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1. Historical origins of Lie group theory. Nowadays when Lie groups enter 
in a profound way into so many areas of mathematics, their historical origin 
is of considerable general interest. The connection between Lie groups and 
differential equations is not very pronounced in the modern theory of Lie 
groups, so in this introduction we attempt to describe some of the founda
tional work of S. Lie, W. Killing and É. Cartan at the time when the interplay 
with differential equations was significant. In fact, the actual construction of 
the exceptional simple Lie groups seems to have been accomplished first by 
means of differential equations. 

Although motion groups in R3 had occurred in the work of C. Jordan prior 
to 1870, Lie group theory as a general structure theory for the transformation 
groups themselves originated around 1873 with Lie's efforts about that time 
to use group theoretic methods on differential equations as suggested by 
Galois' theory for algebraic equations. It seems that a lecture by Sylow in 
1863 (when Lie was 20) on Galois theory2 (Lie and Engel [9, vol. 3, p. XXII]) 
and his collaboration with F. Klein, 1870, on curves and transformations 
(Klein and Lie [6], Engel [3b, p. 35]) were particularly instrumental in 
suggesting to him the following: 

PROBLEM (LIE [8a]). Given a system of differential equations how can knowl
edge about its invariance group be utilized towards its integration! 

Since the solutions of a differential equation are functions, not just num
bers as for an algebraic equation, one can take two different viewpoints for 
an analogy with Galois theory. 

Analytic viewpoint (Lie (1871-1874)). For a system of differential equations, 
consider the group of diffeomorphisms of the underlying space leaving the 
system stable (i.e., permuting the solutions). 

Algebraic viewpoint (Picard (1883), Vessiot (1891)). For a given differential 
equation consider the group of automorphisms of the field generated by the 
solutions, fixing the elements of the coefficient field. 

To indicate the flavor of the resulting theories I just recall a couple of the 
best known results. In ordinary Galois theory one has the fundamental result 
that an algebraic equation is solvable by radicals if and only if the Galois 
group is solvable. In the Picard-Vessiot theory one introduces similarly the 
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Galois group of a linear homogeneous ordinary differential equation, the 
so-called differential Galois group (since the automorphisms are assumed to 
commute with differentiation). The solvability of this group is then necessary 
and sufficient for the equation to be solvable by quadratures, f(x)-+ 
jf{x) dx, and exponentiation, g(x) -» e8{x\ 

To indicate the rudiments of Lie's theory, consider a differential equation 

(1) dy/dx = Y(x.y)/X(x,y) 

in the plane. It is called stable under a 1-parameter group <£>, (/ E R) of 
diffeomorphisms if each $t permutes the integral curves (all concepts are here 
local). 

EXAMPLE. 

cty_ _ y + x(x2 + y2) 
OX" X-y(X2+y2) ' 

The equation can be written 

V dx x ) ' \ x dx ) 

and since the left-hand side is the tangent of the angle between the integral 
curve and the radius vector, it is clear that the integral curves intersect each 
circle x2 + y2 = r2 under a fixed angle. The group of rotations around the 
origin therefore permutes the integral curves, i.e., leaves the equation stable. 

For a 1-parameter group <f>, of transformations in the plane with <j>0 the 
identity let T denote the induced vector field, 

THEOREM 1.1 (LIE [8a]). Equation (1) is stable under <ƒ>, if and only if the 
vector field Z = Xd/dx -f Yd / dy satisfies 
(4) [ T , Z ] - A Z 

where X is a function. In this case (XT) — Y£)~~l is an integrating factor for the 
equation X dy — Y dx = 0. 

Thus, knowing a stability group for a differential equation provides a way 
to solve it. For the example above, equation (2) is stable under the group 

<j>t: (x,y) —> (x cos t — y sin t, x sin / 4- y cos i) 

for which 

and the theorem gives the solution y = x tan(|(x2 •+• y2) 4- C), C a constant. 
Generalizing the 1-parameter group (<f>t) above, let 

(5) *;=ƒ.(*, , . . . , * „ ; / , , . . . , f r ) 

be an r-parameter local transformation group of w-space, the origin 
( / , , . . . , tr) = (0, . . . , 0) representing the identity transformation and rank 
(df/dtk) = r. In analogy with (3) define the vector fields ("infinitesimal 



INVARIANT DIFFERENTIAL EQUATIONS 753 

transformations") 

on Rw. Passing to the second derivatives of the ƒ., Lie proved that the group 
law for (5) implies that 

(6) [Tk,Tt]~ 2 Cj&r,, 

where the Cfa are constants satisfying 

(7) Cfi = - C£, 2 ( C ^ a + C ^ Q + C ^ ) = 0. 

This device, which through Lie's so-called "three fundamental theorems" 
relates the study of the local transformation group (5) to the algebraic study 
of the Lie algebra (6), (7) (the third theorem amounts to the statement that 
every system of constants Cfc satisfying (7) arises in this way), forms the 
foundation of Lie's theory of transformation groups. His first proof of (6) (cf. 
[8c, p. 52]) was incomplete (cf. loc. cit., p. 617) but was completed in his paper 
[8d, p. 462]; in the modern theory of Lie groups relation (6) amounts to the 
fact that when a Lie group G acts on a manifold M there is induced a 
homomorphism of the corresponding Lie algebra fl into the Lie algebra of 
vector fields on M. 

In one generalization of Theorem 1.1 from R2 to Rn (cf. Lie [8b]) one 
considers a differential equation 

n df 

/ - I **i 

where Xt E C°°(R"). Assuming the equation stable under a solvable (n - 1)-
parameter transformation group, its solutions can be found by quadratures. 
(Here the term "solvable" has replaced the older term "integrable" and the 
term quadrature is used for integration f(x) -» ff(x) dx in analogy with 
taking square roots in the analogous result for an algebraic equation.) 

Such results, and their generalization to systems, suggested the problem of 
classifying all local transformation groups of Rw. Lie solved this for n = 1, 
where the local groups are 

(9) x •-> x + a, a E R const, 
(10) x-*ax + b, Û 6 R - ( 0 ) , 6 6 R , 

(11) x -> (ax + b)l (ex + d), a, b,c,d E R, ad - be = L 

For n = 2 the possibilities are already quite numerous (cf. [8f, vol. V, p. 768]) 
so the assumption of primitivity (no invariant decomposition of the space into 
lower-dimensional submanifolds) was introduced. Then there are for n = 2 
just 3 possibilities, namely the 8-parameter analog of (11) (the projective 
group), the 6-parameter analog of (10) (the affine group), and its 5-parameter 
subgroup of area preserving transformations (analog of (9), the special affine 
group).3 Lie [8e] and, his student in Leipzig, Page [11] settled the cases n = 3, 

In [10] Mos tow determines all global transitive Lie transformation groups of surfaces. 
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4 respectively; later Kowalewski and Beutner worked out the cases n = 5 and 
n « 6, respectively. The direct attack on the problem was not continued 
further because the complexities had become rather formidable, and since the 
problem had taken a new direction through the work of Killing and Cartan. 

W. Killing, who wrote his dissertation with Weierstrass in 1872, began in 
1877-1878 geometric investigations which, without knowledge of Lie's work, 
led him to concepts close to Lie's infinitesimal transformations and to 
relations equivalent to (6). (Cf. Lie and Engel [9, vol. 3, p. 768].) Even before 
getting acquainted with Lie's work, Killing had set himself the problem of 
finding all possible "Zusammensetzungen" of r-parameter groups. In other 
words, he wanted to find all possible ways, up to isomorphism, in which an 
r-dimensional vector space can be turned into a Lie algebra. 

Thus Lie's classification problem (which, as indicated, arose from his study 
of differential equations) consisted of Killing's algebraic problem together 
with the problem of classifying the various representations of a given group as 
a transformation group. This viewpoint was decisive for the theory of Lie 
groups, but separated it gradually from differential equations. 

On 18 October 1887 Killing wrote to F. Engel, who was then Lie's assistant 
in Leipzig, that he had succeeded in finding a complete classification of the 
simple Lie algebra g over C. In this work [5] Killing introduced many of the 
fundamental concepts for the theory of simple Lie algebras, in particular, the 
following: 

(a) The rank / of g. 
(b) For the linear transformation ad X: Y->[X, Y] the characteristic 

equation 

(12) det(co - ad X) = <o' - xp2(X)œr~2 + • • • ± $r-i(
xW " °-

The coefficient 2\p2(X) which equals Trace(ad Xf is now called the Killing 
form. Equation (12) had also been used extensively by Lie. 

(c) The roots of g which, by definition, are the functions u(X) on g 
satisfying (12). 

(d) A basis col5 . . . , <o7 of roots of which all roots are integral linear 
combinations (with all coefficients of the same sign) and the associated 
matrix (ay) where 

(13) -ay = the largest integer q such that o)j + q^ is a root. 

This matrix is now called the Cartan matrix. 
In this remarkable work, Killing finds all possibilities for the matrix {atJ) 

and writes down the corresponding roots œ(X) (cf. [5, II, §15]). Thus he 
arrives at the statement that apart from the classical simple Lie algebras 

Al (I > 1), Bt (I > 2), q (I > 3), Dt (/ > 3) 

(known from Lie's work), there are only six more, of ranks and dimension, 
respectively, 

/ = 2, 4, 4, 6, 7, 8, 
r = 14, 52, 52, 78, 133, 248. 

These exceptional Lie algebras are denoted G2, E4, F4, £6, ZT7, £8, respec
tively. Killing denoted G2 by (IIC); he observed that A3 = D3, but did not 
notice that E4 = F4, although, as Cartan remarked, this is immediate from his 
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root tables in [5, II, pp. 30-31]. Killing's work [5] was immediately recognized 
as a breakthrough. However, it was also criticized, particularly by Lie [9, vol. 
3, pp. 768-771], for serious gaps and inaccuracies. E. Cartan set himself the 
problem of giving genuine proofs of the results stated by Killing. Apart from 
pointing out many errors in detail, Cartan found the following gaps in 
Killing's papers particularly significant: (a) In [5, II] Killing makes the 
explicit assumption that the nonzero roots of (12) are simple. While this is 
correct, his justification in [5, III] of this assumption was incorrect, (b) A 
proof that at most one g can correspond to a given matrix (at) was lacking. 
Cartan showed, case-by-case, that this is so; an a priori proof was given much 
later by van der Waerden [13]. 

The actual existence of the exceptional Lie algebras is another major 
weakness of Killing's work. He indicates in [5, II, §18] how the structural 
constants Cjk can be determined from his root tables. Then the Jacobi 
identity (7) has to be verified; Killing does this for G2, but for the others his 
indications [5, II, p. 48] seem unconvincing. 

In his thesis [lb], É. Cartan gave a complete proof of the classification 
results stated by Killing; in outline his method follows Killing's program. He 
determined the matrices {at), the roots co(X) and a basis for each of the 
exceptional Lie algebras with respect to which the structural constants have a 
simple and symmetric form [lb, §§18-20] whereby the Jacobi identity (7) is 
(presumably) simple to verify.4 But he was also interested in realizing the 
exceptional Lie groups by transformations, like e.g. the classical algebra C7 is 
the Lie algebra of the linear group leaving invariant the Pfaffian form 

x\4y\ ""* y\dx\ + • • • + xldyl - ytdxt. 
Killing had been led to expect that G2 could be realized as a transformation 

group in R5, but not in a lower-dimensional space. Engel and Cartan showed 
that it can be realized as the stability group of the system 

CWC'i "i X \ClXy """" XjClXt —" U, 

CIXA I A ^ W A | ~""~ X ^ClX-y — U, 

dx5 + x2dx3 — x3dx2 = 0, 

in R5 (Engel [3a], Cartan [lb, p. 281], Lie and Engel [9, vol. 3, p. 764]). 
Cartan represented F4 similarly by the Pfaffian system in R15 given by 

4 

(14) dz = 2 yidxn dxtj = xtdxj - Xjdxt + yhdyk - ykdyh, 
l 

where z, x^yp xtj = — xjt (i ^ j , ij = 1, 2, 3, 4) are coordinates in R15 and in 
(14) i,y, h, k is an even permutation [la, p. 418]. Similar results for E6 in R16, 
E7 in R27 and Es in R29 as contact transformations are indicated in [la]. 
Unfortunately, detailed proofs of these remarkable representations of the 
exceptional groups do not seem to be available. 

4 In [15], Witt gives an explicit geometric construction of the 5 exceptional Lie algebras and 
proves a priori that to each Cartan matrix (a0) corresponds a simple Lie algebra (provided this is 
so for / < 4). Chevalley [2] indicates a general algebraic proof (without this proviso); see also 
Harish-Chandra [4]. 

file:///ClXy
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2. Invariant differential operators. In our days when Lie group theory has 
been so highly developed, it is reasonable to reverse the viewpoint in Lie's 
problem in §1, that is, consider the group as the given object and investigate 
differential operators invariant under a given group. 
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Let I be a manifold and D a differential operator on X. Let <f> be a 
diffeomorphism of X onto itself. For a smooth function ƒ on A' we put 
f* = ƒ ° </>-1 and define the operator Z)̂  by 

/ ) * : ƒ ̂  (/)ƒ*-')*; 

then D* is another differential operator. The operator Z) is said to be 
invariant under </> if 

(1) D* = D. 
This is a very natural condition on a differential operator and examples 

abound; the polynomials P(L) in the Laplacian L on R" (or on any two-point 
homogeneous space) are precisely the differential operators invariant under 
all isometries; similarly the wave operator on R4 (or on an isotropic Lorentz 
space) is characterized by its invariance under the Poincaré group (respec
tively, its isometry group), cf. [10a]. 

We shall now discuss differential operators on a manifold invariant under a 
transitive Lie group of diffeomorphisms. To be specific, let G be a Lie group, 
K c G a closed subgroup, G/' K the manifold of left cosets gK (g E G) and 
D(G/ K) the algebra of differential operators on G j K invariant under all the 
transformations r(g): xK-^gxK of G/K onto itself. We write D(C) for 
D(G/e), the algebra of left invariant differential operators on G. Let Q and f, 
respectively, denote the Lie algebras of G and K, let U(ç\) denote the 
universal enveloping algebra of Q and U(ç\)f the centralizer of f in U(ç\). As 
noted by Schwartz and proved in [8a, p. Ill] we have the canonical 
isomorphism 

(2) D(G)«</(8) . 

More generally [10a, Chapter III], if the coset space G/K is reductive and K 
connected, we have the isomorphism 

(3) D ( G / t f ) « t/(A)7(t/(A)f H l/(fl)f) 

expressing the algebra of invariant differential operators in Lie algebra terms. 
Of the many problems one can contemplate for these operators we will 

discuss the following. 

A. Solvability. Given D E D(G//Q, is the differential equation Du = ƒ, for 
ƒ E C°°(G/K) arbitrary, globally solvable (respectively, locally solvable)? If 
so we say that D is globally solvable (respectively, locally solvable). 

For the simplest case G = R", K = (0), the operators in D(G/K) are those 
of constant coefficients and the global solvability is well known (Ehrenpreis 
and Malgrange). 

B. Joint eigenfunctions. Determine the functions on G/K which are eigen-
functions of each D E D(G/K). Similar problems for joint eigen-
distributions. 

C. Eigenspace representations. Let /x: D(G/K)-*C be a homomorphism 
and let £M denote the corresponding joint eigenspace, i.e., 

£M= { / E C 0 0 ( C / ^ ) | Z ) / = iu(Z))/forallZ) E D(G/K)} 
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and let 7^ denote the natural representation of G on this eigenspace, i.e., 

(T^gWxK) - f(g~lxK) for g, x EC, 

ƒ E E p. For which JU is this "eigenspace representation" T irreducible and 
what representations of G are so obtained? 

D. Extensions to vector bundles. In the following sections we survey various 
results concerning A, B, and C for certain important classes of homogeneous 
spaces (symmetric spaces and their duals). First we explain how invariance 
condition (1) can be generalized in a natural way to a smooth vector bundle 
E over a manifold X (cf. Bott [1]). If p: E-* X is the projection map, a 
smooth section is a C00 map s: X -> E such that p(s(x)) = x for all x E X. 
The smooth sections form a vector space T(E). Let D be a differential 
operator on £, that is, a linear operator from T(E) to T(E) which via 
arbitrary local trivializations of E is expressed by means of ordinary partial 
differential operators with linear transformations of the fibers Ex as 
coefficients (cf. [29, p. 66]). Let <j>: E -> E be a diffeomorphism commuting 
with p such that for each x E X the restriction map Ex —> E^x) is a vector 
space isomorphism. Then <f> acts on T(E); if s E r (£) the map s* given by 

obviously belongs to r(£) , and we can define the differential operator 

D+is-^iDs*'1)*, s ŒT(E). 

Again we call D invariant under </> if D* = D. For the trivial bundle E = 
X X R sections become functions, and this invariance notion reduces to (1). 

As an example let X = R4, and G the universal covering group of the 
Lorentz group G, and it the natural mapping of G onto G; G acts on R4 as the 
Lorentz group and G acts on R4 via the spinor respresentation. Each g E G 
acts on the trivial bundle E = R4 X R4 by 

g- (x^y) = (*{g)-x*g-y) 
and the Dirac operator is invariant under this action. 

Now suppose X = G/' K and 8 a representation of K on a finite-dimen
sional vector space V. Let E = G XK V denote the product G X V modulo 
the equivalence relation (gk, v)^(g, 8(k)v) for g E G, k E K, v E K If 
[g, r] denotes the equivalence class of the element (g, v) E G X K, then the 
mapping p: [g, ü]-^g/C turns £ into a vector bundle over X = G//C. The 
group G acts on £ via the map g0*[g, r] = [g0g< t>] and this action 
commutes with /?. If for a section 5 E T(£) we put 

S(g) = g~l-s(gK)< 
then the mapping s -* £ is a bijection of r (£) onto the set of smooth 
K-valued functions ƒ on G satisfying f(gk) = 8(k-])(f(g)). Let Dy(G) 
denote the set of left invariant differential operators on G with coefficients in 
Hom(K, V) and let Dy(G)f denote the centralizer of the set {T 4- 8(T)\T E 
f} in Dy(G). Assuming K compact and connected we have, in analogy with 
(3), that the mapping which sends D E Dv(G)f to the differential operator 
/x(Z)) given by 
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(n(D)s) = Ds, sET(E), 

is a homomorphism of Dv(G)f onto the algebra D8(G/K) of G-invariant 
differential operators on E. 

Problems A, B, and C are meaningful for the invariant differential opera
tors on E; problem C is particularly interesting for the algebra DÔ(G/ K) and 
for subalgebras of it. As will be explained later it seems that the known 
irreducible representations of semisimple Lie groups and of nilpotent Lie 
groups can thus be realized as eigenspace representations. 

For a manifold X we shall use Schwartz's notation °\)(X) and &(X) for the 
spaces CC°°(X) and C00(Ar), respectively, with their customary topologies. 
Their strong duals fy^X) and &'(X) then consist of the distributions on X 
and the distributions of compact support, respectively. 

3. Solvability. For the solvability question A we consider first one of the 
best known class of coset spaces, the symmetric spaces X = G/ K of the 
noncompact type (G a connected semisimple Lie group with finite center, K a 
maximal compact subgroup). Here we have for each D E D(G/ K) the global 
solvability 

0 ) DC°°(X) = C°°(X) 

as was proved in [10e] using the Fourier transform on X. We recall the 
original definition of the Fourier transform on X from [10c] since we shall 
state some new results for it below. The Fourier transform of a function F(y) 
on Rn can be written 

(2) F(TJCO) = ( F(y)e~i71^) dy 

where 17 > 0, |co| = 1 and (y, 10) is the usual inner product. Geometrically, 
(y, co) is the (signed) distance from the origin to the hyperplane through y 
perpendicular to co. It turns out to have an analogue for the symmetric space 
X = GI' K. To define it let G = KAN be an Iwasawa decomposition of the 
group G; here A is an abelian subgroup and N a nilpotent subgroup. (In the 
case G = SL(/?, R), K = SO(A?) the group A is the group of positive diagonal 
matrices with determinant 1, N the set of supertriangular matrices with 
diagonal 1; here the decomposition amounts to the usual Gram-Schmidt 
orthonormalization process.) Let M denote the centralizer of A in K and B 
the coset space K/M. 

A horocycle in X is an orbit in X of a group of the form gNg~K The group 
G permutes the horocycles transitively. More precisely let o = {K} (the 
origin in X) let £0 denote the horocycle /V • o. Then each horocycle £ can be 
written £ = ka - >̂, where kM is unique in B (called the normal to the 
horocycle), and a E A is unique (called the complex distance from o to £). 
This representation of £ is obvious in the case of the Poincaré disk where the 
horocycles are the circles tangential to the unit circle. Given x E X, b E B 
there is a unique horocycle through x with normal b\ let a(x, b) denote its 
complex distance from 0 and let A (x, b) be the element in the Lie algebra a 
of A satisfying exp A(x, b) = a(x, b). This vector-valued function A(x, b) on 
A' X Bis the desired analog of the scalar product (ƒ, co) for R" X S"_1. 
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The space X has a certain canonical Riemannian metric and we let dx 
denote the volume element on X with respect to this metric. Let a* denote the 
dual of the vector space a. 

Given a function ƒ (x) on X we define its Fourier transform in analogy with 
(2) by 

(3) ƒ (A, b) = [ f(x)e
{-iX+P){AM)) dx (A G a*, b G B). 

Jx 
Here p is a certain fixed element of a*: 2p(H) is the Jacobian of the 
automorphism n -»exp(//)« exp(-/7) of N. It turns out that the transform 
(3) is one-to-one on ty(X). There is an inversion formula of the same type as 
well as a Plancherel formula relating the L2 norms of ƒ and ƒ. But for the 
proof of (1) the important result to have is a theorem of Paley-Wiener type, 
that is, an intrinsic characterization of the space 6i>(X)~. To describe it let W 
denote the Weyl group of Û, that is, the (finite) group of linear trans
formations of a induced by those elements of K which normalize a. Then we 
have the following result [10e]. 

THEOREM 3.1. The space tf)(Xy of Fourier transforms consists of the smooth 
functions <|>(A, b) on û* X B satisfying: 

(i) À —> <£(A, b) extends to an entire function of exponential type on the 
complexification a*, the exponential type being uniform in b G B. 

(ii) For each s E: W and each À G a*, 

JB JB 

where db is a K-invariant measure on B. 

The application of the Fourier transform (3) to prove (1) is based on the 
fact that the kernel in (3) is an eigenfunction of D, i.e., 

(4 ) J) /e(i\ + p)(A(x,b))\ = p A ) ^ ( / A + p ) ( / , ( x ' è ) ) , 

where the eigenvalue is a polynomial PD(X), independent of b. After proving 
first local solvability of D and using functional analysis tools familiar from 
the constant coefficient theory, (1) is reduced to proving the implication, 

(5) ƒ G 6D (X ), supp(Z)/) c V => supp( ƒ ) c V 

tor any closed ball V in X, supp denoting support. But using Theorem 3.1, 
statement (5) is translated into the following known property for holomorphic 
functions. If F is an entire function of exponential type, ? = ^ 0 a polynomial 
and PF of exponential type < R, then F is of exponential type < R. 

In order to have an analog of (1) for distributions it would be sufficient to 
have a topological version of Theorem 3.1. We will now describe a special 
result of this type. For this let 8 be an irreducible unitary representation of K 
on a vector space V6 of dimension d{8), and let 8' denote the contragredient 
representation. Let V$* denote the set of vectors v G Vô fixed under 8(M) 
and 1(8) = dim KÔ

M. We assume 1(8) > 0. Let p be the orthogonal comple
ment of f in g with respect to the Killing form and pc, tc and QC their 
respective complexifications. Let H be the set of /C-harmonic polynomials in 
the symmetric algebra SQoc) and put 77* = A(/7), where A is the canonical 


