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Let ƒ : M1 —» RN be an embedding of an «-dimensional compact differen-
tiable manifold M into a euclidean vector space RN. Any hyperplane in RN 

has an equation z = c, where z is a linear function and c a real number. For the 
oriented hyperplane z = c we use the notation (zf = z o ƒ is the composition) 

(zffc = {xZM:zf{x)<c} 

to indicate the image of ƒ on the negative side of the hyperplane. The closure 
oî(zf)-\s 

(zf)c = {xGM:zf(x)<c}. 

The embedding ƒ is called tight if for almost all z and c the inclusion i:(zf)c —> 
M induces a monomorphism /*: H%((zf)c, F) —• H*(M, F) of homology groups, 
where the coefficient F is chosen to satisfy condition 3A of [5] (or (3) of [6] ). 

Besides the collection of hyperplanes, other interesting geometric objects 
are hyperspheres. A hypersphere of RN is given by an equation dp(x) = c, where 
dp(x) is the distance from x to a fixed point p of RN and c is a positive real 
number. The hypersphere is naturally oriented so that its inner part is the posi­
tive side of the hypersphere. We define analogously the sets (dpf)~ and (dpf)c. 
The embedding ƒ is called taut if for almost all p and c > 0 the inclusion i: 
(dpf)c —• M induces a monomorphism /*: H%((dpf)c) —• H%(M) where the coef­
ficient is chosen to be the same as before and hence is omitted. Originally both 
concepts, tight and taut, are defined in terms of the Morse height functions and 
Morse distance functions respectively, and this is why in both definitions we use 
"almost all". It seems that the definition with "almost all" should imply the one 
without "almost all". The answer for this is still unknown. However, for the 
special class of embeddings we are interested in, the definition with "almost all" 
is equivalent to the one without "almost all". 

The geometrical content of an embedding ƒ : M" —• RN is given by a sym­
metric tensor T defined as follows: For any two tangent vectors x, y of M at p 
E M we first extend x, y to vector fields X, Y respectively near p. We define 
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Txy = normal component of Vxy with respect to the 
tangent space of M at p, where V is the covari-
ant differentiation in RN. 

The embedding ƒ is said to be convex if x =£ 0 implies Txx =£ 0. An ovoid is a 
closed convex hypersurface. An embedding with image lying on an ovoid will 
be called an extreme embedding. 

The third concept we need is "projective transformation". Given an embed­
ding ƒ : M1 —> RN of a compact AT into RN, RN can be considered as an affine 
TV-space AN and can be closed by adding the class of parallel lines as new points. 
So we obtain in this way a natural embedding /: AN —» P^ of AN onto the 
complement of a hyperplane p^""1 in the real projective TV-space P^. Following 
Kuiper [5], the map ƒ is called projectively equivalent to another ƒ': Mn —> RN 

if RN is obtained from P^ by a different choice of P ^ 1 which does not meet the 
image of M in P^. An embedding ƒ is said to be substantial if the image is not 
contained in a hyperplane. 

THEOREM. Let f be a substantial tight extreme embedding of Sm x Sn 

into Rm+n+2 where m/n =£ 2, Vi. Then f is projectively equivalent to a product 
embedding of two ovoids: f = ft x f2 where fx:S

m —• Rm + l and f2 : S
n —• 

Rn+l are two ovoids. 

This theorem is related to the theorem of Chern and Lashof [4, Theo­
rem 4]. By composing with a stereographic projection, we can bring a hyper­
surface into a codimension-two extreme embedding. 

COROLLARY. Let f be a substantial taut embedding of Sm x Sn into 
ftm+n + i jjim ƒ js reiate(i fry stereographic projection to a product embedding. 

This corollary generalizes Banchoffs theorem of STPP [1, Theorem 5.5]. 
The first step of the proof of the theorem is to modify Lemma 2.1 of [2]. 

Instead of arguing with determinants we use a restriction on indices of the sec­
ond fundamental form. This restriction is inherited through Morse theory from 
the assumption that the embedded manifold is a topological (m, n)-torus. A 
slightly different method enables us to prove Theorem C of [2]. In [3], we use 
the curvature assumption to prove the product is an orthogonal product. Here 
we prove the product is orthogonal after a proper projective transformation. The 
projective transformation is found by using the concept of dual manifold. The 
study of the dual manifold is the second step of the proof of the theorem. De­
tails will appear elsewhere. 
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