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The Nobel Prize in Economics for 1975 was awarded to Leonid V. 
Kantorovich and Tj ailing C. Koopmans for their contributions to the theory 
of optimum allocations of resources. This event emphasized the fact that the 
mathematics of operations research has been developed in parallel with 
economic theory. Books on operations research, such as the one under review, 
emphasize optimization problems, especially linear programming, game theory 
and control theory. These topics have been developed in the past thirty years 
and a sketch of this development may help to put in perspective the 
mathematics, presented in this book in a rather terse style. 

In 1928 John von Neumann [16] gave a mathematical formulation of games 
of strategy and proved the celebrated minimax theorem justifying his defini­
tion of the value of a noncooperative game. This work was not pursued further 
until the economist Oskar Morgenstern, having been forced to leave Vienna, 
came to Princeton University and, during the classical tea in Fine Hall, talked 
with von Neumann about games and economics. This conversation led to the 
collaboration between Morgenstern and von Neumann which resulted in the 
publication in 1944 [17] of their famous book The theory of games and economic 
behavior. A fascinating account of this collaboration may be found in [11]. 

In 1939 the Russian mathematician Leonid Kantorovich published a paper 
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in which he discussed several problems which we now call linear programming 
problems. An example of the type of problem that he solved is the following. 
A plywood producer has eight peeling machines and uses five different kinds 
of material. The productivity of each machine for each kind of material is 
given. How should the work time for the machines be distributed to maximize 
the output per day? He discussed a number of such problems and showed that 
each led to the problem of maximizing certain linear functions under linear 
inequality constraints. He presented an iterative method for solving these 
problems based on quantities he called resolving multipliers and which are 
now called dual variables in linear programming. These variables have 
important economic interprétions and Kantorovich made use of this fact. See 
[7] for a more detailed discussion of the work of Kantorovich. This work was 
not to become known to the Western world until 20 years later when 
Koopmans learned of it and took the initiative to have it published in 1960 [8]. 
The independent development of linear programming in the West grew out of 
work carried out during World War II. In 1942 Koopmans, working on the 
British-American shipping board dealing with merchant shipping problems, 
wrote a memorandum "Exchange Ratios Between Cargoes on Various 
Routes". See [19] for references to this and related work of Koopmans. In this 
work, Koopmans explicitly introduced ideal prices to find the optimal 
shipping plan. In 1947 George Dantzig, working on similar problems for the 
Air Force, was led to formulate the general problem of linear programming as 
we now know it. In addition he presented his celebrated simplex method. This 
was first presented in [10] and the full theory developed in [2]. A typical 
problem is to find the maximum of a linear function defined on a bounded 
convex set of nonnegative vectors in Rn formed by the intersection of a finite 
number of half-planes. The maximum will occur on a boundary point and the 
simplex algorithm gives a method for starting at one corner and, if possible, 
moving to a neighboring corner where the function has a greater value. If no 
such move can be made the desired maximum has been found. A practical 
problem may require looking at hundreds of corners and the introduction of 
the high speed computer made his algorithm a powerful tool for solving these 
problems. Dantzig's work, unlike that of Kantorovich, was immediately 
appreciated. Von Neumann introduced and stressed the importance of duality 
in linear programming and conjectured the equivalence of games and linear 
programming problems. Koopmans was led to a new theory of economic 
production that he called activity analysis. In this theory he showed, in a very 
general setting, that the problem of efficient use of resources was intimately 
connected with a dual problem of assigning a theoretical value of price to the 
goods used in production. These results as well as a number of other 
fundamental results were presented by leading economists and mathemati­
cians at a conference in 1947 organized by Koopmans. In particular, D. Gale, 
H. W. Kuhn and A. W. Tucker formalized the duality theory for linear 
programming and Dantzig verified von Neumann's conjecture. The proceed­
ings of this conference were published in [10]. It was an exciting time and I 
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can recall, as a student, hearing with great awe that new results were being 
transmitted by telephone between Princeton and California. I have dwelled 
upon this history because in this book and most others written as mathematics 
books, the treatment of the simplex method and duality comes out a bit dry 
and the dual prices, called shadow prices, are in fact presented as if the 
Shadow himself had invented them. One has to indulge in a little reading of 
economic theory to realize that production and prices play an equally 
fundamental role in economics, and this shows up in the mathematical theory 
in many subtle ways. 

Many new problems in graph theory and combinatorics came out of 
studying special linear programming problems. Such problems are well 
presented in this book. A typical problem is the following. Given a road map 
of the country, find the shortest route from New York to San Francisco. More 
precisely, the problem is to find a good algorithm for finding such minimum 
path solutions. An algorithm is considered "good" if the number of operations 
required is bounded by a polynomial function of the number of inputs. It is 
possible to find such an algorithm for this problem. However, a long 
outstanding problem is to decide whether such an algorithm even exists for the 
slightly different problem of the traveling salesman. This is the problem of 
finding the shortest path starting at a particular city and returning to this city, 
having visited every city, at least once. Questions like this have led to a new 
branch of mathematics called computational complexity. Here one asks for 
example: for which mathematical problems is it possible to find a good 
algorithm? Recently Karp and others [9] have shown that for a fairly large 
class of problems either all problems in the class have a polynomial algorithm 
or none do. This class includes such problems as determining if a graph has a 
Hamiltonian path-a path which goes through all points exactly once. Another 
important problem in this area is the following. The simplex algorithm can 
require exponential time and hence is not good in the above sense. However, 
it is good in practice since it seems never to require a number of operations 
more than three times the number of equations in the problem. The question 
of the existence of algorithms which are good in some average or "typical" 
sense is apparently an even harder problem. 

A second area of new research that has come out of economic theory is the 
work of H. Scarf [15] who has found an effective algorithm for determining a 
fixed point of a continuous transformation of a simplex into itself. Economists 
have made major progress in recent years in putting Walras' theory of the 
existence of an equilibrium price vector in a competitive market in a 
reasonable mathematical form. It is assumed that for any set of prices there 
are certain demands made on the set of all goods. Prices are changed as a 
function of the excess demands. This results in a continuous transformation of 
prices and an equilibrium price vector is a fixed point of this transformation. 
In any reasonable application there will be many commodities and so, as in 
the case of linear programming, without a way to find the fixed point it is hard 
to determine the validity of these equilibrium theories. The Scarf algorithm 
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provides a major new tool for this theory comparable to that provided by the 
simplex algorithm for production theory. Scarf's algorithm bears some resem­
blance to the simplex algorithm. The proof is based on some very elegant 
combinatorial topology. The basic idea of the algorithm is the following. Let 
S be the simplex of nonnegative vectors in Rn with component sum 1. Let T 
be a continuous map of S into itself. Choose a set X of points on the simplex. 
Label the points of X as follows: if x = (xx,x2,..., xn\ label x by i if / is the 
first / such that (Tx)i > xr A set of n points from X is called primitive if there 
is a subsimplex of S which contains only these n points from X one occuring 
on each edge. A primitive set is completely labeled if all the points have 
different labels. If the mesh determined by the points is small and x is any 
point in a completely labeled set, then for any i there is a point x near x such 
that (Tx)i > xi. By continuity and the fact that x and Tx have components 
with the same sum, x must be near Tx. Thus any point in a completely labeled 
set is nearly a fixed point. The Scarf algorithm provides a method for starting 
with a primitive set which is not completely labeled and, by exchanging one 
point at a time, arriving, after a finite number of steps, at a completely labeled 
set. While this gives a new proof of Brouwer's fixed point theorem the real 
interest is in its application to finding approximate fixed points. 

The final topic that we will discuss is that of control theory. A first problem 
in control theory came from Abraham Wald's formulation of statistical 
decision theory [18] in terms of game theory concepts. Faced with an unknown 
distribution the statistician is allowed to sample and make an intelligent 
decision based on the information obtained about the underlying distribution. 
It costs money to sample and wrong final decisions cost money. In the 
evaluation of optimal strategies Wald was led to a problem that is now called 
the optimal stopping problem. He assumed that at any stage of the sampling 
the statistician has certain information which we denote by v. If he stops at 
time n with information v he will suffer a loss of un(v). Assume that the cost 
of another experiment is c. Then the value wn(v) of the statistician's position 
at time n with information v should satisfy the functional equation 

wn(v) = mm(un(v\E(wn+l\v) + c). 

He showed that this was the case, if the number of samples was bounded, 
using backward induction. He then showed that it was true by a limiting 
process for a wide class of situations. The optimal strategy for the statistician 
is to continue sampling until the first time that wn(v) = un(v) and then quit 
and make the best decision that can be made based on the information that 
he has at that time. This optimal stopping problem was put in a more general 
setting and shown to have very pretty connections with martingale theory and 
with potential theory for Markov processes. A discussion of the martingale 
approach may be found in Neveu [13] and the potential theory approach in 
Dynkin and Yushkevich [3]. Viewed as a control problem the statistician has 
at any stage to choose one of two controls, "continue" or "stop". Many 
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natural generalizations of this control problem have been made. Bellman [1] 
gave a formal theory for both stochastic and deterministic control problems 
and made many contributions to the theory. A particularly well-developed 
theory is that of Markov decision processes. Here one assumes that at any 
stage one has to make one of a finite number of decisions. The decision 
determines an immediate reward and the probabilities for moving to a new 
state on the next step. It is desired to find a decision procedure which 
optimizes the total final reward. A theory of Markov decision processes may 
be found in the book of Howard [6] and a very general treatment with 
emphasis on economic problems may be found in the very recent book of 
Dynkin and Yushkevich [4]. The book under review considers only discrete 
time problems. The continuous time control problems is another very rich 
theory initiated by a Russian school led by Pontryagin [14]. An account of the 
continuous time case for both the deterministic and the stochastic case may 
be found in [5]. This theory has been shown to be closely connected with 
classical theory of the calculus of variations showing that good mathematics 
never dies or even fades away. 

Malita and Zidàroiu present a quite condensed version of the mathematics 
of problems which grew out of lirlear programming and game theory. They 
also discuss a number of standard topics from applied probability and 
statistics such as queuing theory and analysis of variance. Probability and 
statistics also played an important role in early development of operations 
research. A group headed by Philip Morse at M.I.T. was formed in 1942 to 
work for the Navy on search techniques related to submarine warfare. An 
interesting account of the work of this group can be found in the book by 
Kimball and Morse [12]. 

The authors do a good job of showing the wealth of mathematical ideas that 
have come from quite modest applied problems. 
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Finite orthogonal series in the design of digital devices, by M. G. Karpovsky, 
John Wiley and Sons, New York, 1976, 251 pp., $35.00 with bibliography 
and subject index. 

The subject of this book is an interesting mathematical approach to the 
design of digital logic, with the intended application of the results to be used 
in the design of digital computers. The central problem of the book concerns 
the methodology for designing networks that realize arbitrary boolean func­
tions. In the most elementary case, the problem is to realize a single boolean 
valued function f(xl9x29... ,xn) of the n boolean variables xl9 x2, . . . , xn. 
The design objective is to obtain minimum cost designs where cost is measured 
in terms of the costs of the primitive functions used to construct the given 
function. More complex problems derived from the basic one include the 
design of networks that realize two or more boolean functions of the same 
arguments, the design of networks that realize sequential functions (functions 
of present and past values of arguments), and the design of networks for 
partially specified functions. In the latter case the design makes use of the 
freedom to complete the function specification arbitrarily, and picks a 
completion that achieves minimal cost. Yet another problem is the design of 
networks that exhibit error-correction properties in that failures of such a 
network result in a network that produces a different function from the desired 
one with low probability. 

Traditional approaches taken by practitioners involve costly searches over 
many possible implementations to find the best one, or they rely on canonical 
realizations that are improved by hand on an ad hoc basis. Karpovsky exposes 
a very different mathematical viewpoint to the minimization process that has 
several interesting properties. His work is partially stimulated by work by 
Ninomiya and by Lechner on harmonic analysis of boolean functions. 


