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The last few years have witnessed the birth of a body of techniques for 
obtaining refined regularity theorems for certain hypoelliptic differential 
operators through analysis of homogeneous convolution operators on nilpo-
tent Lie groups. (Recall that a differential operator L is hypoelliptic if whenever 
u and ƒ are distributions satisfying Lu = ƒ, u must be C00 on any open set 
where ƒ is C00.) The purpose of this paper is to present an outline of the 
development of this theory, beginning with some background and motivation 
and sketching the main results and the principal highlights of the methods. No 
proofs will be given, and the theorems will sometimes be stated in less than 
maximum generality for the sake of brevity. 

The principal applications of the theory we are about to discuss occur in the 
context of two developments of the 1960's: Kohn's work on the 3-Neumann 
problem and the 3^ complex, and Hörmander's work on sums of squares of 
vector fields. We shall therefore give a brief review of these matters, which will 
serve as motivation and provide us with some terminology to be used later. 
(The original papers are Kohn [13], [14] and Hörmander [11]; see also Folland 
and Kohn [7] for a comprehensive exposition of Kohn's work and Kohn [15] 
for a simplified proof of Hörmander's main theorem.) 

We first describe Hörmander's theorem. Let M be a C00 manifold, and let 
X0, Xx, . . . , Xn be real C00 vector fields on M. By a commutator of order k of 
the Xjs we shall mean a vector field of the form 

[Xh,[Xh,... [Xiki,Xik]...]), 0 <ij<n. 

We shall say that X0, . . . , Xn satisfy the Hörmander condition of order m if the 
X's and their commutators of order < m span the tangent space to M at every 
point. 

THEOREM (HÖRMANDER). If X0, . . . , Xn satisfy the Hörmander condition of 
order m for some m > 1, then the operator 

L = ix? + X0 

is hypoelliptic. 
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(Note that, in particular, one can take XQ = 0, which yields the pure sum-
of-squares situation.) 

Now we turn to Kohn's work. Let V be a Hermitian complex manifold of 
complex dimension n > 2, and let M be a real C00 hypersurface in V. We 
assume that M is given as the locus of zeros of a C00 real-valued function r 
defined on a neighborhood of M such that dr =£ 0 on M. (In case M is the 
boundary of a bounded domain D C V, we assume that r < 0 in D.) The 
complex tangent bundle CTM then has two distinguished subbundles denoted 
by Tl0M and T0\M, namely, the intersections of CTM with the holomorphic 
and antiholomorphic tangent bundles on V. These both have dimension n - 1, 
so their sum has codimension one in CTM. 

The Levi form of M is the Hermitian form < , )L defined on each fiber of 
Th0M by 

<€p€2>L-20fr>*i Af2>-
The significance of the Levi form in our context arises from the following 
equivalent definition: if Zl9 Z2 are smooth sections of Tl()M, the function 
<ZPZ2>L is given by 

(1) <Z1,Z2>L = <3r,[Z1,Z2]>. 

The one-form dr annihilates Tl0M, so the nonvanishing of the Levi form 
means that î [ o M 0 To\M *S n o t Cl°se(l under Lie brackets. We shall be 
concerned with the following three conditions on the Levi form: 

Condition Z(q). The Levi form has at least n - q positive eigenvalues or at 
least q + 1 negative eigenvalues at each point. 

Condition Y(q). The Levi form satisfies condition Z(q) and condition 
Z(n - 1 - q). 

Strong pseudoconvexity. The Levi form is positive definite at each point. 
(This implies condition Z(q) for 1 < q < «.) 

Let Bq be the space of distribution sections of the #th exterior power of 
(T0 j M) .By throwing away the component of the 9 operator which is normal 
to M, one obtains the tangential Cauchy-Riemann operator db: B

q -» Bq+ . Let 
èb: Bq~^1 -» Bq be its formal adjoint with respect to the given metric, and let 
Da = db&b + fy,36 be the associated "Laplacian". Unlike the ordinary Lapla-
cian, Dj, is not elliptic: its characteristic variety is the orthogonal complement 
of Tl0M © T0XM in (CTM)*. However, by equation (1) the nonvanishing of 
the Levi form allows one to obtain some control over the "weak" direction by 
considering commutators of derivatives in the "elliptic" directions Tx 0M © 

In fact, let LÏ(Bq, loc) be the space of elements of Bq which, together with 
their derivatives of order < k, are in L on compact subsets of M. We then 
have the following regularity theorem. 

THEOREM (KOHN). Suppose M satisfies condition Y(q). Then Db is hypoelliptic 
on Bq; more precisely, if Db<p == ^ where \p E L\(Bq, loc), then 
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* E L | + 1 ( 5 « , l 0 C ) . 

Thus, solving the equation Db<t> = $ gains one derivative. This is "half as 
good" as elliptic regularity, which (for a second order operator) entails the 
gain of two derivatives. 

Next, suppose that M is the boundary of a relatively compact domain 
D C V. Let Aq be the space of C°° (0,#)-forms on D = D U M, and let A% 
be the space of their restrictions to M. As above, we consider the operator 
3: Aq -> Aq+\ its adjoint #: Aq+l -» ^ , and the "Laplacian'^D = 3# + *<L 
Also, if >̂ E ^ , let v<f> £ AqM be the contraction of <j> with 3r along M. <J> is 
said to satisfy the d-Neumann conditions if v<j> = vd<j> = 0. Given \p G Aq, the 
d-Neumann problem for t// is to solve D </> = */> where <|> satisfies the 3-Neumann 
conditions. (We are being a bit imprecise here. We with to consider *//'s which 
are merely square-integrable; if t//-and hence <|>-is not smooth, the boundary 
conditions are to be satisfied in a suitable weak sense.) Here D is elliptic, but 
the 3-Neumann conditions are noncoercive. This is related to the nonellipticity 
of D^ and poses the same difficulties in proving regularity. The result is the 
same: one obtains a regularity theorem that is "half as good" as coercive 
regularity. Specifically, let Hq be the space of all </> E Aq satisfying • <j> = 0 
and the 3-Neumann conditions, and let l}k(q) be the space of Û (0,#)-forms 
on D whose distribution derivatives of order < k are also L2. We then have 

THEOREM (KOHN). Suppose M satisfies condition Z(q). Then Hq is finite 
dimensional, and the d-Neumann problem for \p E L0(q) is solvable if and only if 
\p is orthogonal to Hq. In this case, if \p E L^iq) then any solution <f> is in 
L2

k+l(q), and ifxp E Aq then <J> E Aq. 

In both Hörmander's theorem and Kohn's theorem on D^, one is dealing 
with a second order operator which gives immediate control of derivatives in 
certain directions (the span of X0, . . . , Xn in the first case, Tl0M © T0\M in 
the second), and one obtains control of the remaining directions by consider­
ing commutators of derivatives in the "good" directions. In the 3-Neumann 
problem the same considerations enter, in a more subtle way, in the boundary 
conditions. It is for this reason that invariant operators on certain non-Abelian 
Lie groups turn out to be a useful class of models for problems such as these. 

The main tool for analyzing differential operators on nilpotent groups is the 
theory of homogeneous convolution operators. This is rooted in a large body 
of classical results dealing with the Abelian case, some essential points of 
which we shall now review. A good general reference for this material is Stein 
[23]. 

The heart of the matter is the theory of singular integrals on R", whose 
history goes back the better part of a century and which has reached its 
present form through the efforts of a number of people, including Giraud, 
Mihlin, and especially Calderón and Zygmund. For our purposes, a singular 
integral kernel will be a C00 function k on Rn - {0} with the following 
properties: 
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(a) k is homogeneous of degree —/i, that is, k{rx) = r nk(x) for all r > 0 
and* G R * - { 0 } ; 

(b) for some (and hence all) a, b with 0 < a < 6 < oo, Ja<|x|<^ k{x)dx 
= 0. 

If A: is a singular integral kernel, by (a) k is not locally integrable at the 
origin; nonetheless, by virtue of (b) k defines a distribution by taking 
"principal value" integrals. Precisely, if <f> G C™(Rn), the action of the 
distribution k on $ is given by 

<&,<ƒ>> = PV [ k(xWx)dx = lim f , fc(xWjc)d&. 
•/ e->0^|A:|>e 

This makes sense because if <ƒ> is supported in the ball |JC| < R, 

lim f k(x)<t>(x)dx 
e-*0./|jc|>e 

= lim f , , k(x)<t>(x)dx - ó(0) f , , fc(xWx 
e-*0 L -̂ C<|JC|<J? V / r V ' r V ' Je<\x\<R V ' J 

the last integral being absolutely convergent since </>(x) - <p(0) = 0(|x|). 
Let 8 (here and in the sequel) denote the point mass at the origin. A 

distribution of the form K = k + c8 where A: is a singular integral kernel and 
c G C will be called a kernel of type zero. One can then consider the 
convolution operator T: <J> -> <J> * K, which is defined (to begin with) on C™ 
and maps it into C00. Such operators will be called operators of type zero. 

THEOREM (CALDERÓN-ZYGMUND). Operators of type zero are bounded on 
If, I <p< oo. 

The significance of operators of type zero from our point of view is that they 
are, in a sense, midway between differential operators and inverses of 
differential operators. An example may help to clarify this. Consider the 
inhomogeneous Laplace equation Aw == ƒ on Rn. If ƒ G C™ (say), we can 
solve this equation by setting u = ƒ * N, where TV is the "Newtonian poten­
tial", 

(2) 2 7 7 " / 2 ( 2 - K ) 1 

= (27r)~1log|x| (n = 2). 

Let us look at the second derivatives of w, that is, the operators 

d2u , d2N 
Tikif^^rrr^f* Jk'J dxjdxk

 J dxjdxk' 

It is not hard to see that the distribution derivative d2N/dxdxk is a kernel of 
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type zero. Hence, by the Calderón-Zygmund theorem, we obtain an If 
regularity theorem for the Laplacian: the If norms of all second derivatives of 
u can be estimated by the If norm of ƒ = Aw. (Proofs of the foregoing 
assertions about N and its derivatives may be found, for example, in [5].) 

The same idea can be used to derive regularity theorems for general elliptic 
operators. The constant-coefficient case leads to operators of type zero as 
above. To handle the variable-coefficient case, one needs to consider more 
general operators of the form 

Tf(x) - PvfK(x9x-y)f(y)dy 

where K(x9 •) is a kernel of type zero for each x and varies smoothly in x. (See 
Calderón-Zygmund [1].) Nowadays, these operators are usually treated in 
terms of the Fourier transform, in which setting they go under the name of 
"pseudodifferential operators of order zero". This formulation is very conven­
ient for the L2 theory, but it is not so useful for studying other function spaces. 

In this setting one also finds kernels of other degrees of homogeneity. If 
A > 0, let us define a kernel of type X to be a function K E C°°(Rn - {0}) 
which is homogeneous of degree X — n. (For example, the Newtonian poten­
tial defined by (2) is a kernel of type 2 when n > 2.) Convolution with a kernel 
of type X will be called an operator of type X. There are various boundedness 
theorems for operators of type X, about which we shall have more to say later. 

Now nilpotent groups can be brought into the picture. 
Let g be a real finite-dimensional Lie algebra. A family of dilations on g is 

a one-parameter group {yr}r>0 of algebra automorphisms of g of the form 
yr = exp(̂ 4 log r) where A is a diagonalizable linear transformation of g with 
positive eigenvalues. (For example, if g is the Abelian Lie algebra R", A = 
identity gives the usual dilations yr{x) = rx.) Since replacing A by cA (c > 0) 
amounts merely to a reparametrization of the dilations, we can, and shall, 
assume that the smallest eigenvalue of A is 1. 

It is easy to see that if g admits a family of dilations, then g must be 
nilpotent. (However, not every nilpotent Lie algebra admits dilations.) This 
being the case, if G is the corresponding simply connected Lie group, it is well 
known that the exponential map is a diffeomorphism from g to G which takes 
Lebesgue measure on g to a bi-invariant Haar measure dx on G. Moreover, 
the dilations {yr} induce a family of automorphisms of G, still called dilations 
and denoted by {yr}, by the formula exp ° yr = yr ° exp . The number 
Q = traced) is called the homogeneous dimension of G. It is the number such 
that for all r > 0, 

d(yrx) = rQdx. 

With this structure in hand, the standard notions of homogeneity on 
Euclidean space generalize in the obvious fashion: a function <J> on G is called 
homogeneous of degree X if </> ° yr = r A<£, and a differential operator L is called 
homogeneous of degree X if L(<£ o yr) = rx(L<j}) o yr for all <j> G C°°(G). A 
homogeneous norm on G is a function x -» \x\ from G to [0,00) which is C00 
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away from the origin and homogeneous of degree one and satisfies (a) 
|*| = |x~ l | for all x E G, (b) |JC| = 0 if and only if x = 0. (Here and in what 
follows, 0 = the origin = the group identity.) It is easy to see that 
homogeneous norms always exist; they play the role of the Euclidean absolute 
value. We shall always assume that our nilpotent groups with dilations are 
equipped with a fixed homogeneous norm. 

As above, we define a kernel of type X (X > 0) to be a function which is C00 

away from the origin and homogeneous of degree X - g, and a singular 
integral kernel to be a function k which is C00 away from the origin and 
homogeneous of degree — Q and satisfies 

f , , k(x)dx = 0 (0 < a < b < oo). 
Ja<\x\<b 

Just as before, such k's define distributions via principal value integrals, and 
we define a kernel of type zero to be a distribution of the form k + c8. 
Convolution on the right with a kernel of type X (0 < X < Q) will then be 
called an operator of type X. The Calderón-Zygmund theorem remains true in 
this more general setting: 

THEOREM. Operators of type zero are bounded onlf, 1 < p < oo. 

For p = 2 this theorem is due to Knapp and Stein [12], who were led to 
study such operators in a completely different context from the present one, 
that of representations of semisimple Lie groups. In the Abelian case, the Û 
boundedness of singular integrals can be obtained rather easily by using the 
Fourier transform, but this tool is not available in the general situation, and 
Knapp and Stein were forced to invent an entirely new and more delicate 
proof. Once this was accomplished, it was realized simultaneously by several 
people that the Calderón-Zygmund technique could be extended to yield the 
general IP theorem: see Coif man and Weiss [2] and Korânyi and Vagi [17]. 

So much for background: now the story really begins. In his lecture at the 
1970 International Congress [24], Stein suggested that singular integrals on 
nilpotent groups should find applications in nonelliptic differential equations 
and several complex variables. One piece of evidence for this was some results 
of Korânyi and Vagi [17] concerning a multidimensional version of the Hilbert 
transform on the boundary of a certain Siegel domain in C". Since the latter 
space will be crucial in what follows, we pause for a moment to describe it. 

As we all know, the unit disc Bl in C is holomorphically equivalent to the 
upper half plane D{ via a linear fractional transformation, and the boundary 
of Z^-the real axis-can be naturally identified with a group of holomorphic 
automorphisms of Z)1, namely the horizontal translations. It was discovered by 
Pjateckiï-Sapiro [20] that an analogue of this holds in Cn. Namely, let Bn be 
the unit ball in C", and let 

Dn = {(&,.. . ,?„) e C": "2 !?ƒ - Im$, < o} . 
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Then the linear fractional transformation F defined by 

-FCfi 5 . ) -0 + '5.r!(ft 5^i-5. + 0 
maps Bn holomorphically onto Dn. Now consider the nilpotent group Hn_x, 
the H eisenberg group of degree n - 1, whose underlying manifold is C1"1 X R 
with coordinates (zx,..., zn_x, t) = (z, t) and whose group law is given by 

(z,t) • (z',f) = (z + z',/ + f' + 2 I m 2 zjtj). 

Hn„x acts on Cn by holomorphic affine transformations which preserve Dn and 
its boundary dDn by the formula 

M • (fi,...,5.) = (fi + *P . .-4-1 + v-i>& + ' + i\*\2 + 2/ 2 £/,). 

This action is simply transitive on dDn, so //„_! can be identified with dDn by 
the correspondence 

(z,0<->(M)-(0, . . . ,0) = (z1 , . . . ,z„_1 , / + /|z|2). 

Since the action of Hn_x on C" is holomorphic, it commutes with the action 
of db ondDn. If we transfer the 9̂  complex to Hn_x by the above correspond­
ence, therefore, we see that it is left-invariant, and hence so is the Laplacian 
D^ formed with respect to a left-invariant metric on Hn_x. 

For future reference, we also note the following facts. First, Hn_x has a 
natural family of dilations {yr} given by 

yr(z,t) = (rz,r20. 

Second, the vector fields 

^ "~ dzj + lzJdt> *J ~~ 9z7-
 /z/'9/' ' ~ 9/ 

form a basis for the complexified Lie algebra of Hn_x. The Zjs span TX0Hn_x 

and the Z/s span \xHn_x. (Also, if we set Pj = (Z j r- Zj)/4i and Ô, 
= (Zy- + Z /)/4, then ^, . . . , Pn_x, Qx, . . . , Qn_x, and T are a basis for the Lie 
algebra of Hn_v whose only nontrivial commutation relations are 

[Pj9Qj] = T ( y = 1 # i - 1). 

These are the "canonical commutation relations" for position and momentum 
in quantum mechanics: hence the name "Heisenberg group".) 

To return to the historical account: in the spring of 1972 two new 
developments took place. First, Stein [25] investigated some nonisotropic 
Lipschitz spaces on complex domains and pointed out the similarity to the 
nonisotropic homogeneity found on nilpotent groups. Second, following a 
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suggestion of C. Fefferman, I computed a fundamental solution for the 
operator 

L = -\nî{ZjZJ + ZjZJ) 

on Hn_x (which is the real part of Db acting on functions), and this 
fundamental solution turned out to be a kernel of type 2. (See [3]. Recall that 
à fundamental solution for the operator L is a distribution A'satisfying LK — 8, 
where 5, as usual, is the point mass at 0.) At the Williamstown conference that 
summer, Stein and I compared notes on these matters and began the 
collaboration which resulted in the paper [8], in which we proved sharp 
regularity theorems for 3^ on strongly pseudoconvex hypersurfaces. (Actually, 
we treated the more general case of a nondegenerate Levi form.) 

Roughly, the ideas in that paper are the following. (The results and 
techniques will be described more explicitly in a general context further on.) 
First we considered the boundary of the domain Dn, identified with the 
Heisenberg group Hn_x. The operator D^ on #-forms is easily computed there, 
and it turns out to be the tensor product of a scalar operator (depending on 
q) with the identity map on #-forms. Extending the ideas of [3], we computed 
fundamental solutions for these operators in the cases where they exist-
namely, when 0 < q < n - 1, the allowable range in Kohn's theorem. These 
fundamental solutions are kernels of type 2, and it follows that if one applies 
to them two derivatives in the span of Zx, . . . , Zn_x, Zx, . . . , Zn_x (which are 
homogeneous of degree 1) or one derivative in the orthogonal direction T 
(which is homogeneous of degree 2), one obtains kernels of type zero. By 
means of the If boundedness theorems for these kernels we obtained 
regularity theorems for D^ which improved Kohn's result in two respects: they 
dealt with If, 1 < p < oo, instead of just L2, and they gave a gain of two 
derivatives in the complex directions as well as one derivative overall. We also 
obtained some results on Lipschitz (or Holder) continuity. 

Now suppose M is an arbitrary strongly pseudoconvex hypersurface in a 
complex «-manifold V. Given x E M, there is a biholomorphic map Fx from 
a neighborhood U of x in F to Cn such that Fx(x) = 0 and FX(U 0 M) has 
third-order contact with the Heisenberg group Hn_x s dDn at 0. One can 
choose the maps Fx to depend smoothly on x9 and one can choose a metric on 
M so that Fx is essentially an isometry at x. Under these conditions, in the 
coordinates given by Fx, the Laplacian D^ on M near x will look very much 
like D^ on Hn_x near 0, and the fundamental solution for the latter, composed 
with Fx, will become an approximate fundamental solution or parametrix for 
the former. 

Stein and I actually used a somewhat different construction, but the above 
remarks give the motivation. Under suitable restrictions on the metric, we did 
construct a parametrix for D ,̂ on M by "locally approximating M with a 
Heisenberg group", and from this we extended the regularity theorems on 
Hn_x to the general case. 
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From this work emerged the following general philosophy concerning the 
theory of differential operators constructed from vector fields whose commu­
tators play an essential role. A natural class of models for noncommuting 
vector fields is the left-invariant vector fields on non-Abelian Lie groups. To 
study a set of noncommuting vector fields, then, one should find a group 
whose Lie algebra mimics the structure of the original vector fields in a 
suitable sense, and which admits a "harmonic analysis" that will yield results 
similar to the classical Euclidean case. The nilpotent groups with dilations (or 
the more special "stratified groups" discussed below) fulfill the second 
requirement, and they seem to be general enough to fulfill the first in all 
known cases. One should then perform analysis on the group and somehow 
transfer the results to the original problem. More specifically, tracing the 
general outline of [8], one is led to the following three-part program: 

I. Show that under appropriate hypotheses, homogeneous left-invariant 
differential operators on nilpotent groups with dilations have homogeneous 
fundamental solutions. (Stein and I were lucky to be able to write the solutions 
down explicitly on the Heisenberg group, but there are good reasons why one 
should not expect to do this in general. For one thing, the functions involved 
will often not be analytic: cf. [6].) 

II. Study homogeneous convolution operators (operators of type X) on 
nilpotent groups. In particular, ascertain how they affect various differentiabil­
ity properties of functions, and combine this with (I) to prove regularity 
theorems. 

HI. Construct a theory for approximating more general operators by 
operators on nilpotent groups and extending the regularity theorems of (II) to 
the general case. 

This program has been fairly extensively carried out by Rothschild, Stein, 
and myself in [4] and [22]. What follows is a description of the essential 
features of these papers, according to the above outline. 

I. Fundamental solutions. The main result is the following: 

THEOREM 1. Let G be a nilpotent group with dilations, of homogeneous 
dimension Q. 

(a) Let L be a differential operator on G which is homogeneous of degree 
X, 0 < X < Ô, such that L and its transpose are both hypoelliptic. Then there is 
a unique kernel of type X which is a fundamental solution for L. 

(b) Suppose that for each £ in some manifold we are given an operator L^ 
satisfying the above hypotheses and depending smoothly on £. Then the fundamen­
tal solution of (a) also depends smoothly on £. 

In applying this theorem to second-order operators, verifying the hypoellip-
ticity is usually a matter of using Hörmander's theorem [11] or the Kohn-
Nirenberg regularity theorem [16]. The hypothesis X < Q cannot be omitted, 
as the example of the Laplacian on R2 shows: cf. formula (2) above. 

II. Analysis on nilpotent groups. Let G be a nilpotent group with dilations {yr} 
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and Lie algebra 0. For each a E R let Va be the subspace of g consisting of 
those elements which are homogeneous of degree a, that is, 

IJ = { I 6 Ü : yr(X) - r"X for all r > 0}. 

Since the y/s are algebra automorphisms of 0, we have [J£, ï£] C Va+p for all 
a, /?. We say that G is stratified if If generates 0 as a Lie algebra. We shall 
denote by m the order of nilpotence (i.e., the length of the lower central series) 
of G. If G is stratified, then, we have g = 0™ Vk. 

Let G be stratified, and fix a basis A^, . . . , Xn f or iff. If A: is a positive integer 
and I = Op •••,!*) is a A>tuple of integers with 1 < ij < «, we define 
Xj = AJ -X} '"Xt 9 and set | / | = &. Since the A '̂s generate 0, each left-
invariant differential operator on G is a linear combination of Xfs and is 
homogeneous of degree k if and only if it lies in the span of the X/s with 

i/i - *. 
On stratified groups one can obtain a satisfying theory of differentiability 

which extends the classical Euclidean theory. The basic heuristic principle is 
this: if one replaces "derivative of order k" by "homogeneous derivative of 
degree k9\ true statements on Rn become true statements on general stratified 
groups. 

For example, recall the classical Sobolev space lPk (1 </> < 00, A: == 0,1, 
2 , . . . ), the set of functions in If whose (distribution) derivatives of order < k 
are in If. On the stratified group G the natural analogue is 

S£ = {ƒ G Lp: Xjf e Lp for \I\ < *}, 

which is a Banach space in the obvious way. (The Lp norm is, of course, taken 
with respect to Haar measure.) On Rw, Lp

k can also be defined in terms of 
fractional powers of the Laplacian A, and in this formulation the definition 
extends naturally to yield spaces Lp

a for every a E R (cf. Stein [23]). On 
stratified groups, the role of the Laplacian is played by the operator L 
= 2 ? xf -> X\> • • • > Xn being a basis for Vx as above, and in terms of its 
fractional powers one can define spaces Sp for every a E R. This refinement 
is important for technical treasons, as it allows the use of interpolation 
theorems, but here we shall generally content ourselves with taking a to be a 
positive integer. 

Of course G is canonically diffeomorphic to the Euclidean space 0, so we 
can also consider the spaces Lp

a (a E R) on G. We shall also use the localized 
versions L^(loc) and S g (loc), the spaces of functions ƒ such that <j>f E Lp

a 

(resp. <f>f E S%) for all <j> E CQ° . As for the relationship between Sjf and Ifa% 

it is clear that I^(loc) C S^(loc), and-since every element of 0 is a linear 
combination of X/s with | / | < m - that S^(loc) C L^(loc). These results 
actually extend to arbitrary positive real k, and, in particular, we have 

THEOREM 2. L^(loc) c S^loc) C Lp
k/m(}oc) for 1 <p < 00, k » 1, 2, 3, 
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The fundamental theorem concerning singular integrals on stratified groups 
is the following: 

THEOREM 3. Operators of type zero are bounded on S '£(l</?<oo,A: 
= 0,1,2, . . .) . 

A word about the proof. In the Abelian situation this result follows 
immediately from the Calderón-Zygmund theorem (the case k = 0), since 
differentiation commutes with convolution. On non-Abelian groups left-
invariant differentiation does not commute with right convolution, so one 
needs some extra work in this theorem as well as in other similar situations. 
The essential ingredient is always some variant of the following: 

LEMMA. Let G be a stratified group, Xx, . . . , Xn a basis for Vv and T an 
operator of type zero. Then there exist operators Tjk of type zero (1 < j \ k < n) 
such that for all <j> E C^°, 

X/T4) = î{ Tjk(Xk<t>). 

Most of the other regularity theorems for integral operators are essentially 
local in character. We shall say that an operator T on functions on G is locally 
bounded from S g to 5f+x if for every \p, <}>v <j>2 E CQ° with <f>2 = 1 on the 
support of <ƒ>! there exists a constant C > 0 such that whenever ƒ E S^(loc), 
we have T(<t>xf ) E S£+x(loc) and 

The concept of local boundedness on other function spaces is to be interpreted 
similarly. The following is then an easy consequence of Theorem 3: 

THEOREM 4. Operators of type X (X = 1,2,... ) are locally bounded from S% 
'"Sjf+xO < / > < o o , * - 0 , 1 , 2 , . . . ) . 

There is also a corresponding result relative to the classical Sobolev spaces: 

THEOREM 5. Operators of type X(X = 1,2,3,... ) are locally bounded from Lp
a 

toLp
aHX/m)(l<p<cc,a>0). 

Another important class of function spaces in classical analysis is the 
Lipschitz spaces Aa, a > 0 (cf. Stein [23]). The natural analogues of these 
spaces on stratified groups are the spaces Ta defined as follows. Let BC be the 
space of bounded continuous functions on the stratified group G. If 0 < a 
< 1, 

Ta = (ƒ E BC: sup | / to ) -f(x)\/\y\a < oo), 
V. x9y J 

where \y\ is the homogeneous norm of y. Also, 
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r, = {ƒ G BC: supl/foO +/(xy"1) - 2/(x)|/H < oo), 

and if a = a' + k where 0 < a' < 1 and A: = 1, 2, 3, . . . , 

Ta = {ƒ G ra,: A}/ G ra, whenever | / | < k). 

As with the Sobolev spaces, we shall consider both Ta and Aa and their 
localized versions on G, and we have the following analogues of Theorems 2 
through 5 for them: 

THEOREM 6. Aa(loc) c ra(loc) c Aa/m(loc) for a > 0. 

THEOREM 7. Operators of type zero are locally bounded onTa(a > 0). 

(In the Abelian case this is a folk theorem whose idea goes back to Holder; 
a simple proof can be found in Calderón and Zygmund [1], The non-Abelian 
case, f or 0 < a < 1, is due to Korânyi and Vagi [17].) 

THEOREM 8. Operators of type X(X = 1,2,3,... ) are locally bounded from Ta 

to Ta+X and from Aa to AaHx/m) (a > 0). 

Finally, we have the following generalization of the Sobolev imbedding 
theorem relating the various spaces S g and Ta : 

THEOREM 9. S% c S f whenever 1 < p < q < oo and j = k - Q{p~x 

- q~l)> 0. Also, S% C Ta whenever a = k - (Q/p) > 0. 

Now suppose L is a left-invariant differential operator on the stratified 
group G satisfying the hypotheses of Theorem 1. Given a function ƒ on G, one 
can solve the equation Lu = ƒ on a bounded open set Q by taking u to be the 
convolution of <frf with the fundamental solution, where <J> E C£° is identically 
one on £2. Since the mapping <J> ƒ -> u is an operator of type X (where X is 
necessarily an integer), and since any other solution differs from u by a C00 

function on Î2, one obtains local regularity theorems for L in terms of various 
function spaces by applying Theorems 4,5, and 8. 

HI. Approximating general operators by operators on groups. We shall explain 
this theory in the context of operators L = 2 ? tf where the Â .'s are real 
vector fields satisfying a Hörmander condition. In [22], Rothschild and Stein 
do things somewhat more generally in order to handle the 3^ complex and 
operators of Hörmander type with a first order term. 

The basic ideas were developed in [8]. However, the general situation 
presents difficulties which were not encountered there. To see what these are, 
let us consider the following simple example. Suppose we wish to study the 
operator L = X? + X% on R2, where 

(3) Xx = 3/3*, X2 = x(d/dy). 

Away from the line x = 0, L is elliptic, so the natural group associated to the 
problem is just R2 and the process of approximation by invariant operators is 
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just the classical one of freezing the coefficients at a point. However, along the 
line x = 0, one needs to use the commutator 

y = 3 / 3 y = [*1,*2] 

in order to span the tangent space. Now Xx, X2, and Y span a nilpotent Lie 
algebra which is stratified if we define dilations by 

y,(Ai) = r*i, Yr(*2) = A*2, yr(Y) = r2Y9 

so the natural group to consider here is the one associated to this Lie algebra 
(namely, the Heisenberg group H^. But this group is three dimensional, 
whereas the original operator acts on a two-dimensional space. 

In short, the problems to be overcome are that the "natural" group 
associated to the vector fields in question (a) may vary from point to point and 
(b) may be of higher dimension than the original manifold. The solution to the 
first problem is to use a group which is sufficiently large to reflect the essential 
commutation relations (plus perhaps some extraneous ones) at every point, and 
the solution to the second is to lift the original operators to a larger manifold 
of the same dimension as the group. 

In the context of our example, the first point means that we forget about the 
ellipticity of L away from x = 0 and use the three-dimensional group 
throughout. The second point is accomplished as follows: consider the vector 
fields Xx, X2, ?

 o n R 3 defined by 

Xx = 3/3x, X2 = (3/3z) + x(3/3y), f = [XVX2] = 3/3y. 

These vector fields span the tangent space to R3 at every point. Moreover, if 
we let TT: R3 -> R2 be the projection onto the xy-plane, it is clear that 
Xj(f o TT) = (x.f) o m for all ƒ G C°°(R2). Hence, if we set L = Xx

2 + *2
2, we 

also have 

(4) £ ( /o 7 r ) = (L / )o 7 r ( / eC°° (R 2 ) ) . 

The object then is to study L by using the group associated to the Lie algebra 
spanned by Xx, X2, and Y, and then to use relation (4) to transfer the results 
toL. 

With these ideas in mind we can describe the general lifting and approxi­
mation process. Let Xx, . . . , Xn be real vector fields on a manifold M. We say 
that X{, . . . , Xn are free up to step m at * E M if the A '̂s and their 
commutators of order < m at x satisfy no linear relations but those forced by 
anticommutativity and the Jacobi identity. Moreover, let gw be the free 
nilpotent Lie algebra of step monn generators, that is, the quotient of the free 
Lie algebra on n generators by its (m + l)st commutator ideal, and let Gnm be 
the corresponding group. Thus Xx, . . . , Xn are free up to step m at x if and 
only if the dimension of the space spanned by the Â .'s and their commutators 
of order < m at x is the same as that of Gnm. We shall denote the generators 
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of Qn m by Y{, . . . ; Yn. We note that Qnm has a natural family of dilations {yr} 
specified by setting yr{Yj) = rYj9 and this family of dilations makes Gnm a 
stratified group. 

Now suppose Xx, . . . , Xn are vector fields on a manifold M which satisfy the 
Hörmander condition of order m. Let k = dim(G„m) - dim(M) and AÏ 
= M X R*, and let TT: M -* Af be the projection onto the first factor. The 
fundamental lifting theorem is then the following: 

THEOREM 10. For each x G M there exist a neighborhood U of x in A/, a 
neighborhood U' of 0 in Rk, and vector fields Xx, . . . , Xn on 0 = UX U' CM 
such that: 

(a) Xj(f o TT) - (Xjf) o TT for all f G C°^(f/) ow/y - 1, . . . , n; 
(b) Xx, . . . , Xw are free up to step m on 0. 

REMARKS. (1) Since d i m ^ ) == dimCG^), (b) implies that Xv ...,£n 

satisfy the Hörmander condition of order m on Ü. (2) In [22] this theorem is 
proved by a rather intricate induction procedure; a somewhat more straight­
forward proof has since been discovered by Goodman [9]. 

The next step is to approximate the lifted vector fields £x, . . . , Xn by the 
left-invariant vector fields Yv ..., Yn on Gnm. In order to state the result we 
need some more terminology. Set YjX = Yj for y == 1, . . . , «, and for k = 2, 
. . . , m let Ylk9 Y2k, . . . be a maximal linearly independent subset of the 
commutators of the l^s of order k. Thus the YJk's all together form a basis for 
Qn m. Taking coordinates with respect to this basis and composing with the 
exponential map, we obtain a coordinate system on Gnm in which the 
coordinate functions are all homogeneous (of degrees 1, . . . , m). 

Now, any vector field X on Gnm can be written as 

X = -2aJkYJk, ajkGC«. 

If we expand the ajk
9s in their Taylor series about 0 in the coordinates defined 

above, X will be exhibited as a formal sum of homogeneous differential 
operators. (Note that if ƒ is a homogeneous function of degree /, then fYjk is a 
homogeneous operator of degree k - /.) We say that X is of local degree < À 
if each term in this formal sum is homogeneous of degree < X. 

The approximation theorem for the lifted vector fields ^ j , . . . , Xn is then 
the following. We retain the notation of Theorem 10 (actually the neighbor­
hood Ü may need to be shrunk somewhat). 

THEOREM 11. There exist a neighborhood V of 0 in Gnm and a C00 mapping 
0: ÜX (ƒ-» V with the following properties: 

(a) 0(TJ, £) = e&ij)" 1 , in particular, ©(£,£) = 0. 
(b) For each fixed £ G Ü, the map 0^: y\ -» 0(fcij) is a diffeomorphism from 

a neighborhood of i- to a neighborhood of 0. 
(c) For each £ G Ü and j = 1, . . . , n9 (0^)*^ = Yj + RJ9 where Rj is of 

local degree < 0. 
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REMARKS. (1) Here (0^)# is the map of tangent bundles induced by ©£. (2) 
In the special case Ü = Gnm and Xj = Yj, the map © is merely given by 
0(£,TJ) = H~l,q9 and Rj = 0. (3) Since 1̂  is homogeneous of degree 1, (c) says 
that (®ç)*Xj is a "small perturbation" of Yj near the origin. 

The eventual object of all this is to study the operator L = 2 " XJ1 on M. 
All considerations are local, so we restrict attention to the neighborhood U of 
Theorem 10. First, we look at the lifted operator L = 2 f X? on Ü. 

In a sense made precise by Theorem 11, near each point L is a small 
perturbation of the operator L0 = 2 ? J/2 o n Gnm. Let K0 be the fundamental 
solution for L0 given by Theorem 1. (This depends on the choice of Haar 
measure. We fix the Haar measure as the one determined by the metric which 
makes the basis {Yk} for g„ m described above orthonormal. At the same time, 
let {Xjk} be the frame for the tangent bundle of Ü formed from the J^'s and 
their commutators in the same way as {Yjk} is formed from the l?s and their 
commutators. We impose the metric on U which makes {Xjk} orthonormal and 
we denote by dr\ the induced measure on Ü) Choose ;//, if/ G C°°(f7) with 
i// = 1 on the support of \p, and define the function K on Ü X Ü by 

(5) K&V) = mK0(®(v,OW(v\ 

Let f be the integral operator on Ü with kernel K, that is, 

Tm-fK&rifWdri. 

Then f turns out to be a parametrix for L, in the following sense. Define the 
operators S and §' by 

Sf=LTf-M S'f=TLf-W. 

Then S and S' are integral operators on Ü whose kernels F and P' behave 
along the diagonal like kernels of type 1. That is, 

Ffa7)) = ^(O^oC®^'^))^^) + lower order terms, 

where a, a' E C™(Ü) and F0 is a kernel of type 1; similarly for F'. 
Thus S and S' are roughly "operators of type 1", whereas f is roughly an 

"operator of type 2", and the boundedness theorems for homogeneous 
operators on stratified groups can be carried over to operators like these. 
Specifically, one has the classical function spaces Lp

a and Aa on Ü, and one 
defines S g on Ü just as on stratified groups, replacing the basis for Vx by the 
vector fields Xx, ..., Xn. Then S and S' map Lp

a, Aa, and S g into Lp
a+i^/my 

A«+(i/m)> a n d sLv respectively, while Tmaps them into Z£+(2/m), Aa+(2/lfl), 
and Sjf+2> respectively. (One need not worry about localized spaces here 
because the kernels of these operators are compactly supported. These results 
are not corollaries of the theorems on stratified groups; rather, one must 
repeat the proofs with appropriate modifications.) Presumably a similar theory 
of Ta spaces on Ü can be developed, but this has not been carried out in 
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general. See, however, [8] for the case of strongly pseudoconvex hypersurfaces. 
These results give the sharp regularity properties of L, and it now remains 

to descend back to the original operator L on the open set U C M of Theorem 
10. First we consider some function spaces on U. We still have the classical 
spaces Lp

a and Aa on U, and we define S% as before using the vector fields 
Xx, . . . , Xn on U. (Note that the character of S g may change from point to 
point. For instance, in our example (3), S£(loc) agrees with Lp

k(loc) away from 
x = 0, but it is strictly larger than L^(loc) along x = 0.) We say that an 
operator on functions on U is smoothing of order X if it maps L£, Aa and S% 
boundedly into Z£+(x/m)> Aa+(x/m), and Sj£+X, respectively, for a > 0, 1 <p 
< oo, and k = 0, 1, 2, 

Recall that 0 = UX £ƒ', where U' is a neighborhood of 0 in R*, and that 
TT: 0 -» U is the projection. We thus have a canonical lifting map E from 
functions on U to functions on Ü defined by Ef = ƒ <> 7r. We define a left 
inverse # to E as follows. If £ E [7, write £ = (x, f) with x E U9t E U'. Fix 
f G Ç i l / ' ) with ƒ f ( 0 * = 1, where dt is Lebesgue measure on R*. Then if 
ƒ is a function on f7, set 

Rf(x)=ff(x,t)Ç(t)dt. 

Next, in the definition (5) of the kernel of the parametrix f for L, take \p to be 
of the form xp(x,t) = <J>(x)r(0> where <̂  E C0°°((/), T E C0°°(£/'), andf' = 1 
on the support of f. Then define the operators T, S, S' on functions on (7 by 

Tf-RTEf Sf=LTf-$f S'f=TLf-<t>f 

THEOREM 12. T is smoothing of order 2, and S and S' are smoothing of order 1. 

Thus T is a parametrix for L; more precisely, T inverts L modulo a 
smoothing operator on any open set where <f> = 1. Since i/was any sufficiently 
small open set in M, and <f> E C™(U) was arbitrary, we can conclude the 
following regularity theorem. 

THEOREM 13. Suppose L = 2 " X,2 where Xl9 . . . , Xn satisfy the Hörmander 
condition of order m, and Lu = ƒ. Iff is locally in L^, Aa, or S% (a > 0,1 < p 
< oo,/c = 0,1,2, . . . ), ftefl w is locally in Lp

a^1/my Aa+(2/m), or ̂ + 2 , respec-

As we mentioned above, these arguments can be generalized to handle 
operators of the form 2f ^f + ^o where X0, Xx, . . . , Xn satisfy a Hörmander 
condition, as well as the Laplacians D ,̂ of the 3̂  complex. For the latter, one 
obtains analogues of the results of [8] on arbitrary hypersurfaces satisfying 
Kohn's condition Y(q), with no restriction on the metric. These are of the 
same character as Theorem 13. 

The lifting process described above was designed for maximum generality, 
particularly in its universal use of the free nilpotent group Gn . However, in 
some situations one can obtain more precise results more cheaply. We shall 
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now briefly describe one such situation; for the details, see [6]. 
Let F be a finite-dimensional real vector space with a family of dilations {yr} 

defined by yr = exp(̂ f logr), where A is a diagonalizable linear transforma­
tion of V whose eigenvalues otj are positive integers with minfy} = 1 and 
maxfy} = m > 1. Let Xv . . . , Xn be real vector fields with polynomial 
coefficients on V which are homogeneous of degree 1 with respect to the 
dilations {yr} and satisfy the Hörmander condition of order m. (Example: Take 
V = R2, yr(x,y) = (rx,r2y), and XVX2 given by (3).) Then the X/s generate 
a stratified Lie algebra g of vector fields on V. Let G be the corresponding 
group; if X E Q, we denote the corresponding left-invariant vector field on G 
by X. As it turns out, there is a natural transitive right action of G on F, and 
the isotropy subgroup of 0 is H = exp(!)), where f) = {A" E Q: A^Q = 0}. F 
can thus be identified with the homogeneous space H\G, and if TT: G -* H\G 
^ F is the projection, we have X(f ° TT) == (Xf) <> TT for all X E g and 
ƒ E C°°(V). The correspondence Xj -» X is thus a lifting of the vector fields 
Xj to left-invariant vector fields on G. Moreover, let L = 2 ? ^ 2 , £ = 2 " ^ 2 , 
and if = the fundamental solution for L given by Theorem 1. Then the 
integral operator on V whose kernel K is defined by 

K{<n{x\<n(y)) = f K{y~xhx)dh (x,y E G,dh = Haar measure) 
•'T/ 

inverts L exactly. 
The ideas we have discussed can also be applied to the 3 operator. In a 

forthcoming monograph [10], Greiner and Stein apply nilpotent analysis to 
obtain a parametrix for the 3-Neumann problem for (0, l)-forms on a domain 
D with strongly pseudoconvex boundary M, assuming that the metric is of the 
sort described in [8]. The idea is as follows. Recall that the problem is to solve 

(6) D 4> = */>, v$ = vd<t> = 0, 

where \p is a given (0, l)-form on D. First one finds a form <#>' satisfying 
D </>' = \p9 v<t>' = 0, by solving a classical Dirichlet problem, which yields 
coercive estimates for </>'. Setting f = </> — <ƒ>', then, one is reduced to solving 
D J = 0, v$ == 0, vd$ = 6, where 0 = —vfitf is a given form on M. If one can 
discover what the restriction f0 of f to A/ must be in order to satisfy these 
conditions, one can recover f from f0 by applying the Poisson integral for D. 
But there is a first-order pseudodifferential operator N on M such that 
vdÇ = NÇ0 for solutions of D £ = 0. Moreover, Greiner and Stein construct 
another first-order pseudodifferential operator T on M such that 

TN == D^ + lower order terms. 

Hence, to solve *>6f = 0 approximately, it suffices to solve \JbÇ0 = TB 
approximately, and this is accomplished by applying the parametrix for D^ 
constructed in [8]. This process also automatically yields vl = 0. 

The upshot of all this, then, is that one obtains an approximate solution to 
the problem (6), the explicit construction of which allows one to prove a 
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variety of sharp estimates and regularity theorems for (6). These are much the 
same character as the results for nb proved in [8] and [22]. 

In the same spirit, though by different methods, Krantz J18], [19] has 
obtained a number of sharp estimates for Henkin's solution of d<f> = \p9 where 
\p is a (0, l)-form on a bounded domain with strongly pseudoconvex 
boundary, in terms of Lp spaces and nonisotropic Lipschitz spaces similar to 
our spaces Ta. 

One aspect of harmonic analysis on nilpotent groups which we have not 
mentioned at all is representation theory, although representations play a 
peripheral role in [8] and [22]. In general, representation theory seems to be a 
rather unwieldy tool for the kinds of problems we have been considering. 
However, Rockland [21] has recently proved an interesting hypoellipticity 
theorem in the context of representations of the Heisenberg group Hn: 

THEOREM (ROCKLAND). Let L be a left-invariant differential operator on Hn 

which is homogeneous with respect to the standard dilations on Hn. Then L and its 
transpose are hypoelliptic ij and only if dm{£) has a bounded two-sided inverse for 
every nontrivial irreducible unitary representation m of Hn, where dm is the 
representation of the universal enveloping algebra of Hn corresponding to IT. 

This theorem is the natural analogue for the Hn of the fact that a 
homogeneous constant-coefficient differential operator on Rn is hypoelliptic if 
and only if it is elliptic. 

ADDED IN PROOF. Recently Folland [26] and Krantz [27] have obtained 
some new results on the structure of Lipschitz classes on nilpotent groups, 
and Metivier [28] has used nilpotent analysis to study the asymptotic behavior 
of the spectra of operators of Hörmander type. For further background on 
the material discussed in the present paper, the reader may consult Goodman 
[29] and Stein [30]. 
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