minkowski spacetime together with the inertial 
frame 34, i.e. (M, g, 34), where 34 is the fourth coordinate vector field on 
M = R4 (§4.1). With w4 as the universal time function associated with 34, the 
spatial distance between any z,z^ E M becomes simply 

(§4.1 again). Now let y: F~* M be a particle of mass m\ we may assume 
0 6 F. At each yt E M, y is observed by the inertial observer 34(yf); ia 
particular, let ŷ O = E0(d4z) + PQ, where z = y0 and /?0 E (3^)^, If we let 
y" = ua ° y, a *= I,..., 4, then E0 * y ^ and/?0 = S^^y'0)3,2. Now using 
Newtonian physics, the inertial observers would observe the following: 

Between 2 = y0 and 2' s y/ (/ E F), y has travelled a distance of </(2, 2') 
in the time interval (wV — w42). Thus the speed of y at t — 0 is 

.. <*(*>*) \\Po\\ 
lim —2 2— = "T?— ' 
z'~+z (iCz' — W 2 ) ^ 0 

as a simple calculation shows. This then suggests the definition of v as above. 
Let then v0 = \\p0\\/E0

 anc* assume v0 < 1 (=def much smaller than 1). This 
immediately implies \\p0\\ < E0 and, from — m2 •» g(y*0, y#0) » — £^ + 

||/?0||
2, one gets m ~ £0. Thus, 

£0 - («a + l!/MI2),/2=! * ( i + (ll/'o||/'«)2),/2 

~ m ( l + ( | | / ,0 | | /£0)2) , / 2=m(l + Vo
2) , /2 

= m -f |i?o + 0(t>o) ~ m c 2 + Smt>o> 
because in our units c = 1, and terms of order v$ or higher arc negligible 
since v0 < 1. This means if the speed v0 is very small (domain of validity of 
Newtonian physics), and if the inertial observer computes the Newtonian 
kinetic energy and Newtonian rest-mass energy of y, he would come up with 
the number E0. Similarly, v0 < 1 implies 

||/>o||~"«fc 
so that if the inertial observer computes the magnitude of the Newtonian 
momentum of y, he would come up with the number \\p0\\ provided the speed 
of y is very small. These give intuitive content to the foregoing definitions. 

Returning to the genera! situation, one always has E2 = m2c4 -f \\p\\2e2 

(c = 1). Thus Einstein's famous formula E = mc2 holds iff the 3-momentum 
(2, Z) measures is zero. E2 = m2 + \\p\\2 also implies 0 < v < 1. Thus the 
relative speed is less than the speed of light iff m ^ 0, iff y is timelike, iff y 
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models motion at a speed less than the speed of light (§§1.4 and 2.3). 
4.4.2. Photons. Two kinds of rest-mass zero particles have been found in 

nature: photons ("particles of light") and neutrinos; in all likelihood a third 
kind, gravitons, also exists (cf. [20]). We shall not need the latter two and thus 
formally define y as a, photon iff m = 0. Thus for us y is a photon iff y models 
motion at the speed of light (1.4.1), iff y is lightlike (§2.3), iff y+u is lightlike 
Vw E F, iff the speed of y relative to any instantaneous observer is the speed 
of light (cf. 4.4.1; "even an instantaneous observer who runs as fast as he can 
away from a photon still measures c as the overhauling speed"). Then no 
instantaneous observer measures zero 3-momentum for y. Suppose y is a 
photon, (z, Z) and E are as in 4.4.1 and h E (0, oo) is Planck's quantum 
constant; in our units, h ~ (10~43 seconds)2, but this will not be relevant 
except insofar as the ridiculously small value suggests that quantum effects 
are not essential for large objects. Define the frequency (z, Z) measures for the 
photon y as ƒ = E/h. The term "frequency" refers to the fact that waves can 
also be used to model light (cf. §5.5), and this definition is motivated by the 
quantum-theoretic equation E = hf for photons found by Planck and 
Einstein. We shall make no attempt here to derive the latter (cf. [13]). Define 
the wave-length (z, Z) measures for the photon y as X = l/f; this leads to the 
standard relation Xf = wave speed = 1 in our units. 

CHAPTER 5. MATTER AND ELECTROMAGNETISM 
We discuss matter, electromagnetism, their mutual influences, and the 

influence of spacetime on each. The main point will be that matter has a life 
of its own, at least as rich and interesting as that of the spacetime it inhabits. 

(M, g) is a spacetime throughout. 

5.1. Divergence and integration. In analyzing a collection of many particles, 
one needs appropriate integrals. The volume-form of spacetime M is the 
unique 4-form Ü on M such that Q(XV X2, X3, X4) = 1 for every consistently 
oriented local orthonormal basis (Xv . . . , X4). 

Let r be a positive integer, T be an (r, 0)-tensor field on M. The divergence 
of T is that (r — 1, 0)-tensor field div T characterized by: 

div T(^\ . . ., *'"!) - 2 (DxT)tt\ . . . , *'-!, «>), 

V local basis (Xv . . . , X4) with dual basis (<o\ . . . , to4) and for all 1-forms 
\P\ . . . , i//"1. Thus if T is antisymmetric, /(div T)ti = d[i(T)Q]9 where i 
denotes the interior product (cf. [18]). 

A submanifold {N, \p) of (Af, g) consists of a manifold N and an immersion 
\p: N -* M. (iV, \p) is spacelike iff yp*g is a Riemannian metric, iff $*(NX) is 
spacelike Vx E N. When TV is homeomorphically imbedded in M (§1.1) and 
\p is the inclusion, we write simply: submanifold N c M. For the purpose of 
integration, we now standardize the meaning of a compact submanifold with 
boundary N c M: N is an oriented connected compact submanifold whose 
boundary dN is a piecewise smooth manifold with the orientation induced 
from that of N. If dim N = dim M, it is understood that the orientations in 
M and N are consistent. 

5.2. Particle-flows. Imagine an enormous number of particles each of the 
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same rest-mass. Suppose, intuitively speaking, the particles are "streaming 
smoothly" with "no randomness" in their "velocity pattern". Examples are a 
very cold gas streaming in space (rest-mass nonzero) or a laser beam (rest-
mass zero). Then the following is a useful idealization. 

DEFINITION 5.2.1. A particle-flow (TJ, P) on spacetime M is à particle density 
TJ: M->[0, oo) and an energy-momentum vector field P on M such that, for 
some fixed m E [0, oo), each integral curve y of P is a particle of rest-mass m. 
m is the rest-mass of(y\, P). 

Thus g(P, P)= - m2 and P is future-directed (§4.4). 
The main idea here is that TJ specifies, in a "smoothed-out" way, how many 

integral curves are actually occupied by particles. More explicitly, let L c M 
be a 3-dimensional compact submanifold with boundary (§5.1) such that each 
integral curve of P intersects L at most once. Then one defines the total 
number of particles for ("in", "going through") L as JV = |/̂ /(i?-P)Q|> notation 
being as in 5.1. Thus N E [0, oo). One does not insist that N be an integer VL 
since when using a particle-flow model, one has in mind situations where 
N » 1 VL of interest. Example 5.2.2 below might clarify TJ and N. 

Let (TJ, P) be a particle-flow on M. Suppose that the particles in the flow do 
not interact with each other via quantum forces, that electromagnetic effects 
are negligible, and that there is no other kind of matter present. Then each 
particle in the flow should be freely-falling (§1.4) so one demands P be 
geodesic, i.e. DPP = 0. One then further demands that particles be conserved, 
i.e. for any 4-dimensional compact submanifold with boundary L c M, 
fdLi(y\P)Q = 0. By Stokes' theorem and a standard argument, this is equiv­
alent to demanding div(TjP) = 0 (§5.1). Intuitively speaking, div(TjP) = 0 iff 
particles in the flow are nowhere created, e.g. from%other kinds of particles, or 
destroyed, e.g. by decaying into other kinds of particles. 

EXAMPLE 5.2.2. Let (M, g, 34) be Minkowski spacetime with inertial frame 
34 (§4.1), and TJ: M—>[0, oo) be smooth. For m E (0, oo), (TJ, md4) is a 
particle-flow with energy-momentum vector field P = m34. Intuitively, the 
particles are at absolute rest relative to the inertial observers. By §5.1, 
/(TJP)B = — t\mdux A du2 A du3. Thus one might call Tjm "the number of 
particles per unit 3-volume", but TJ and N above are the more useful concepts 
and are applicable to the rest-mass zero cases as well. A short calculation 
shows that: DPP = 0; moreover div(TjP) = 0 iff 34TJ = 0, iff TJ = TJ(W!, U2, U3), 

"iff the number of particles in each spatial 3-volume is fixed for all time". 
When one assumes DPP = 0 = div(î)JP), one can state in what sense initial 

data determine the future for a particle-flow on a given spacetime. Suppose 
the following data are given: m E [0, oo); a spacelike 3-dimensional homeo-
morphically imbedded submanifold N c M; a smooth function TJ0: JV-» 
[0, oo) and a future-directed vector field P0 defined on N such that 
g(P0, P0) = — m2. Since N is spacelike, P0 is nowhere tangent to iV (2.2 and 

4.4). By the above restrictions on N, we can find an open connected 
neighborhood U of TV in M and a geodesic vector field P on U such that 
P\N = P0 and each inextendible integral curve of P in U intersects iV exactly 
once (cf. [18]). (U, g\v) supplied with the induced orientation and time-orien­
tation is then a spacetime. 

PROPOSITION 5.2.3. On U there is exactly one particle-flow (TJ, P) such that 
V\N - % P\N~ P* DPP - ° and div(TjP) = 0. 
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The proof consists of first showing uniqueness of P, e.g. by using the 
geodesic spray, and then using standard results on first-order linear partial 
differential equations to analyze div(îjP) = 0. 

53. Matter models and matter equations. A particle-flow (77, P) on M is an 
example of a matter model 'fJH on M. DPP = 0 and div(rjP) = 0 are exam­
ples of matter equations. 

Matter models are the heart of any physical theory. Unfortunately there is 
no known, universal, overriding and precise macroscopic matter model from 
which all others follow as limits or special cases. Instead one works with 
many intuitively related, mathematically independent matter models; cf. §5.5, 
[14], [18], or [20]. In lieu of precise, general definitions of "matter models" 
and "matter equations", we make some general remarks and give some 
precise examples. 

Matter equations model the influence of spacetime, electromagnetism and 
matter on matter. Sometimes, one can regard the spacetime M and an 
electromagnetic field (5.5) on M as given a priori. Then the matter equations 
become conditions on the matter model 9IL alone (cf. 5.2). But in general the 
situation is more subtle (§6.2). "Appropriate" matter equations, obtained by 
analyzing the physics in sufficient detail, always lead to some "present 
determines the future" theorem similar to Proposition 5.2.3. We now turn to 
the key example of a matter model. 

EXAMPLE 5.3.1. Let 911 = {(y\A, PA)\A = 1 , . . . , N) be a finite collection 
of particle-flows on M; 91L is a matter model. In the absence of all interac­
tions other than gravity, appropriate matter equations for (M, (DIL) are the 
following: DPAPA = 0 = diy(rjAPA)VA. These matter equations are interpre­
ted via free-fall and particle number conservation as in §5.2. 

EXAMPLE 53.2. Now suppose we have just a pair of particle-flows: 91L » 
{(77, P), (T), P)}. Suppose P = P/2 so that the rest-masses pbey m = m/2. 
Then it may be appropriate to replace div(ïjP) = 0 = div(rjP) by the follow­
ing matter equations: div(i]P) = - kt\ = -2div(TjP), where k G (0, 00). In­
tuitively speaking, the rest-mass m particles are here decaying, e.g. by radio­
activity, to make some extra rest-mass m particles. From the definition of 
total particle number, one can show that one here gets two of the latter for 
one of the former, corresponding to m =«= m/2. 

EXAMPLE 5.3.3. Though we shall not use it later, we give a more nearly 
generic example. Suppose one has a hot gas and each particle in the gas has 
rest-mass m,m G [0, 00). Since the temperature is nonzero, there will be some 
"randomness" in the energy-momenta. To take this "randomness" into 
account, one might use a large number of particle-flows, 9H = {(r)A, PA)}9 

each having the same rest-mass. But usually one smooths out as follows. Let 
9£ be the following subset of the tangent bundle: $£ = {(x, X) G TM\ 
g(X9 X) = - m2, and X is future-directed}. One can check that ?T̂  is a 
smooth 7-dimensional submanifold of TM (cf. §2.2). Replace 911 = {(T^, 
PA)} by a smooth function/: ?T+ -> [0, 00); the idea is ƒ(*, PA)<r±{y)Ax). ƒ is a 
matter model on M. Let L: TM -» TTM be the geodesic spray [3]. On $+9 L 
is tangent to $+ [18] so df(L) = 0 makes sense; this is equivalent to saying 
that restricted to the tangent vector field of each geodesic, ƒ is a constant. 
This is called Liouville's equation and is a matter equation. Its interpretation 
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is that the gas is so dilute that collisions can be neglected despite the high 
temperature. 

Other matter models, e.g. perfect fluids, will not be discussed in this article 
except insofar as they may be regarded as abstractions of the model in 
Example 5.3.1 when N becomes large. 

5.4. Electromagnetism. Nonquantum relativistic electromagnetic theory is 
perhaps the most elegant part of physics. The formal postulates are simple 
and the practical applications are well-nigh endless. But we need it here only 
for background and any attempt to sketch the very rich physics involved 
would lengthen this article considerably. In this section, we thus proceed very 
formally, leaving almost all motivations, interpretations, Newtonian ana­
logues, etc. to the references ([14], [18], [20]). 

An electromagnetic field on spacetime M is a 2-form f on M. Throughout 
the rest of this section, 3F is an electromagnetic field on Af, and § is the 
physically equivalent (2, 0)-tensor field on M. 

Let 9!t be a matter model (5.3) on Af. Then 9H determines a "charge-cur­
rent density vector field" J on M (cf. [14], [18]); again, in place of a precise 
definition of / , we illustrate with a concrete example. Thus in Example 5.3.1, 
where one has a finite collection of particle-flows, suppose V 4̂, (v)A, PA) 
models particles all of which have a given electric charge eA E R. Then 
J * 2^»!^t\A PA ("additivity of electric charge"). 

The triple (M, <$, 9tl) obeys Maxwell's equations iff d^ = 0 and div 5" = 
477/. The former equation replaces and unifies the classical equations 

V - f i - 0 * V x £ + (l/c)dB/dt, 

while the latter equation does the same to Coulomb's law and the Biot-
Savart-Maxwell law (see [14]). Since div div = 0, we have div J = 0 ("con­
servation of electric charge"). In general, Maxwell's equations interrelate (M9 

g), *£ and 9IL; they model the influence of matter and spacetime on 
electromagnetism. 

Sometimes (Af, g) and 91L are given ab initio. Then d*% = 0 and div <$ = 
4<7TJ become conditions on 3F alone; we give an example. Let (Af, g, 34) be 
Minkowski spacetime with inertial frame 34 (§4.1), and le t / : Af-»R be 
smooth. Then 3F = f du1 A du2 is an electromagnetic field on Af. The triple 
(M, j?, no matter at all) obeys Maxwell's equation iff d(fdul A du2) = 0 = 
div §". A computation shows that this is so iff 3jƒ = 3 2 / = 0 = 3 3 / = 34/» 
Thus § = B0dul A du2 for some BQ E R. For B0 =£ 0, this 3F can be interpre­
ted by saying that each inertial observer 34z, z E Af, would measure a 
constant magnetic field of magnitude |Z?0|, and zero electric field; cf. §4.1 and 

Let # be that (1, l)-tensor field on M which obeys 3F(co, X) « $(Y9 X) 
whenever X9 Y are vector fields and co is the 1-form physically equivalent to 
Y. Let y: F-> Af be a particle with electric charge e E R. Regarding <$ as a 
linear map AfyM -> Myu Vw E F, we obtain a vector field ^y* along y, i.e. 
ty*: F-+TM such that m ° §7^ = y. Similarly, with D the Levi-Civita 
connection, we have the curvature (geometric acceleration) Dy yt: F^ TM 
of y. The triple (M, S", y) is said to obey the Lorentz force law iff e^y* = 
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Dy y#. The Lorentz force law replaces Newton's F= nia (in the specific form 
£ + ( 1 / C ) Ü X 2? = ma; cf. [14]). It models the influence of gravity and 
electromagnetism on particles. Thus (M, f, y) is to obey the Lorentz force 
law whenever external quantum influences on y can be neglected (§1.3). 
Suppose, in addition, f = 0. Then only gravity acts on y and we duly have 
free fall, i.e. Dy y* = 0. 

The tensor £ defined by S(X, Y) = S * , , ^ , X)<$(X^ 7), V vector 
fields, X, Y, and V dual local bases {co**} and {A^}, is a symmetric 

(0, 2)-tensor field on M. Thus trace S (§2.1) is a function and 
T = (1/87T){5 - ^(trace S)g] is a symmetric (0, 2)-tensor field on M. T is 
defined as the stress-energy density of the electromagnetic field Qr. A rather 
detailed physical interpretation and a brief motivation are given in §6.1. 

5.5. Models for light. Suppose one has many light signals. Then no less than 
five models are available: photons (4.4); m = 0 particle-flows (5.3.1); the 
tangent bundle model 5.3.3 for m = 0; an electromagnetic field (5.4) or a 
"statistical superposition" of such fields; and a quantum electrodynamics 
model. We shall here use only the first two; compare the remarks on matter 
models in §5.3. 

CHAPTER 6. THE EINSTEIN FIELD EQUATION 
To complete the discussion of mutual influences in Chapter 5, we must 

discuss the influence of matter and electromagnetism on spacetime (M, g). 

6.1. Stress-energy density. Einstein suggested spacetime is influenced by the 
stress-energy density of matter and electromagnetism. Now, formally, a 
stress-energy density on M is simply a symmetric (0, 2)-tensor field T on M. 
But physically, more is involved, as we now discuss. 

6.1.1. Pre-relativistic concepts. Somewhat as energy-momentum unifies and 
replaces the pair (energy, momentum) in §4.4, stress-energy density unifies 
and replaces the following pre-relativistic quantities: Newtonian inertial mass 
per unit R3-volume; electromagnetic and Newtonian kinetic energy per unit 
R3-volume; electromagnetic momentum and Newtonian kinetic momentum 
per unit R3-volume; flux of energy and of Newtonian inertial mass; and 
momentum flux, which can be further split into a pressure and an anisotropic 
stress (cf. [14]). Hence "stress-energy" as short for, e.g., "mass-energy-
momentum-pressure-stress". Around 1905, physicists noticed, with great glee, 
that all these are merely different aspects of one thing, in the sense of the 
following operational definition. 

6.1.2. Measuring stress-energy. Let (z, Z) be an instantaneous observer 
(Definition 4.1.1). Suppose he actually measures the total energy of matter 
and electromagnetism in any unit volume of Z x (cf. §§4.2 and 6.1.3 below). 
He is then supposed to get T(Z, Z), where T is some stress-energy density on 
M as formally defined above. 

That the observations actually correspond to T(Z, Z), rather than, for 
example, to some 5(Z, Z, Z) with S a continuous (0, 3)-tensor field, may be 
regarded as a basic law of nature (cf. §1.5). We have uniqueness in the 
following sense: Suppose T and T' both obey the formal defining conditions 
for stress-energy density given above. Suppose T(Z, Z) * T'(Z, Z) for all 
instantaneous observers (z, Z). Then T = T'. Indeed, the assumption implies 
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that T(X, X) = T\X, X)VX which is timelike. Since timelike vectors form 
an open set of each tangent space while T and V are symmetric, necessarily 

r= r. 
Now the operational definition 6.1.2 is as general and precise as anything 

else in nonquantum physics. But it refers to actual measurements and 
therefore cannot be used in formal proofs (cf.§1.5). But given a mathemati­
cally precise matter model 9H and an electromagnetic field on M, the 
operational definition "leads to" a mathematically precise definition which 
can then be used in formal proofs. We now illustrate with the one example 
essential for later purposes. Let ÇH = {(y\A, PA)\A = 1 , . . . , N) be a finite 
collection of particle-flows on M (Example 5.3.1) and suppose *% = 0. 

DEFINITION 6.1.3. The stress-energy density of 9H is T = S^r^co^, ® uA, 
where uA is the 1-form physically equivalent to PA VA = 1 , . . . , N. 

Motivation. T is a symmetric, (0, 2)-tensor field on M. We must examine its 
relation to the measurements of 6.1.2. Let (z, Z) be an instantaneous 
observer. \/A = 1 , . . . , N, he measures energy-g^, Z) for a particle in the 
Aih particle-flow-by 4.4.1 and 5.2. Now suppose Xl9 X2, X3 span Z x . Let ÏÏ 
be the Lorentzian volume form (5.1). Then the 3-volume of the parallelepiped 
^ C Z 1 defined by {Xt} is |fi(*„ X>, X?9 Z)\ > 0. Moreover, by the 
definition and interpretation of number density r\A in §5.2, the y4th particle-
flow contributes NA = |S2(Â l9 X2, X3, rjAPA)\ particles in this parallelepiped, 
where we have also made use of the comments in §4.2. "Since energy is 
additive", the total energy in K is E = -S^= 1A^g(Z, PA). The energy per 
unit 3-volume is £'/|S2(Ar

1, X2, X3, Z)|. Algebra gives for the energy per unit 
3-volume: 2^=1(T?y4)[g(i>

4, Z)]2, which is duly independent of the particular 
parallelepiped K used. By uniqueness (6.1.2) and the definition of physical 
equivalence (2.4.3), we get T = 2^_XVA^A ® ^ a s w a s t 0 ^e motivated. D 

From the point of view of physics, the preceding pair, "Definition-Moti­
vation", corresponds to "Theorem-Proof. 

Now we are back in business mathematically and can exemplify by a 
theorem the key-properties which a stress-energy density enjoys in macro-
physics. So let 911 = {(r^, PA)} as before and T = l£N

A = \y\Au>A ® uA as in 
Definition 6.1.3. By §§2.1 and 5.2, trace T = -^N

AsBX(mAfr)A\ M-+(-oo, 0], 
where mA G [0, oc) and is the rest-mass of the AÛi particle-flow. Define the 
symmetric (0, 2)-tensor W = T — ^ (trace T)g; this tensor plays an im­
portant role in some of the "singularity theorems" (cf. §§7.3, 8.3 and [9]). 
Finally, let f be the (2, 0)-tensor field physically equivalent to T (2.4.3). The 
matter equations in (C) below were discussed in §§5.2 and 5.3. 

THEOREM 6.1.4. (A) For any instantaneous observer (z, Z), T(Z, Z) > 0 and 
W(Z9 Z) > 0, where either equality holds for one (z, Z) iff Tz = 0, ifft\Az = 0 
VA. (B) Trace T < 0. (C) Suppose DP PA = 0 = div(>qAPA) \/A; then div f -
0. 

The proofs of (A) and (B) consist of chasing down earlier definitions and 
using the algebraic results in §2.2. (C) follows from the linearity of div and 

div(rj/> ® P) = t){DPP) + [div(y]P)]P, 

which are easily verified using 5.1. 
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Most nonquantum matter models are so similar to the finite collection of 
particle-flows model above that one usually assumes that Theorem 6.1.4 
generalizes "in the obvious way" when any other nonquantum matter model 
91L is used or 5" T* 0. We give one more example and leave the rest to the 
references ([9], [18]). 

Let 9lt be as in 5.3.1 and 6.1.3, but assume #" =£ 0. Take T = Tx + T2, 
where T{ is the stress-energy density of 6.1.3 and T2 is that of 3F (§5.4); we 
shall refer to this T as the stress-energy density of 9ÎL and ÏÏ. Messy algebra 
shows that 6.1.4(A) remains valid provided we replace "iff t\Az = 0 \fA" by 
"iff i\Az « 0 V l̂ and also #z =^0". Simple algebra shows that 6.1.4(B) 
remains valid. The equation div t = 0 in 6.1.4(C) remains valid provided 
Maxwell's equations hold and, in addition, appropriate matter equations 
motivated by the Lorentz force law of §5.4 are used (cf. [14] or [18]). 

Quite generally, one always demands div f = 0 whenever the contribution 
from all forms of matter present and from electromagnetism have been 
included in T. In special relativity this is equivalent to postulating the very 
fundamental integral conservation laws for energy-momentum [14]. However, 
one there uses the fact that on Minkowski spacetime there are appropriate 
Killing vector fields in defining the relevant integrals. Thus, when gravity is 
not negligible, this motivation for div T = 0 fails in an essential way. The 
Einstein field equation of the next section provides an alternative motivation. 
Theoretical motivations apart, one always does demand it on empirical 
grounds. This identity div f = 0 is a powerful criterion for selecting ap­
propriate matter equations. Popularizations to the contrary, it usually does 
not determine the full set of matter equations uniquely; 6.1.4(C) with N > 1 
is one counterexample. 

Because of 6.1.4(A) and its generalizations, one interprets T = 0 on an 
open submanifold % Q M to mean % is a vacuum: no matter or electromag­
netism at all in % except perhaps "test" quantities which "respond but have 
negligible influence". 

6.2. The Einstein field equation. Let (M9 g) be a spacetime and Ric and s be 
the Ricci tensor and scalar curvature, respectively, as in §2.1. The Einstein 
tensor of M is G = Ric - (sg/2); it is a symmetric (0, 2)-tensor field on M. 

Let 9IL be a matter model on M, % be an electromagnetic field on M, and 
T be the stress-energy density of 91L and F̂ (cf. the end of §6.1). The triple 
(Af, 3F, 9IL) obeys the Einstein field equation iff G = T. For example, suppose 
M is Minkowski spacetime, § « 0 and 9lt is a single particle-flow (17, P). By 
6.1.4(A), (M, 0, 9Ü) obeys the Einstein field equation iff y\ = 0. The equation 
G = T replaces Poisson's equation of Newtonian gravitational theory and 
indicates how matter and electromagnetism generate gravity. Historical, for­
mal and empirical motivations for Einstein's field equation are given in great 
detail in every reference, e.g. [14] and [20]. Assuming the reader has already 
had enough of these, we henceforth focus on the actual content and implica­
tions instead. Suppose (M, F̂, (9It) obeys the Einstein field equation. 

(A) Algebra gives trace G = - s. Thus Ric « 0 iff G = 0, iff T = 0, iff we 
have vacuum (§6.1). 

(B) Assume, for the reasons outlined in the previous section, that T obeys 
the algebraic conditions in Theorem 6.1.4. Algebra shows that G(X, X) > 0 



GENERAL RELATIVITY AND COHOMOLOGY 1137 

and Ric(Ar, X) > 0 V causal vector X. This inequality on Ric is perhaps the 
most important consequence of the Einstein field equation. Roughly, it states 
that on balance gravity tends to pull things together rather than push them 
apart. (The corresponding situation in Riemannian geometry is that nonnega-
tive Ricci curvature "on the average" pulls geodesies together; cf. the proof of 
Myers' theorem.) It underlies the proofs of the singularity theorems in §§7.3 
and 8.3. 

(C) Let f be the (2, 0)-tensor field physically equivalent to T. Then the 
Bianchi identities for curvature imply div f = 0 (cf. [14]). Of course one has 
reason for postulating div f = 0 in any case (§6.1). 

6.3. General relativistic models. A detailed, fully consistent general relativis-
tic model consists of a triple (M, 3F, 911) as in the last section such that: 

(A) (M, ty, 9It) obeys appropriate matter equations (§5.3). 
(B) (M, 3F, 9lt) obeys Maxwell's equations (§5.4). 
(C) (M, $9 9IL) obeys Einstein's field equation (§6.2). 
Sometimes one can regard at least one member of the triple as given ab 

initio. For example, quantum complications apart, it is consistent to assume 
no matter anywhere and also take $ = 0. Then Maxwell's equations and the 
matter equations are vacuous and the stress-energy density vanishes. Thus the 
problem collapses to finding a spacetime (M, g) such that G = 0. Such 
space times exist; for example, a Kruskal spacetime has Ric = 0, whence 
G - 0 . 

However, when one is looking for a model to fit an actual physical 
situation one often cannot regard 9H and § as fully given ab initio. §7.3 
following has been set up as an example of how this actually works in 
practice. In such a case, one may need to use (A)-(C) jointly, together with 
empirical arguments, heuristic idealizations, etc. (cf. the discussion at the 
beginning of Chapter 7). 

Aside. Is the Einstein field equation a condition on spacetime, a definition 
of T, a provable law of nature, or some other darn thing? The last. T has an 
independent definition (cf. 6.1). But one cannot assume T known ab initio, as 
discussed above. Laws of nature cannot be proved (cf.§1.5). Almost exactly 
the same question can be asked of any other basic physical law. For example, 
is Newton's F = nia a definition of F, a definition of Newtonian inertial 
frames, a provable law of nature, or some other darn thing? Really, the last. 

CHAPTER 7. COSMOLOGY 
Chapters 1-6 cover the basic ideas of nonquantum relativity. As a sample 

application, we discuss cosmology. The main purpose is to describe the 
universe. As a byproduct we will get an example of how one builds a model 
by interweaving the basic equations (§6.3) of macrophysics, empirical data 
and intuitive guesses. In practice, the construction of a cosmological model 
goes roughly like this: The relativist confronts the known data, makes a guess 
at a mathematical model that seems to be approximately consistent with the 
data, uses the model to analyze the data more closely, correspondingly refines 
his model, makes further adjustments if necessary when new data come in, 
etc. When new data do come in, a model may sometimes be completely 
discarded as beyond repair; often a model is kept but only with a specific 
qualification of its range of applicability. In the latter case, new models must 
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now be sought to accomodate data outside the range of applicability of the 
old model, and the whole zig-zag process begins anew. 

The presentation of this chapter intentionally parallels this construction 
procedure as far as possible. Specifically, the reader will see that more than 
one model is needed. A mathematician eager to find the most general model 
applicable to the universe during all epochs from the big bang to the remote 
future will be disappointed, but in physics this tentative groping character of 
the models is a way of life. 

The outline of this chapter is as follows. §7.1 discusses spatial isotropy. §7.2 
outlines some observational results. Broadly speaking the data suggest two 
things: near here-now, the universe seems to be simpler than was thought 
likely ten years ago, so the classical cosmological spacetimes are probably 
better than more sophisticated modern alternatives; but there probably is a 
hot, dense, region in the history of the universe, "near the big bang", where 
rather sophisticated matter models are needed. Though the universe's appar­
ent predilection for simple spacetimes and complicated matter strikes us as 
misguided, §7.3 presents some models which respect it. §7.4 outlines the 
relation of the models to observations; the last section concerns the early 
universe. 

(M, g) is a spacetime throughout; z E M connotes "here-now" as always. 
Einstein-de Sitter spacetime (§3.1) is the canonical example. In verbal com­
ments we shall for brevity sometimes take it for granted that there was a big 
bang and that the chronological distance from here-now to the big bang is 
well defined, as in 3.1.7 (cf. also §2.6), and is of order 1010 years. 

7.1. Spatial isotropy. The concept of spatial isotropy plays a central role in 
cosmology, though only as an idealization. Intuitively, spatial isotropy means 
that any one spatial direction is on the same footing as any other. For 
example, suppose that when you look due East you see the Earth's sky as a 
certain shade of blue and when you look due West you see exactly the same 
shade. Thus, for East and West, you observe spatial isotropy. The intuitive 
concept is made precise in various ways. We give some examples. 

EXAMPLE 7.1.1. Suppose (M, g) is Minkowski spacetime, z E M, ƒ E (0, oo) 
and h is Planck's constant. Then Y ± = hf(d4z ± d{z) determines two photon 
energy-momenta at z (§4.4). The instantaneous observer (z, 94z) measures 
frequency ƒ for both (4.4.2). In this sense, (z, 34z) observes "East-West" 
spatial isotropy. 

7.1.2. Pointwise spatial isotropy. Let (z, Z) be an instantaneous observer in 
spacetime M. Let 0Z(3) be the rotation group for Z x c Mz, i.e. 

Oz(3) = {<ƒ>: M2-* MJ<J>Z = Zmdg(<t>X,<l>X) = g(X,X)\/X E Mz}. 

Then 0Z(3) is isomorphic to 0(3) (= the rotation group in R3) and each 
4> E 0Z(3) is linear. Now suppose ƒ: Mz —»R is a function, ƒ is (pointwise) 
spatially isotropic for (z, Z) iff f(<j>X) = f(X) \/X E Mz, and V<J> E 0Z(3). In 
particular, this definition applies to any symmetric (0, r)-tensor T at z, on 
regarding T as a function ƒ with f(X) = T(X,..., A"). The extension to 
other tensors at z is straightforward. For example, X E Mz is (pointwise) 
spatially isotropic for (z, Z) iff $X = X V</> E Oz(3), iff X E span Z. 

7.1.3. Global spatial isotropy. Let (x, X) be an instantaneous observer. Let 
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§MX be the set of isometries of M (2.4.2) which leave (x, X) fixed, i.e. 
§MX =-={</> E §M\<f>x = x and <j>*X = X}. §MX is a subgroup of @M. 
Spacetime is spatially isotropic for (x, X) iff §MX is isomorphic to 0(3). For 
example, Einstein-de Sitter spacetime is spatially isotropic for an instanta­
neous observer (x9 X) iff X = dtx (cf. §3.1). 

Let (M, g) be a spacetime such that, Vx E M, (M, g) is spatially isotropic 
for exactly one instantaneous observer (x, X). Let T be a (0, r)-tensor field on 
M. T is (globally) spatially isotropic iff <j>*T = T V<j> E §MX V(x, * ) as 
above. The extension of this concept to other tensor fields is again straight­
forward, e.g. a vector field Y is (globally) spatially isotropic iff </># Y =* y V 
such </>. 

Suppose T is a (0, 2)-tensor field on Einstein-de Sitter spacetime. An 
instructive computation shows that T is spatially isotropic iff T = \i{t)g + 
*>(/)<# ® rff, where JU, J>: (0, oo) -» R are smooth; for example, such a T cannot 
be a nonzero 2-form. Let T be a spatially isotropic (0, 2)-tensor field on 
Einstein-de Sitter spacetime; then Vx E M, T!x is pointwise spatially isotropic 
for (x, dtx) (but the converse need not hold). 

7.1.4. Uniqueness. Suppose T is as above, with v nowhere zero. By algebra, 
one finds that T is spatially isotropic for (x, X) iff X = dtx. Thus T singles 
out 3, as a distinguished vector field. 

Generally speaking, spatial isotropy not only indicates some kind of 
intrinsic symmetry but also selects distinguished instantaneous observers. For 
example, in 7.1.1, (z, (coshj6)34z + (sinh /i)d{z) is V/? E R an instantaneous 
observer who measures frequencies (see 4.4.2) ƒ ± = /(cosh ft + sinh /}) for 
the two photons. Thus (z, 34z) is the only member of the family who 
measures "East-West" spatial isotropy. Similarly, in 7.1.2, one can check that 
ƒ is spatially isotropic for at least one instantaneous observer (z, Z) iff there 
are functions /i, v\ R -> R such that ƒ (X) = iig{X, X) + vg(X, Z) VX; then ƒ 
is spatially isotropic for more than one instantaneous observer at z if f v = 0, 
iff ƒ is spatially isotropic for every instantaneous observer at z, which is a very 
special case. Similarly, in 7.1.2, suppose X ^ 0 is given. Then X is spatially 
isotropic for at most one (z, Z), being spatially isotropic for exactly one iff X 
is timelike. 

7.2. Observational cosmology. Most of the data relevant to cosmology is low 
precision, but so much is now available, owing mainly to work during the last 
decade, that at least the spacetime region near here-now seems to be reason­
ably well understood. We summarize the most important empirical results. 
[15], [17] and [20] contain more details on each topic discussed below. 

In presenting data, astronomers normally use certain concepts naively: 
"observable universe", "spatial isotropy", "recession speed", etc. Given a 
detailed model, which is in any case sometimes needed to reduce the data 
systematically, each such term can be assigned a formal meaning. For 
example, if one assumes a spacetime without any piecewise smooth closed 
causal curves, "observable universe" can normally be taken to mean the 
causal past of here-now (as defined above Theorem 2.6.6). Since we don't yet 
have a detailed model, and can't write one down ad hoc without giving a 
misleading impression of how such models arise, we shall sometimes proceed 
naively in this section. 
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7.2.1. Galaxies. The observable universe contains about 10u galaxies* 
Naively, imagine all these now distributed more or less uniformly within a big 
sphere having here as center and a radius of about 1010 (light-) years. There is 
some clumping. The biggest clumps of galaxies seem to be about 108 light 
years across and contain perhaps a million galaxies. Our own galaxy is part of 
a small local group which in turn is part of a big clump. The "random 
motion" of galaxies is rather small: a pair of nearest neighbors may have a 
relative speed of up to 0.005 the speed of light but usually the number is 
smaller. Thus we shall here ignore these random motions throughout. Quasars 
are probably just unusual galaxies and we shall regard them as such. 

The most important physical property of an individual galaxy is beauty; 
the reader should look at some slides if he can. A typical galaxy has a 
rest-mass of the order of 106 seconds in our units (§4.3), and a diameter of 
perhaps 50,000 years. It contains several billion stars, some gas, some dust, 
and other constituents minor in the sense that their contribution to the total 
test-mass is small. Whether a significant admixture of black holes is present is 
not known. Hydrogen is the predominant element. But about 30% of the 
rest-mass is in helium, which seems to be rather uniformly distributed, and 
traces of most elements are present. 

7.2.2. Actual observers. Thus our own galaxy is very small compared to the 
observable universe. Moreover, the speed of the earth relative to the center of 
our galaxy is less than 0.001 the speed of light. Thus we can and shall idealize 
as follows. (z, Z) will denote an instantaneous observer on spacetime M, with 
z interpreted not only as here-now but also as an appropriate point on the 
history of the center of our galaxy; Z will be interpreted not only as tangent 
to the history of an actual telescope but also to the history of the center of 
our galaxy. We use (z9 Z) or the heuristic phrase "actual observer" iff we 
have this interpretation in mind. 

7.2.3. Local physics there-then. Let x represent a moderately distant-early 
point in the observable universe, e.g. x is \ or less of the way back in time 
toward the big bang in the sense of Figure 3.1.3. There is considerable 
evidence that the basic laws of local physics at x are the same as those at z4, 
general relativity assumes this, as indicated by the fact that in stating the laws 
we have never referred to a distinguished spacetime point; we assume it 
throughout. 

7.2.4. The Hubble law and Hubble time. Suppose an actual observer 
measures the wavelength \z of a photon from a distant galaxy as in 4.4.2. 
Using 7.2.3 one can usually infer what wavelength Xx an instantaneous 
observer at x E M at rest with respect to the distant galaxy would have 
measured for that same photon at the emission event x. One systematically 
finds \ > Xx. This is called a red shift since on the two ends of the visible 
spectrum, red light has longer wavelength than violet light. Formally, define 
the red shift ratio for the photon as r = \ / \ . We shall assume, and our 
models will predict, r E (1, oo). In the references, r — 1 is called the cosmo-
logical red shift', we regard r as "directly measurable" (but compare §1.5). On 
a naive interpretation, r > I indicates that we and the distant galaxy are 
running away from each other (the Doppler effect, see [14]). As a temporary 
definition, call t> =•= (r2 — l)/(r2 + 1) the recession speed of the galaxy. Thus 
v E (0, 1); for example, if one pretends spacetime is Minkowski spacetime 
one can motivate the term recession speed [18]. 
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In a similarly naive way one can assign a distance L to the galaxy by 
observing its apparent brightness or the area it appears to subtend on the sky. 
For example, on a naive view, apparent brightness is proportional to {(actual 
brightness)/L2}. Assuming the actual brightness known, e.g. by comparing 
with nearby galaxies and assuming 7.2.3, this acts as a temporary definition of 
L. Thus one can also assign a time T via L = vT; naively, T indicates how 
long ago we and the distant galaxy were right on top of each other» 

The empirical Hubble law states that there is some single Hubble time 
TH E (0, co) such that T = TH, to good approximation, for all moderately 
distant-early galaxies. In particular, the pattern is spatially isotropic in the 
sense that T does not depend very much on the direction from which our 
photon comes. For technical reasons, the numerical value of TH is less 
accurately known than the fact that there is just a single number involved. 
Current estimates give, roughly, TH = 1.5 • 1010 years ±20%. Tjj1 is known 
as the Hubble constant. 

7.2.5. Other time scales. One can obtain time scales by other methods: 
radioactive dating of old rocks in the solar system; estimating the age of old 
stars in our galaxy; applying a dimensional argument to the observed stress-
energy density discussed below; etc. Some of these measurements are very 
difficult and controversial. However, each gives a time of roughly 1010 years, 
so there is some kind of rough, overall consistency. 

7.2.6. The microwave photons. We observe many photons with measured 
wavelengths between 0.1 and 10 cm. These are called microwave photons* 
They have three remarkable properties, whose discovery, interpretation, and 
implications have been the focus of attention in cosmology during the last 
decade. First, they do not come from identifiable discrete sources such as 
stars or galaxies. Probably the ones we see were created no later than 103 

years after a big bang. In this sense observing them probably involves looking 
backward in time 99.999% or more of the way and thus also almost to the 
very edge of the observable universe; compare Figure 3.1.3. 

Second, the observed pattern is spatially isotropic to an accuracy of 
considerably better than 0.1%. This counts as extremely high precision in 
cosmology. In view of the first property, it seems to indicate a surprisingly 
high uniformity of the whole observable universe. 

Finally, the microwave photons have what is called a thermal spectrum. 
The term refers to a result found by Planck in the days before relativity. He 
considered a box containing gas molecules in complete thermal equilibrium at 
some temperature T. He pointed out that there must then also be photons in 
the box and discovered the following remarkable law, discussed in more 
detail in, e.g. [20]. Suppose an observer at rest with respect to the box 
measures the number N E [0, oo) of photons whose measured energy (4.4) is 
greater than a given E E (0, oo) in any unit measured 3-volume of the box. 
He finds a graph N(E9 T) = T3/2/T6(w) du, where b(u) is a certain universal 
function independent of the kind of gas present, the size of the box, the 
temperature, etc. 

Now when an actual observer measures the microwave photons and 
constructs the corresponding graph he finds, to good approximation, 
N(E, 2.7° Kelvin). Near here-now there seems to be no photon source 
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sufficiently strong and close to thermal equilibrium to account for the fact 
that the observed graph has the characteristic thermal ("Planck", "black 
body") shape mentioned. However, big bang models can explain the shape in 
a reasonably plausible way; §7.4 will give an example. ITius the observed 
graph is generally regarded as the most nearly convincing of a number of 
observational results which indicate that something like a big bang actually 
occurred. 

7.2.7. Stress-energy density. Recall that it is the stress-energy density T of 
matter and electromagnetism which governs their influence on spacetime 
(Chapter 6). With (z, Z) as in 7.2.2 the observed value is about 
T(Z, Z) = (1010 years)"2 in our units, or probably rather less. Here it is 
understood that T(Z9 Z) has been "averaged over a very small spacetime 
volume, say 107 years across". The dominant contribution to the observed 
T(Z, Z) comes from the rest-mass of the galaxies. The contribution of the 
microwave photons is about 10"4 of this galactic contribution. That of the 
macroscopic electromagnetic field is likewise negligible. However, there may 
be forms of matter, even near here-now, which cannot be directly detected at 
present even if they contribute significantly to T(Z9 Z). 

7.2.8. The cosmological reference frame. Almost every current cosmological 
model postulates a distinguished future-directed timelike vector field, to be 
called the cosmological reference frame. For example, the vector field 3, in §3.1 
is one such. The history of each galaxy is modeled by an inextendible integral 
curve of this vector field with two qualifications: (A) when the galaxy is 
regarded as an extended region, it is the history of its center which is 
modeled; and (B) for very early times, it is the history of the (nebulous) 
matter which will eventually form the galaxy that is modeled. The main 
motivation for postulating such a vector field is the spatial isotropy observed 
by an actual observer (z, Z) together with the uniqueness argument in 7.1.4 
and the assumption that z - here-now is not very special. Other motivations 
include the possibility of an eigenvector characterization as in 3.1.2. 

73. Basic cosmological models. We need a spacetime (M, g), a matter 
model 9IL on M and an electromagnetic field f onM such that (Af, ^,911) 
approximates the history of our universe (§6.3). 

7.3.1. Strategy. We will first make some assumptions on M and $ moti­
vated by the data, leaving 9IL rather general. Then we work out the mathe­
matical consequences, mainly by using Einstein's field equation. Third, we 
compare the resulting models to observations. Then we will have enough 
information to formulate more specific assumptions on 911 and compare 
again to the data in 7.2. This section is devoted to the first two steps; the 
succeeding two sections deal with the third. 

7.3.2. Assumptions. When large regions are concerned the overall influence 
of f on M and 9IL seems to be negligible (7.2.7). Assume therefore: (a) 
<$ = 0. Thus we only need a model (M, 91L). Assume further: (/?) (M, g) is 
maximal (§2.6). 

We next make the assumptions: (y) 9IL consists of a finite, possibly very 
large, collection of particle-flows (5.3.1). (This is very general; see §6.1.) (S) 
Einstein's equation G = T holds, where T is the stress-energy density of 9H 
(6.1.3). It will be convenient to assume also: (e) T is nowhere zero; this is 
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suggested, e.g. by Theorem 6.1.4 and by 7.2.7. At this stage, it would not be 
appropriate to try to specify exactly which particle-flows are in 9It or specify 
the matter equations in detail (cf. 7.4.3(C) below). 

Up to this point, our assumptions are too broad to give a sharp confronta­
tion between observations and the model. We next make some very specific 
assumptions on (M, g). The main idea is to insist on an isometry group large 
enough to take into account the observed spatial isotropy (7.1 and 7.2). Other 
assumptions could be made at this point (3.1.8). All have some drawbacks 
(7.4.3 below). 

Precisely, the remaining assumptions are: (f ) M = R3 X F, with F c R , F 
open and connected, (rj) g = $l2(t)f)*h - dt ® dt, where <3l: F -^O , oo) is 
smooth, p: M -» R3 and t: M -» F are the projections, and h is the Euclidean 
metric on R3. Denote the first and second derivatives of SI by 4l and <3l. 
Replacing <3l(0 by 9 t ( - 0 if necessary, we may assume: (9) <3l is somewhere 
nonnegative. In a moment, we will use the Einstein field equation to get 
information on F and <3l. But first orient M via p*(dul A du2 A du3) A dt, 
and time-orient (M, g) by defining a causal vector V to be future-directed iff 
dt(V) > 0. This time-orientation insures we don't get a model which is, 
intuitively speaking, everywhere contracting, in gross contradiction to the 
observations 7.2.4 (see 7.3.4 below). 

One can show that, together with any standard matter equations, our above 
assumptions imply: (t) F is not bounded from above. To avoid a detailed 
discussion of matter equations here we postulate (i) separately. In any case 
the postulate concerns only the ultimate fate of the universe, which is (despite 
the enormous fuss made about it in popularizations) irrelevant to a discussion 
of the observable past of here-now. 

Throughout the rest of this chapter, (M, 91L) will denote a basic cosmologi-
cal model, i.e., one which satisfies all the assumptions (a)-(0 above. We have 
finished the first step of our overall plan 7.3.1 and we next turn to the second. 

PROPOSITION 7.3.3. The Einstein tensor G of {M, g) is 

G = - ( 2 & / & 3 + â 2 / ^ > * / * + 3(<&/<3l)2dt ® dt, 

where the notation is as in (f ) and (TJ). 

The proof is quite similar to that outlined in 3.1.2 and is thus omitted. The 
following corollary places an immediate restriction on <3l. For its purpose and 
for later purposes, let Z be the vector field on M physically equivalent to 
-dt; equivalently, Z satisfies dt(Z) = 1 and p^Z = 0. Note that g(Z, Z) = 
- 1 and Z is future-directed. 

COROLLARY 7.3.4. <3l is everywhere positive. 
PROOF. 3(#L/^l)2 = G(Z, Z) = T(Z, Z) > 0, by assumptions ( Y H ? ) and 

Theorem 6.1.4(A). Thus <3l is nowhere zero. By assumption (9), <3l > 0 
everywhere. • 

Recall that g ** 9}{t)p^h - dt® dt. 91 therefore measures the "spatial 
size" of g. Since the preceding corollary says 91 is a strictly increasing 
function of t, one interprets this to mean our model must always expand; see 
7.2.4. The next theorem states roughly that our model must also have a big 
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bang. For its statement, first define a future-directed causal geodesic y: 
I -* M to be past-incomplete iff its domain of definition / is bounded from 
below in R. 

THEOREM 7.3.5. Each integral curve of Z is a future-directed timelike 
geodesic which is past-incomplete. 

If we regard M - R3 X F as a subset of R4, i.e. M - {(a, t)\a E R3, 
t E F), then the integral curves of Z are just the /-coordinate curves oriented 
in the positive direction. Theorem 7.3.5 then implies that going in the negative 
direction along each /-coordinate curve must end in a "singularity" after a 
finite /-value. Thus according to assumptions (/î) and (i)> we may, and will, 
take F = (0, oo) without any loss of generality. The hypothetical hypersurface 
R X {0} (not in M) then corresponds to the big bang (cf. 3.1). The preceding 
theorem is an example of a singularity theorem under very special circums­
tances; a more general singularity theorem is given in §8.3. 

PROOF OF THEOREM 7.3.5. In the above representation of M as a subset of 
R4, we may write 

3 

g - &2(/) 2 du1 ® du1 - dt® dt. 
i = i 

Each isometry a E § R 3 (cf. 2.4.2) then extends to an isometry a E %M by 
o(a, t) * (o(a), t) Va E R3. If y is the /-coordinate curve / -* (a, t) for a fixed 
a E R3, let G be the subgroup of §R3 having exactly {a} as the set of fixed 
points. Then yF is the set of fixed points of G = {ö\o EL G). The fixed-point 
set of a group of isometries being a totally geodesic submanifold (cf. 
Kobayashi and Nomizu [12, II, p. 61]), y is a geodesic. Equivalently, each 
integral curve y of Z is a geodesic. The fact that y is future-directed and 
timelike follows from the definitions. 

To show that each integral curve y of Z is past-incomplete, we first make a 
series of observations. The first one is a restatement of the preceding 
paragraph. 

(i)Z>zZ = 0 ,£ (Z ,Z)= - 1 . 
(ii) g(DvZ, W) = g(V, DWZ) V vector fields V, Worthogonal to Z. 
We have 

g(DvZ, W) = V[g(Z, W)] - g(Z,DvW) = -g(Z,DvW), 

and similarly g(V, DWZ) = - g(DwV, Z). Since DVW = DWV + [W, V\ it 
suffices to show g(Z, [W, V]) = 0. This is so because V, W are everywhere 
tangent to the hypersurfaces {/ = constant} and hence so is [V, W]. This 
implies s(Z,[F, W]) = 0. 

(iii) Z(div Z) = -Ric(Z, Z) - |(div Z)2. (Special case of Raychaudhuri's 
equation.) 

This is a straightforward computation using (i), (ii) and the following 
immediate consequences of the definitions: 

d i v Z = 2 g(DXZ>Xi)> 
i = i 

where {Xx, X2, X$, Z} is locally an orthonormal basis (5.1, 2.1), and with the 
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same notation, 

Ric(Z, Z) = 2 ~g(DzDxZ + D[XhZ]Z, Xê) (cf. 2.1). 

(iv) Ric(Z, Z) > 0. 
Indeed, by assumptions (y), (§), Theorem 6.1.4(A) and remark (A) in 6.2, 

0 < W(Z,Z) = r ( Z , Z ) - ^ ( t r a c e r ) g ( Z , Z ) 

= G(Z,Z) + ±(traceG) = G(Z,Z)-\s. 

By the definition of G, this gives 

0 < Ric(Z, Z) - \sg{ZyZ) -\s = Ric(Z, Z). 

(v) div Z > 0. 
As we observed in the proof of (iii), div Z = *22

i=lg(DxZ, X^, where {Xv 

X2, Xv Z} is a local orthonormal basis. Using g(Xt, Xt) = 1, we get 

g(0jrZ,^-g(Z>zX,+[Jr, ,Z],*,) 

= \Zg(X» X,) + g([X„ Z], Xt) - g([X„ Z], X,), 

Thus div Z = S/gQA ,̂ Z], A)). Letting {9;} be the usual coordinate vector 
fields in R3, we choose X-% = (1/31)9,., i = 1, 2, 3. It follows that div Z « 
3^1/%. By Corollary 7.3.4 and assumption (-q), we see that div Z > 0. 

The proof of the theorem can now be simply completed. Let y: 
(— a, 0] -» M be an integral curve of Z. We have to show - oo < - a. Let 
ƒ » (div Z ) ° y ; then ƒ is a smooth function on ( -# , 0]. (iii)—(v) now imply 
that 

ƒ < - fIX ƒ > 0. 
Let è = /(0). Then we will prove that (-3/b) < - a. For, letting g = 1//, 
we have g > 0 and g > j from the above. Now take / E ( - a, 0]; integrating 
this last inequality from t to 0 gives (1/6) - ( l / / (0 ) > - V3- Thus ƒ(/) > 
3b/\3 + H If - a < - 3 / 6 , then ƒ ( - 3 / 6 ) should be well defined. But the 
preceding inequality implies ƒ ( - 3 / b) = + oo, contradiction. • 

We make three observations about this proof: (A) T(Z, Z) = }(div Z)2. 
This follows from the proof of step (v), Proposition 7.3.3 and assumption (8), 
(B) div Z -^ oo as one goes backward in time along the integral curves of Z, 
This follows from the last paragraph of the proof. (C) The instantaneous 
observer (z, Zz), as he goes backward in time along any integral curve of Z9 

will observe infinite total energy in finite proper time. This follows from 6.1.2 
and (A), (B) above, 

EXAMPLE 7.3.6 (THE EINSTEIN-DE SITTER MODEL). We give the key example. 
Suppose (M, g) is Einstein-de Sitter spacetime (§3.1), i.e. <3l(/) = f2/3. We 
take over the notation of 3.1 without comment. Let 91L consist of a single 
particle-flow (17, P) with m = average rest-mass of a galaxy, 17 = 4t2/3m2: 
M -> (0, 00), and P = mdr Then (17, P) obeys the simple matter equations 
div(rjP) = 0 = DPP, interpreted in §5.3. A short computation shows that (M% 
(3IL) is in fact a basic cosmological model as defined above. (M, 91L) is called 
the Einstein-de Sitter model. 

Conversely, let (Af, 9IL) be a basic cosmological model and suppose 9R, 
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consists of a single particle-flow (TJ, P) with rest-mass m. We will show that 
(M, 911) is essentially the Einstein-de Sitter model. Let <o be the 1-form 
physically equivalent to P. By assumption (5) of 7.3.2, G = TJCO ® co (see 
Definition 6.1.3). Comparison with Proposition 7.3.3 and elementary algebra 
gives m\ = 3(<3l/ <&)2, 29161 + <3l2 = 0, and x = - mdt. The first equation 
and Corollary 7.3.4 imply m > 0 and TJ > 0. The second equation is equiva­
lent to 2(ln a)# + (In %)• = 0. Thus we obtain 

<&(/) = kt2/3
y for some A: G (0, oo), 

7} = 4/2/3w2 and P = m3,. 
Upon choosing m as the average galaxy rest-mass, we have an isometry of 
(M, 91L) with the Einstein-de Sitter model. In this sense, a basic cosmological 
model (Af, 91L) is the Einstein-de Sitter model iff 91L consists of a single 
particle-flow which models the galaxies. 

Apart from m above, which is irrelevant in many geometric arguments, the 
Einstein-de Sitter model has exactly one adjustable parameter, namely the 
time / assigned to z = here-now. Now, by §3.1, no star or rock at here-now 
can have a proper age greater than t(z). On the basis of the data in 7.2.5, let 
us agree to take t(z) = 1010 years, as a specific value, when using the 
Einstein-de Sitter model. Every other general-relativistic cosmological model 
has more adjustable parameters. Next to vague philosophy, gratuitous adjus­
table parameters are the biggest curse of theoretical cosmology and a really 
satisfying model should have none. 

The next two corollaries of Proposition 7.3.3 apply to any basic cosmologi­
cal model. The ideas involved have already been discussed in §§2.6 and 3.1 
and 7.1.4; we omit the proofs. For the rest of this chapter, let 3, be the vector 
field physically equivalent to — dt; thus this is the same vector field as the Z 
of Theorem 7.3.5. 

COROLLARY 7.3.7. / is the cosmological distance from the big bang, i.e., 
Vy E M, t(y) = 1. u . b . {s(x, y)\x <^y) where s is the chronological distance. 

COROLLARY 7.3.8. The isometry group §M is isomorphic to §R3 ("spatial 
homogeneity and isotropy"). (M, g) is spatially isotropic for an instantaneous 
observer (x, X)iffX= dtx. 

Thus we shall take 3, as the cosmological reference frame, with galaxy 
histories modeled by integral curves of Z (7.2.8). This is consistent with the 
Einstein-de Sitter matter model (7.3.6). 

7.4, Confronting the data. As an example of how a basic cosmological 
model (M, g) can be compared to observations, consider the following 
experiment. The red shift ratio r of a photon which comes to us from the 
center of a moderately distant-early galaxy is measured as in 7.2.4. In 
addition, suppose the galaxy appears as a slightly extended haze in the sky, 
rather than merely as a point the way a star does. By direct observation, one 
can assign a solid angle AÏÏ to the galaxy (the actual measurement can be very 
difficult, cf. [20]). Thus Aïï E (0, 4TT) and corresponds to that portion of the 
sky under observation. Doing this experiment for many different galaxies, one 
obtains a graph (r, AS2} <-» AS2(r). The job of our model is to predict this 
graph. 
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To analyze the red shift ratio r, let \ : [a, b] -> M be the observed photon, 
with z = Xb and emission point x = Xa E M. By §4.4, X is future-directed 
and lightlike. One takes À as a geodesic on the grounds that quantum 
interactions are either negligible or would annihilate the photon before it 
reaches us and electromagnetism is also negligible (both the electric charge 
and <$ are zero). The energy measured at emission is —g(dtx, X+a) and the 
measured energy at here-now is -g(9,z, X^b); these results follow from §§4.4 
and 7.2.3 and our interpretation of 9, in the last section. By analyzing the 
geodesies, e.g. by using Killing vector fields as in 2.4.2, one can compute the 
red shift ratio to get: 

7.4.1. r = ft(/(z))/&(/(jc)). m 

Since X is future-directed and 4L is everywhere positive (Corollary 7.3.4), we 
have r E (1, oo), in qualitative agreement with the observations in 7.2.4 which 
give systematic red shifts, rather than any shift to violet. Note here that the 
more distant-early the emission point x, the bigger r. Textbooks thus refer to 
the measured quantity (r - 1) as a "distance indicator". 

The appropriate model for the measurement of Ml at here-now is the 
following. Let S2 be the celestial sphere in Z x , i.e. 

S2 = { f /EZ ± | g ( f / , f/) = l}, 

where (z, Z) = (z, 9,z) is an actual observer 7.2.2. Every photon from the 
distant galaxy determines a point U on the celestial sphere, U = its direction, 
via the orthogonal decomposition Y = E(Z - U) where Y is its energy-
momentum at here-now. Then AH is simply the 2-area of the interpolated set 
{U E S2|£/as above}. 

Now let us assume the intrinsic 2-dimensional cross-sectional area kA of 
the distant-early galaxy is somehow known, e.g. by comparing with nearby 
galaxies and assuming 7.2.3; in practice this step can also be quite difficult. 
Let §ZM be the group of isometries of M leaving (z, Z) fixed, as in 7.1.3. Let 
S2 be the orbit of §ZM through x (2.4.2). In the figure below, one dimension 
is suppressed. By the form of g, the homeomorphically imbedded 2-manifold 
S2 has the intrinsic geometry of an ordinary 2-sphere. Let A be its intrinsic 
area. Since §ZM sends lightlike geodesies through z into the same, the 
particular way S2 corresponds to S2 then implies that Afi/(47r) = LA/A. If 
we can get A in terms of r, we are finished. 

To take a specific example, suppose (M, CDH) is the Einstein-de Sitter model 
(7.3.6) with t(z) = 1010 years as before. Then we have the explicit formulas 
for lightlike geodesies X as in 3.1.5. A computation gives 

A = 47r{3(^(jc))[%,/2(/(z)) - <S0/2(t(x))]}2 

= 47r[3/(z)(r"1 - r" 3 / 2)] 2 . 

Thus we have our desired prediction: 
7.4.2. AS = àA/[3t(z)(r~l - r"3/2)]2. 
We make some comments on the precision of this equation relative to the 

data. (A) Naively, with &A and t(z) fixed, one expects AÎ2 to decrease as r 
increases. For r < 9/4, 7.4.2 duly predicts this ("the more distant-early a 
galaxy is, the smaller it appears"). But for r > 9/4, AS2 is an increasing 
function of r. The intuitive interpretation then is that gravity is focusing the 



1148 R. K. SACHS AND H. WU 

light, so that the galaxy looks larger than it should. The actual observations 
do not extend in any convincing way out to the break point r « \. (B) For 
smaller values of r, the curve 7.4.2 fits the data about as well as the curve 
predicted by any other model. Neither the data nor the fit are high precision 
in any case except for r — 1 < 1. (C) In particular, working with a naive 
definition of distance as discussed in 7.2.4, one would here define distance L 
via AS2 =•= LA / L1. For r - 1 < 1, i.e. for rather nearby galaxies, comparison 
with 7.4.2 gives a prediction for the naively defined Hubble time 7.2.4. By 
using a Taylor expansion and 7.2.4, the reader can check that the predicted 
value of the Hubble time is TH » 1.5 X 1010 years. The exact agreement with 
the measured value is spurious, in view of the observational uncertainties, but 
the agreement in the order of magnitude is gratifying. 

/HII/.LL'..///////// 
7.4.3. Others tests. A number of similar classical tests can be applied to the 

basic cosmological models, as discussed in [15] and [20]. However, the one we 
have discussed is typical in the following ways. First the data is low precision 
and one does not get a high precision fit (of the model for the data). Second, 
the fit is about as good as for any other models even though all the other 
models have extra adjustable parameters. Third, on a qualitative level, the fit 
is really very good. Many different kinds of data can be fitted in without 
forcing or gross discrepancies. Then one has a simple overall context within 
which to analyze each particular observation. These models really are basic. 
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7.4.4. Diseases. However, the models also have serious diseases. (A) The 
universe has no exact symmetries; for example, there are fairly big clumps of 
galaxies (7.2.1). In our basic models, however, %M is nontrivial. Every 
explicitly known cosmological spacetime, general relativistic or not, suffers 
from this deadly disease. No real cure is known. To analyze more nearly 
generic models, one must use general theorems or linearization stability 
results (cf. [6]). Then one has so much leeway in the models that the 
comparison to observation becomes less tense and thus less interesting. The 
next disease is also almost universal and is extremely interesting. (B) Our 
models are self-defeating in the following sense: they predict a big bang 
(Theorem 7.3.5), but no matter how one chooses the matter model and matter 
equations one finds that sufficiently close to the big bang they become 
unrealistic. For example, the Einstein-de Sitter model is probably quite good 
near here-now and for, say, 90% of the time back to the big bang. But we 
shall see in the next section that the Einstein-de Sitter model is self-defeating, 
exactly in the sense just mentioned, for early times, e.g. for t < 104 years. 
Similarly, there is empirical evidence, discussed briefly in the next section, 
that the basic cosmological models may be qualitatively correct for quite 
early times, e.g. 1 second after the big bang. But if, as is frequently done 
nowadays, one starts speculating on much earlier times still, e.g. 10~23 

seconds after the big bang (!), then the particle-flow model (7.3.2) itself 
breaks down. If there was such an epoch, quantum theoretical matter models 
must be used to analyze it. 

This self-defeating disease is important because in trying to explain ob­
served phenomena near here-now, e.g. the microwave photons and helium 
abundances mentioned in §7.2, one is sometimes driven back, willy nilly, to 
earlier epochs. It is probably not a mortal disease: hopefully many features 
near here-now are not too sensitive to the existence, let alone the details, of 
an ultra dense epoch. Moreover, there is a reasonably straightforward stan­
dard cure. The further back in time one has to go, the more one refines the 
matter model stepwise, using previous steps as a guide. Einstein-de Sitter is 
here the 0th step; the next section briefly discusses the first. 

In addition to these essentially universal diseases, the basic models (7.3.2) 
have a special one: (C) They predict that the observed Hubble time T„ and 
observed energy density (7.2.7) must be related by T(Z, Z) = (f)7# [17]. 
That the model interrelates these two different measurements is a virtue and 
the prediction is barely consistent with current data, but a smaller predicted 
value of T(Z, Z) would fit the data somewhat better. 

Finally, if one wants to make theoretical cosmology seem harder, deeper, 
and more accurate than it really is, the basic cosmological models are the 
worst possible models to use. 

7.5. The early universe. Let (M, g) be a basic cosmological model. We 
briefly discuss here the microwave photons (7.2.6), the self-defeating disease 
7.4.4(B), and the early universe. 

By assumption (y) in 7.3.2, we must model our microwave photons by a 
finite collection of particle-flows. Let (17, P) be one. Then P is lightlikc 
future-directed and the rest-mass is zero (§§4.4 and 5.2). On the basis of the 
argument used for the single photon A in the preceding section (cf. also §§5.3 
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and 5.4), we assume P geodesie as before; thus DPP = 0. We shall here 
assume photons are conserved, i.e. div(TjP) = 0. Probably this is a reasonable 
assumption for times later than 105 years, though the arguments in support of 
this are rather difficult and to some extent controversial ([15], [20]). For much 
earlier times still, the matter equation div(îjP) - 0 in turn becomes self-de­
feating, but we shall not explicitly go back that far here. 

Since P is lightlike, we cannot insist on spatial isotropy (7.1) for the 
individual particle-flow (17, P). However, since our large isometry group §M 
was in part motivated by the microwave photons we shall insist that (TJ, P) 
has maximal symmetry, i.e. there is a subgroup % c 3M such that 17 <> <f> = 17 
and </>*ƒ> = P V</> G %, with the dimension of % as large as possible. It turns 
out that the relevant dimension is 4. Moreover, suppose N G (0, 00) and 
E G (0, 00) are given; let r be the red shift ratio (7.4.1), i.e. 

r = [ &(/(z))/& ° t] : M -* (0, 00). 

Define 

rj = (N/E)r2:M->(0, 00), 

P = £>(3,+[l/<& o / ] 3 j ) : M ^ r M . 

Then (17, P) is a photon-particle flow of maximal symmetry and obeys DPP = 0 
= div(i]P); conversely, if (ij, P) is a photon particle-flow of maximal symmetry 
which obeys these matter equations and rj > 0, then there exists anjsometry 
<t> G §M and positive numbers N and P such that TJ = 17 <> <f> and P = <f>+P, 
where 17 and P are defined in terms of N and E as above. Note that since r — 1 
at here-now, by §§4.4 and 5.2, E is the energy measured at here-now for a 
photon in the particle-flow (17, P); similarly, by §5.2, N has the interpretation 
of number per unit 3-volume of Z x at here-now. 

Now an observer at here-now measures many different energy-momenta, in 
particular, many different energies, for the various microwave photons (7.2.6). 
Thus we shall have to use many maximally symmetric particle-flows as above. 
Ideally, one would like to insist on global spatial isotropy (7.1.3) at least for 
the set as a whole. This cannot actually be achieved unless one uses an 
"infinite" number, i.e. uses the tangent bundle model of 5.3.3. However, it 
can be approximated to any desired degree of accuracy by using sufficiently 
many. That will suffice for present purposes and the exact number used will 
be irrelevant. 

This model explains the observed thermal spectrum (7.2.6) as follows. Let 
(17, P) be a photon particle-flow with maximal symmetry, N > 0. Suppose 
x G M models an early point, i.e. t(x) < 1010 years. Then a computation 
using the definition in §§4.4 and 5.2 shows that the number density Nx and 
energy Ex measured by (x, dtx) are Nx = N(r(x))3 > N and Ex = Er(x) > 
E. Suppose (x, dtx) measures many such flows. Suppose his graph for NX(EX) 
does have the thermal form 7.2.6 with Tx G (0, 00) as the temperature. Since 
the situation near x is very dense (cf. the observations after the proof of 
Theorem 7.3.5), assuming a thermal shape at x is quite possible (cf. [15] and 
[20] for detailed arguments). Now our equations above show directly that at 
here-now we must also observe a thermal spectrum equal to 
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N(E) = r-*Nx(Ex) = r-*Tir bdu^^T b du 
JEX/TX JE/TZ 

w i t h T z * T J C / r < T x . 
[This famous and beautiful argument does not explain the particular value 

T2 = 2.7°K. By going back still further in time, and assuming the observed 
helium abundance (7.2.1) is due to the creation of helium out of hydrogen at 
early times, one can let a self-consistent explanation of the number 2.7°K for 
the temperature and the 30% figure quoted in 7.2.1 ([15], [20]). Since that 
argument involves times of order 1 to 1000 seconds after the big bang it is 
spectacularly correct if, as at present seems likely, it is correct.] 

Finally, we analyze in what sense the Einstein-de Sitter model is self-defeat­
ing. Let (M, 9IL) be a basic cosmological model. Let Tx be the galactic 
contribution to the total stress-energy density T of §6.1, and let T2 be the 
microwave photon contribution. By 7.2.7, we take T2(Z, Z) = lO^r^Z , Z), 
i.e. the photons are negligible near (z, Z) = here-now. Now suppose T2 is 
spatially isotropic in the sense of 7.1.3. Since each particle-flow which 
contributes to T2 has zero rest-mass we find from §§6.1 and 7.1.3 that 
T2 = (fi © t)(g + Adt ® dt) for some smooth function (x: (0, oo) -» [0, oc); by 
using six or more particle-flows of maximal symmetry, one can construct a T2 

of this form. Using the Einstein-de Sitter matter equations for Tx ^and our 
above matter equations for the photon particle-flows, one finds div Tx = 0 = 
div T2 by Theorem 6.1.4(C). Explicit integration of these two equations now 
gives r2(3„ 3,) = \0-4rT{(dr 3,). Now r-* oo as / -»0 because r = /(z)2/3* 
/-2/3 j n t^e c a s e 0f Einstein-de Sitter. This means that for sufficient early 
times, r2(3,, 3,) » Tx(dp 3,). This in turn means that the Einstein-de Sitter 
model, which neglects the effect on spacetime of the photon particle-flows 
entirely, becomes unrealistic at early times. The cure is merely to include the 
photon particle-flows. Near here-now, it makes no essential difference; for 
early times, it gives a more nearly realistic model. Thus we have given an 
example of disease 7.4.4(B) and its stepwise cure. The next steps are dis­
cussed, e.g. in [15] and [20]. 

Summary. The actual universe is beautiful. Some of that rubs off on the 
various models used in cosmology. But the models must be taken with a grain 
or more of salt. 

CHAPTER 8. CHRONOLOGY, SINGULARITIES AND BLACK HOLES 
In current research in general relativity, the most interesting topic concept­

ually is that of combining the theory with quantum physics. Equally im­
portant is finding detailed models, especially matter models, for a variety of 
observed astrophysical systems. Neither these nor many other physically 
motivated current investigations as yet lend themselves readily to description 
in reasonably precise mathematical terms. We will not discuss them. 

Among relevant advanced mathematical topics, the study of the initial 
value problem and linearization stability is one of the most important. In [6], 
mathematicians should find discussions of these topics in terms that are 
accessible. Also very important is the theory of causal vector fields; cf. [5]. 
However, lightlike vector fields are so anti-intuitive for anyone trained in 
Riemannian geometry that we have here (somewhat artificially) avoided this 
theory whenever possible and shall continue to do so. Leaving aside a host of 
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minor topics, the third major mathematical area of current interest is chronol­
ogy theory (cf. §2.6). This chapter discusses some examples of it. Many of the 
results are due to Geroch, Hawking and Penrose. [9] and [16] are the 
canonical references* 

For reasons of space, the presentation of this chapter has been made more 
condensed than that of the preceding seven. As usual, (M9 g) denotes a 
spacetime. 

8.1. Mean curvature. Let N c M be a 3-dimensional spacelike submanifold 
of M (§5.1). We define the mean curvature K: N -* R of N as follows. Given 
x E N9 let {X{9 X2, Xy Z) be vector fields in a neighborhood % of x such 
that Z is future-directed, at each y E N n ^l {X{9 Xl9 Xv Z) is an orthonor-
mal basis of Ny consistent with the orientation of M, and {X{y9 X2y, X3y) 
spans Ny. Then by definition, 

Kxsl^g(DXtZtX,)\(x). 

That this definition is independent of the choice of {X{9 Xl9 Xy Z} is a 
standard calculation which we omit; this calculation is in fact implicit in the 
proof of step (ii) in the proof of Theorem 7.3.5. The following observation 
follows directly from the definition of the divergence of a vector field in 5.1 
(see also the proof of step (iii) in the proof of Theorem 7.3.5): If Z is a unit 
vector field, future-directed and orthogonal to JV at every point of N9 then 

üT = divZU. 

The readers familiar with Riemannian geometry will recognize K as the 
trace of the second fundamental form of N9 and as such, this definition 
coincides with the Riemannian definition of mean curvature (cf. Kobayashi 
and Nomizu [12, II], p. 33). One has the following geometric interpretation of 
K. Suppose N is, in addition, a compact submanifold with boundary (§5.1). 
Vx E N, let yx: [0, e] -> M be a future-directed geodesic orthogonal to N and 
satisfying ŷ O = x and \\(yx)*\\ = 1. Also Vf E [0, e], define N1 = {yx(t)\x E 
N). If v(t) denotes the Riemannian volume of N'9 then a straightforward 
computation gives 

i/(0) = fKQN9 

where iïN denotes the Riemannian volume element of N. Thus K > 0 roughly 
means that the future-directed geodesies orthogonal to JV are, on the average, 
spreading out near N so as to increase the volume of N. The corresponding 
interpretation f or K < 0 underlies the proofs of both singularity theorems of 
this article (Theorem 7.3.5 and Theorem 8.3.2 following). 

EXAMPLE 8.1.1. Suppose M = R3 X (0, oo) and g = 2^xdul ® du1 - du4 

® du4. With the usual orientation and time-orientation, (M, g) becomes the 
upper-half space of Minkowski spacetime. Define r: R3 -> (0, oo) by r2 = 
2?SBi(«/)2 a n d w r i t e ' = N4: M->(0, oo); then both are smooth positive 
functions on Af. Let S c M be the unit hyperboloid defined by r2 = t2 - 1. S 
is then a spacelike 3-dimensional submanifold of M. In the open neighbor­
hood U s= (r2 < t2} of S9 define a vector field Z by Z = 
(t2 - r2)-1^4

 xu^d . Z satisfies g(Z9Z) = - 1 , is future-directed, and Z\s 
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is everywhere orthogonal to S. Moreover, div Z = 3(/2 - r2)"1^2. Thus the 
mean curvature of S equals K = div Z\s = 3. 

Note that Z is just the restriction of the radial vector field of R4 to M. 
Consequently, its integral curves are just radial geodesies (= straight lines). 
From the geometric interpretation of K given above, we expect from K = 3 > 
0 that in following the geodesic integral curves of Z in the past direction they 
should converge. Indeed, these geodesies converge at the origin (not in Af ), 
thereby giving rise to a "singularity"; compare the proofs of Theorems 7.3.5 
and 8.3.2. 

In the figure below, the orthogonality of Z to S might look peculiar; it is 
because g is Lorentzian. 

8.2. Cauchy surfaces. The global structure of a spacetime (Af, g) can be 
quite subtle. However, if there exists a Cauchy surface, as defined below, the 
global structure is not really more complicated than that of a Riemannian 
4-manifold. 

Let y: (a, b) -» M be a continuous curve, where — o o < a < f c < o o . An 
x E M is an upper endpoint for y iff limM f̂t yu * x, i.e. V neighborhood U of 
x in Af, there exists a u0 E (a, b) such that y(u0, b) c U. Intuitively: y 
ultimately enters and stays in U. Lower endpoints are defined dually, y is 
endless iff it has no endpoints. 

EXAMPLES 8.2.1. (A) Let y: F-* M be an inextendible geodesic which is not 
a constant map. Then y is endless; this follows from the existence of 
geodesically convex neighborhoods (Lemma 2.6.3). (B) For any timelike 
vector field A" on Af (which always exists by Proposition 2.3.1), the inextend­
ible integral curves of X are endless. (C) The existence of upper or lower 
endpoints cannot be judged just by looking at the domain F. For example, 
suppose Af = N X (0, oo) with N a 3-manifold, n E Af, F = (0, oo), and 
yu = (n, tanh «) V« e F. Then y has no lower endpoint and has an upper 
endpoint (n9 1), although the opposite is true of the canonical imbedding 
Fc+R, (D) As always, causal curves (§2.3) play a special role. For example, 
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suppose y: (0, 1) -* M is smooth and the sequence y(^), y(f ), . . . converges 
to x E M. Then if y is causal, a bounded variation argument shows x is an 
upper endpoint for y; however, for a general y, x need not be an upper 
endpoint. 

Let C c M be a subset. C is defined as a Cauchy surface iff each smooth 
endless timelike curve y: F-* M intersects C exactly once, i.e. there exists a 
unique u0E. F such that yw0 E C. This definition is conformally invariant in 
the sense of 2.6.5 since a curve is endless timelike for (Af, ag) iff it is endless 
timelike for (Af, g). A spacetime is globally hyperbolic iff there exists a Cauchy 
surface. 

EXAMPLES 8.2.2. (A) Let (M, g) be the upper-half space of Minkowski 
spacetime (8.1.1). Define C as the level surface / = 2, a > 0. Then C is a 
Cauchy surface, as an elementary argument shows. (B) Minkowski spacetime, 
a Kruskal spacetime (§3.2), any basic cosmological spacetime (§7.3), and, in 
particular, Einstein-de Sitter spacetime (§3.1) are all globally hyperbolic. (C) 
In (A), the Cauchy surface is smooth and spacelike. Neither condition holds 
in general. For example, in the 2-dimensional Minkowski spacetime (R2, 
dux ® dux - du2 ® du2), the line indicated diagramatically below is a Cauchy 
surface C: 

2 u 

C 

+J-

Proposition 8.2.3 below usually obviates the need to worry about Cauchy 
surfaces which are not smooth and spacelike. (D) Let TV c M be a 3-dimen-
sional spacelike submanifold and i: JV-» M the natural injection. Then (N, 
i*g) is a Riemannian manifold. Even if (N, i*g) is complete and (M, g) is 
maximal, N need not be a Cauchy surface. For instance, let (M, g) be 
Minkowski spacetime with the origin deleted, and let N be the hyperplane 
{w4 = 1} in M. iV is not a Cauchy surface in (M, g). Now choose a positive 
function a on M which is constant outside the Euclidean unit ball of 
R4 - {0} (= Af) such that (Af, ag) is (geodesically) complete. By the 
conformai invariance of a Cauchy surface, N is still not a Cauchy surface in 
the maximal spacetime (Af, ag) although (N9 i*(ag)) is a complete 
Riemannian manifold and Af is maximal. 

PROPOSITION 8.2.3. Suppose M possesses a Cauchy surface. Then M possesses 
a Cauchy surface N c Af which is a connected spacelike 'S-dimensional sub-
manifold of M. 
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This is one of the folk theorems of the subject. It is not difficult to prove 
that every Cauchy surface is in fact a Lipschitzian hypersurface in M [16]. 
However, to our knowledge, an elegant proof that his Lipschitzian submani-
fold can be smoothed out to such an N above is still missing. 

Now let N be as in Proposition 8.2.3 and let x E M - N. 

THEOREM 8.2.4. (A) There exists at least one smooth timelike curve y: 
[0, 1] -* M such that yO = x, yl G N, and the arclength ofy, /o||y*w|| du, is at 
least as large as the arclength of any other smooth, timelike curve from x to {a 
point in) N. (B) This y is a geodesic which hits N orthogonally. 

We recall explicitly that ||y*w|| = {-g(y*w, y*«)}1/2, so that the arclength 
of y is positive. Proving part (A) requires considerable machinery. We here 
remark only that the main step consists of showing (M, g) is globally 
hyperbolic (i.e. possesses a Cauchy surface) iff it is globally hyperbolic in the 
sense of Leray [16]. Part (B) follows directly from part (A) together with the 
standard Riemannian argument and the wrong-way triangle inequality 2.2.3. 

8.2.5. Spacetimes which have no Cauchy surface. To lend perspective, we 
mention some cases where no Cauchy surface exists. (A) Suppose there exists 
a piecewise smooth timelike curve y: F-+M which is closed. Then no 
Cauchy surface exists. For by a standard "rounding the corner" argument, 
one can smooth out y to a smooth closed timelike curve y: R -* M. Then y 
intersects each set either infinitely many times or none at all. To get a 
concrete example, use the 2-dimensional time-orientable Lorentzian manifold 
in §2.3. (B) Amputate the origin from Minkowski spacetime as in 8.2.2 (D). 
(C) Amputate the half-space ul < 0 from Minkowski spacetime. Then by a 
conformai change of the metric as in 8.2.2(D), one can also get a geodesically 
complete example. 

Very roughly speaking, these three examples indicate the three main ways 
in which a spacetime can fail to be globally hyperbolic: there are "causality 
violations or near causality violations" (case (A)); there are "gaps" (case (B)); 
or "infinity has the wrong shape" (case (C)). 

83. A Singularity Theorem. To have a detailed example, we shall prove one 
of the simplest singularity theorems (Theorem 8.3.2); it is due primarily to 
Hawking. The main physical motivation for discussing the theorem has in 
effect been outlined in Chapter 7: one probably needs something like a big 
bang to account for the observational data of cosmology (§7.2ff.). The explicit 
models which predict a big bang (e.g. Theorem 7.3.5) are all somewhat 
suspect because such strong idealizations have been made (7.3.2). So one 
wants some general results. In addition, Theorem 8.3.2 gives some insight into 
the phenomenon of matter collapsing towards a singularity, e.g. a black hole; 
this follows by merely reversing the time-orientation below. However, it 
happens not to be among the more interesting theorems for this "time 
reversed" situation. 

8.3.1. Assumptions. Let (M, g) be a spacetime throughout. Assume: (A) 
Ric(F, V) > 0 V causal vector V. The motivation has been discussed in 
considerable detail in §6.2. Almost any nonquantum matter model implies 
this condition via inequalities such as those in Theorem 6.1.4 on the total 
stress-energy density of matter and electromagnetism and the Einstein field 
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equation (§6.2). Thus, if assumption (A) breaks down, that in itself would 
presumably indicate the existence of a very hot, dense region, and this would 
be accomplishing the same purpose as a singularity theorem Note that 
assumption (A) is merely an inequality on Ric and not something more 
stringent, such as a partial differential equation. 

Next we assume: (B) There exists a Cauchy surface for (M, g). Unfor­
tunately, this may well be an unrealistically strong assumption for our actual 
universe. Thus many theorems use considerably weaker versions instead. But 
then one necessarily gets entangled in Lorentzian subtleties as in the next 
section. Making this assumption here will avoid lengthy explanations of such 
points. It follows from assumption (B) that there exists a connected smooth 
spacelike hypersurface N c M which is a Cauchy surface (Proposition 8.2.3). 

Finally assume: (C) For one such Cauchy surface N9 there exists a c > 0 
such that the mean curvature of N obeys K > c (§8.1). The motivation is 
twofold. Almost all explicit cosmological models, in particular, all the basic 
cosmological models of §7.3, imply this. (To see this for the basic cosmologi­
cal models, recall from the proof of step (v) in the proof of Theorem 7.3.5 that 
div Z = 3<3l/<3l. One checks that for each b > 0, Mb = {/ = b) is a Cauchy 
surface. By 8.1, the mean curvature of Mb is K = div Z\M = 3%(o)/?R,(fc). 
Thus we may let c = 3<3l(è)/3l(ô), by Corollary 7.3.4.) Second, we are again 
dealing merely with an inequality so the assumption is not too sensitive to 
detail. 

To state the theorem, we fix a smooth connected spacelike Cauchy surface 
N whose mean curvature K > c for some positive constant c (assumptions 
(B) and (C)). Recall from Theorem 7.3.5 that a future-directed causal geo­
desic y: F-> M is past-incomplete iff its domain of definition F is bounded 
from below in R. 

THEOREM 8.3.2. Every future-directed timelike geodesic which hits N orthogo­
nally is past-incomplete. In fact, if £: (— w, 0) -* M is such a geodesic satisfying 
IIÉJI - 1 andÇ0 G N, then -u> - 3 / c . 

REMARKS. (1) Of course one has in mind the case where M is maximal. (2) 
Unfortunately the theorem does not state that these geodesies are past-incom­
plete because when going backward in time, they would encounter infinite 
curvature or infinite energy density, etc. The canonical examples, e.g. basic 
cosmological models, do give such stronger statements (see the observations 
after the proof of Theorem 7.3.5). This lack of a detailed description of the 
precise nature of incompleteness for timelike geodesies is the main disease of 
all the general singularity theorems. There should be stronger results one can 
obtain without losing too much generality. (3) This theorem is atypical among 
singularity theorems in that it predicts the incompleteness of many inextend-
ible time-like geodesies. In the more general theorems, one can only assert the 
existence of one incomplete inextendible timelike geodesic. 

PROOF OF THEOREM 8.3.2. We begin with some preliminary material. Let y: 
[ — a, 0] -» M be a future-directed timelike geodesic hitting N orthogonally 
such that yO = x G N9 and | | y j | = 1; thus g(yî|e0, A) = 0 VA G NX. Define 
a vector space T of vector fields along y by: X G T iff (i) Xt G Myt 

\/t G[-a, 0], (ii) g(Xt, y ^ O - 0 Vt G [-a, 0], (iii) X0 G Nx9 and (iv) 
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X ( — a) = 0. Note that, in particular, °T consists only of spacelike vector 
fields along y. For convenience, we introduce the curvature transformation 
RXY: V vector fields X, Y9 Z, RXY2< is the unique vector field which satisfies 
u>(RXYZ) = R(o>, Z, X, Y) V 1-forms <o, where the right-hand side is the 
curvature tensor as in §2.1. Now we define a quadratic function /: T -» R by 

I{X) =f_a{
8(\X'\XYt) ~ * K r > *)(')} dt+ g{DxX, Y,0), 

where the last term is understood in the sense that if X is any extension of X0 
in the Cauchy surface N, then 

g(DxX, y,0)à= g(DiX, y.O). 

This definition is independent of the particular extension so specified and 
depends solely on X0, as a calculation shows. In the Riemannian case, I(X ) 
is, of course, the quadratic form associated with the Morse index bilinear 
form on N-vector fields along y (cf. Bishop and Crittendon [2, §11.2]; 
Kobayashi and Nomizu [12, II, pp. 71-88]; Hicks [11, §§10.0-10.2]). 

Suppose X E °Sf. Let T: [-#, 0] X [0, e]-> M be any smooth map such 
that: (1) y coincides with the curve r0: [~a, 0] -» M given by r0(/) = r(/, 0); 
(2) r(0, S) E NVS E [0, e]; (3) Vt E[-a, 0], */ is equal to the initial tangent 
vector of the curve £: [0, e] -» M defined by £s = T(J, S); and (4) Vs E [0, c], 
the curve r,: [ -a , 0] -» Af given by rs(t) = r(^, ^) is timelike and future-di­
rected. Then we call r a rectangle which induces X. The last requirement (4) is 
not crucial because it can always be satisfied if we take e sufficiently smalL 
Then, just as in the Riemannian case, one proves: 

(a) \fX E T, there exists a rectangle which induces it. 
Now let y, X, r be as above, and let /: [0, e] -> R be the arclength function: 

/(*)-f|(o*(')|K 
J — a 

Then 1(0) = arclength of y. Again, carrying over the Riemannian proof 
except for sign changes, we have: 

(($) If T is a rectangle which induces an A" G % then the second derivative 
of the arclength function at 0 is given by / (0) = — I(X). 

We can now give the proof of the theorem proper. Suppose £: ( - w, 0] -» M 
is a future-directed timelike geodesic which hits TV orthogonally and satisfies 
IIÉJI = 1 and £0 G N. Let - v E ( - u, 0], and let £(-1;) = z E M. Theorem 
8.2.3 implies that there is a future-directed timelike geodesic y: [ — a, 0] —> M 
hitting N orthogonally such that y(-tf) = z, yO E N, ||y+|| = 1 and the 
arclength of y maximizes those of all the smooth timelike curves from z to N. 
In particular, since the arclength of y is a and the arclength of Élf-̂ o] is t>> w e 

have 
a > v. 

We now carry over the notation of the initial segment of the proof. Let (Yu 

y2, y3) be parallel vector fields along y (i.e. Dy Y, = 0 V/) such that 
Vt E[-a, 0], (y,/, y2/, y3/, y*/) is an orthonormal £asis of Myr If {Xt) are 
the vector fields along y defined by X(t = ((a + t)/a)Ytt9 V/ E [-a, 0] and 
Vi = 1, 2, 3, then each X{ E T. By (a) and (ft) above and the choice of y, we 
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have I(Xé) > O V*. Since Dy Xt = (l/a)Yi9 one obtains 
* 

o < 2 nxt) 

- f -/_°J 2 s K , > *,)(')} dt+ 2 g(ö^,y,o). 
However, it follows from the definitions in §2.1 that 

2 

2 S ( / ^ Y „ x,)(t) = ( ^ ) 2 g(Rriyu, Y,)(t) 

- ((a + 0 /a ) 2 Ric(y^, Y*0 > 0, 

where the last inequality is by assumption (A) on (M, g). Thus 0 < (3/a) + 

We now estimate the last sum. Note that (Xfi, X20, X30, ŷ O) is an 
orthonormal basis of Mx which may be assumed to be consistent with the 
orientation of M, and (Xx0, X20, X30) spans Nx. Extend (Xfi,..., ŷ O) to 
vector fields (X[, X^ X'v Z) in a neighborhood of x in M such that at each 
y E N inside the neighborhood, (X[y, Xf

2y, X3y, Zy) is an orthonormal basis 
of My and N = span{Ar/^}. Thus, according to §8.1, 

2 8{DXX0 7,0) = 2 *( V A 7*0) - - 2 g(Xt', DxZ)(x) - - Ax, 
I J I 

where K is the mean curvature of N. By assumption (C), — K < — c. Thus 
0 < (3/a) + S .gC^^. , yjd) < (3/a) - c=> - (3 /c ) < - a. Together with 
the inequality a > v above and the fact that ( — v) in (— «, 0] is arbitrary, we 
have - (3 / c ) < - w. • 

8.4. Black holes in general. The chronology relation of §2.6 is used in a 
number of ways: proving singularity theorems; defining and analyzing black 
holes; defining and analyzing spacetime boundaries with special reference to 
the concept of asymptotic flatness; discussing naked singularities; generating 
thesis problems for relativists who like global arguments; etc. 

We now indicate how it is used in analyzing black holes. Again the attitude 
is that explicit spacetimes, such as those of §3.2, are very useful for detailed 
discussions but may not give adequate insight into the general case. For 
example, the assumption of spherical symmetry is very special, and the 
assumption of Ricci flatness means one cannot directly discuss collapsing 
matter at all (§6.2). 

We thus start by discussing how the definition of the black hole region B in 
a Kruskal spacetime (§3.2) can be reworded so that it makes sense, formally, 
in any spacetime. Roughly speaking, the essential property of B that we shall 
use is the fact that light signals cannot escape from B to infinity. 

Let (M, g) be a spacetime with chronology relation < (§2.6). We define the 
chronological past of a curve À: F'-* M by 7~X= UuGF{x <\u}. Recall 
that a future-directed lightlike geodesic X: F—> M is future-complete iff its 
domain of definition F is not bounded from above in R. 

Define C = Interior(M - 0\<=AI~A), where A is the collection of future-
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directed, future-complete lightlike geodesies in M. Roughly, speaking, the 
definition means C is a region in which all light signals are trapped and 
short-lived. We give two examples. 

In Minkowski spacetime, every inextendible geodesic is complete. It follows 
that C is empty. 

On the other hand, in Kruskal spacetime (3.2), C is simply the black hole 
B. For example, consider a point z in the normal Schwarzschild submanifold 
N of Kruskal spacetime M. To show that z is not in C, refer to Figure 3.2.1. 
By confining attention to points and lines which have the same angles as z 
(i.e. have the same o projection) we may regard A in the figure as a 
2-dimensional submanifold of M and regard the projection <xz as z itself. 
Choose an x in al + {z) n OLN. 

À 

I ' • * . * * 

z 

Consider the vertical line A directed toward the top of the page, starting at x. 
À is lightlike (§3.2). A short computation shows that, suitably parameterized, X 
is a future-directed, future-complete lightlike geodesic. By construction z E 
ƒ "À. Thus z is not in C. Similar arguments show no point in N9 W, or Q is in 
C. On the other hand, a separate computation shows that every future-direc­
ted lightlike geodesic which intersects B is future-incomplete. Since B is open, 
and contains the chronological future of each of its own points (§3.2), the 
definition of C now implies B c C. Since M = B u Closure(JV \J W ö Q) 
we thus have B = C as claimed. 

If one insisted on having available a definition of black hole region 
applicable to every spacetime, C above might be the most reasonable candi­
date. However, in physics one usually takes the view that the concept of a 
black hole should be introduced only for spacetime which "obey suitable 
causality conditions" and are "asymptotically flat" [9]. It is then also more 
appropriate to replace A in our definition above by a suitable subset of A, 
consisting, roughly speaking, of those lightlike geodesies which actually 
"escape to infinity" rather than merely being future-complete. The next two 
sections indicate some of the methods involved. 

Aside. In the above definition, one can show 

Closure C = Closure! M - I J I'Al 
V AeA / 

in particular, C is nonempty if M — UxeA^ ~^ *s- In this sense, the fact that 
"Interior" has been inserted into the definition makes no essential difference; 
it is done for technical convenience. 

8.5. Stable causality (cf. [9]). Empirically, there are no known violations of 
the chronology condition (2.6). Many physicists feel that one should impose 
the chronology condition, or some very similar requirement, as a basic 
physical requirement on all spacetimes considered. However, merely imposing 
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the chronology condition would still allow a certain marginal cases, such as 
that given in Example 8.52 below. We now define a more stringent restric­
tion, which is generally regarded as being more plausible, mainly because it 
also excludes all such marginal cases. 

Recall that (M, g) is a spacetime. A Lorentzian metric g0 on M is defined 
as wider than g iff each vector W which is causal for (M, g) is timelike for 
(M, g0), i.e. g0(W, W)<0 whenever W ^ 0 and g(W, W) < 0; intuitively, 
the lightcones for (M, g0) are then wider than those for (M, g) (cf. §2.2). A 
narrower Lorentzian metric is defined dually. 

8.5.1. REMARK. Given (M, g) there exists a spacetime (M, g0) with g0 wider 
than g. For let F be a vector field with g(Vf V) < 0 everywhere (cf. 2.3.1). 
Let o) be the 1-form physically equivalent to V via g (2.4.3). Define g0 = g ~ 
co ® co. By algebra (e.g. by using at a given point x a basis for Mx, orthonor­
mal with respect to g, whose fourth vector is proportional to V) one finds g0 

is a Lorentzian metric on Af. Moreover, if W is causal with respect to g, 
u(W) 7* 0 (§2.2); it follows that g0 is wider than g. g0(V, V) < 0 so (M, g0) is 
time-orientable (§2.3). Time orienting gives the required spacetime (M, g0). 

(M, g) is defined as stably causal iff there is a spacetime (M, g0) which 
obeys the chronology condition (2.6), with g0 wider then g. Thus a stably 
causal spacetime obeys the chronology condition. But, intuitively speaking, 
the point is that, in addition, any "sufficiently small" perturbation of g in a 
stably causal spacetime will lead to a Lorentzian metric which is also 
narrower than g0 and thus to a spacetime which is again stably causal; in this 
sense the restriction of stable causality has an agreeable stability which 
analogous restrictions lack. An example may clarify the point. 

EXAMPLE 8.5.2. On the 2-dimensional version of Minkowski spacetime, (R2
9 

dux ® dux - du2® du1), let L, and L2 be two infinite horizontal straight 
lines. Take two points A and B between L, and L2 lying on a lightlike 
geodesic (= straight line with a 45° slant). We construct a new (2-
dimensional) spacetime by identifying £, and L2, and further deleting the 
closed semi-infinite line segments emanating from A and B, as shown: 

A . 

t 

p
 ê identify 

* — • » 
The resulting 2-dimensional spacetime obeys the chronology condition. But if 
g0 is any Lorentzian metric on the manifold such that g0 is wider than g, then 
there are closed curves through p, timelike with respect to g0. Thus the 
2-dimensional spacetime is not stably causaL 
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THEOREM 8.5.3. (M, g) is stably causal iff there is a smooth, real valued 
function h on M such that dh is everywhere timelike. 

In one direction the proof is simple. Suppose such an h exists. Take <o in 
8.5.1 to be co = dh and let V be physically equivalent to w as before. Then 
(My g0) is a spacetime, with g0 wider than g. Algebra shows dh is timelike with 
respect to gQ. Thus if y is a curve in M such that y is timelike with respect to 
g0, then dh(y+) =•= (ó(y*) ¥* 0 (cf. §2.2). This implies y is one-one. Thus (M, gQ) 
obeys the chronology condition. Thus (M, g) is stably causal. For the idea of 
the (harder) proof of the converse, see [9]. 

Any function h which obeys the conditions of Theorem 8.5.3 is called a 
global time function. Usually, when discussing black holes, one assumes 
spacetime is stably causal. Theorem 8.5.3 indicates one way in which stable 
causality can then be applied: even though h is not canonically determined, 
the existence of at least one global time function means it makes sense to 
speak of a black hole being created at some time: e.g. one could assume that 
C in §8.4 is nonempty but that h\c > t0 for some t0 in the image of h ("at 
times earlier than /0, there was no black hole"). In the absence of a global 
time function such concepts need not make sense, as Example 8.5.2 perhaps 
suggests. We now turn to another way in which the assumption of stable 
causality can be used when analyzing black holes» 

Aside. A globally hyperbolic spacetime is stably causal but the converse 
need not hold. 

8.6. Causal boundaries. We now indicate roughly how, in a stably causal 
spacetime, one can replace A in the construction of §8.4 by a more ap­
propriate subset of A, consisting of those lightlike geodesies which, physically 
speaking, actually escape to infinity. The method to be used also gives some 
idea of current activities in attaching boundaries to spacetimes. One main 
idea is to assign a future "ideal endpoint" to each endless causal curve, 
thereby grouping such curves into the equivalence classes of curves which 
have the same ideal endpoint. We start with a simple observation about the 
chronological pasts of points of an arbitrary spacetime (M, g) (cf. §2.6 for 
terminology and notation). 

LEMMA 8.6.1. Suppose z G M. Then I~{z} has the three properties: (A) it is 
nonempty; (B) if y G I~{z], then I~{y) C I ~{z}; (C) if x, w G I~{z), then 
there exists y G I~{z) such that both x>w G I~{y). 

(B) is equivalent to the transitivity of < , and (C) is proved by noting that 
I*{x) n / + {w} is an open neighborhood of z (cf. Theorem 2.6.2_and its 
proof). The lemma suggests that we investigate the following subset M of the 
power set of M : P G M iff 

(A) P is nonempty. 
(B)yeP=*I~{y}cP. 
(C) x, w G P => there exists y G P such that both x9 w E_I {y}. 
From Theorem 2.6.2 and (B) and (C), we know Jhat M consists of open 

sets. Moreover, Lemma 8.6.1 imp]ies that I ~{z) G M Vz G M. We therefore 
have a natural mapping f : M -» M defined by fz * I " {z} Vz G M. 

Throughout the remainder of this section, we assume (M, g) is stably 



1162 R. K. SACHS AND H. WU 

causal. The relevant consequence is that then the mapping f above is one-one. 
Indeed, suppose I~{q) = /~{p}- Then p G Closure I"{q) and q G 
Closure I~{p} (§2.6). If p ^ q this clearly implies p < q and q <£p for any 
spacetime (M, g0) with g0 wider than g; thus assuming/? =£ q contradicts the 
fact that (Af, g) is stably causal. Thus J is one-one and we shall agree 
henceforth to identify_M with f M c M. We define the future causal boundary 
of M to be M + = Af — M. M + is intuitively the ultimate future of M and is 
nonempty (cf. Example 8.6.2 below). Thus a consequence of stable causality 
is that it allows M to be naturally imbedded in a bigger space with a future 
boundary. 

We now define a causal structure on Af. \/Q G Af, we shall define its causal 
past ƒ " {Q} and its chronological part / " { Q} (see end of §2.6): 

P E J~{Q} iff P e g , 
P G I~{Q) iff there exists JC G g_such that P c / " { * } . 

One can check that each I " {Q} c Af enjoys the three properties of Lemma 
8.6.1, and that I~{Q) C J~{Q) V(? G Af. Moreover, this chronology rela­
tion, i.e. P < Q iff P G ƒ ~{Ô}, extends that of M; in other words, Vx, 
^ G M, x < j> in M if f x < j> in M. We shall also need the following 
characterization of M + before we can outline the standard definition of a 
black hole. For a proof, see [9]. 

LEMMA 8.6.2. P G M + iff P = I~y for some smooth future-directed causal 
curve y in M which has no upper endpoint {cf. 8.2). 

To pin down the various concepts introduced above, we give a simple 
example. 

EXAMPLE 8.6.3. Consider the 2-dimensional version of Minkowski space-
time (N, h) = (R2, du1 ® du1 - du2 ® du2). Let a G R be arbitrary; using 
Lemma 8.6.2 one can show that N + consists of the following elements: 

R2 (= I ~y, where y is any complete future-directed timelike geodesic). 
Ra = {(u\ u2)\u2 - ul < a] (= I"Aj, where \{ is the complete lightlike 

geodesic Ï / -^(M,M + Ö ) V I / G R ) , 

La = {(w1, w2)|w2 + w1 < a) (= I~A2, where \ 2 is ^ e complete lightlike 
geodesic u ~> ( - w, w + Ö) Vw G R). 
Note that, with A, as above, ƒ ~A, (= Ra) also equals ƒ "y^ where y, is the 
endless future-directed timelike curve u-*(u, u — e~u + a) Vw G R. Thus 
the causal character of the y guaranteed by Lemma 8.6.2 is not unique. 

One sees directly from the definition that JV is in one-one correspondence 
with the causal past / " {0} of the origin 0 in N, i.e. 

/ - {0} = [(u\ u2)\u2 < 0, (w2)2 - (w1)2 > 0}. 

The tip of this solid cone J ~ {0} corresponds to R2 G N+, and the rest of the 
boundary of J " {0} corresponds to the future lightlike infinity of JV, i.e. the 
points Ra and La, Va G R, of N + . Moreover this correspondence between the 
boundary of J "{0} and N + preserves the causal structure, in the sense that, 
just as in J ""{0}, every point of N+ is in /"{R2} but not in /"{R2}, and if 
a < b, Ra G J-{Rb) - I-{Rb} (resp. La ŒJ~{Lb} - /"{L,}). 

Returning to the case of a general stably causal spacetime we remark that, 
given Af + , it is possible to identify which points of Af + , if any, are genuinely 
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at infinity. A necessary condition for P E M+ to be at infinity is that 
P = / ~X for some future-complete lightlike geodesic X. In our above Exam­
ple 8.6.1, this is also sufficient, so infinity consists of all of M+ with the 
exception of the single element R 2 E A / " \ For necessary and sufficient 
conditions in the general case, cf. [9]. 

We thus get the desired subset A' of A mentioned in §8.4, namely A' = (A: 
X is a future-directed, future-complete lightlike geodesic and P * I "X for 
some P E M+ which is at infinity}. We thus also arrive at the most nearly 
standard definition of a black hole in a stably causal spacetime: there is a 
black hole iff M — U\BAI~X is nonempty and then the black hole region B 
in M is the interior of M - UxeA '/~A. For the case of a Kruskal spacetime 
this general definition again coincides with the definition of §3.2. 

Under appropriate restrictions, the most important of which are the Ein­
stein field equation (6.2) and inequalities on the stress-energy density ap­
propriate for nonquantum matter (cf. Theorem 6.1.4), one can prove a 
number of theorems on black holes as defined above [9]. 

For example one can prove a result interpreted as saying that, in the 
absence of quantum effects, a black hole cannot disappear. More specifically 
the area is a nondecreasing function of time in the following sense. Let h be 
any global time function, Sa be the level surface h = a, 2 a be a connected 
component of the intersection of Boundary B with Sa; here we assume 
B n Sa is nonempty. One shows Sa is a C° 2-submanifold with a well-de­
fined 2-dimensional area Aa. Moreover if b > a and b is in the image of h 
then there is a corresponding connected component yLb in the level surface 
h = b and the area Ab of 2fc obeys Ab > Aa. For the detailed statement and 
proof see [9]. In our example, Kruskal spacetime (3.2), Aa is 4TTJU,2, indepen­
dent of h and of a, as is perhaps plausible from the fact that Boundary B 
contains integral curves of a future-directed Killing vector field (K in §3.2) 
and can be checked by a direct computation. 

Similarly, one can prove a theorem interpreted as saying that, in the 
absence of quantum effects, a black hole can never bifurcate, though coales­
cence with another black hole is allowed [9]. 

CHAPTER 9. CONCLUSION. 
Einstein's theory has severe limitations. In its current form, it is at best only 

a nonquantum approximation. Even within macrophysics, only its Newtonian 
limit and the nonquantum special relativity subcase have the kind of over­
whelming empirical support one demands of a fundamental theory. As with 
other current physical theories, trying to regard it as pure mathematics results 
at best in piecewise clumsy and piecewise ill-motivated pure mathematics. 

But it is a genuine bridge between mathematics and nature. These are both 
beautiful; both have "less is more" as a motto. Often the theory reflects the 
beauty of one or the other. Then it really comes to life. For sixty years, it has 
stood basically unaltered as the fundamental theory of macrophysics. 
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