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ABSTRACT. Let a network have several sources and sinks. For any flow 
ƒ let a' and T* denote the vectors of net flows out of the sources and into the 
sinks, respectively, arranged in order of increasing magnitude. Our algorithm 
computes an ƒ for which both o> and T' are lexicographic maxima. For a net­
work with n nodes this algorithm terminates within 0(n5) operations. 

1. The problem. A network (TV, c) consists of a set of nodes TV = {1, 
. . . , n} (n > 1) and an n x n nonnegative matrix c of capacities, 5 C TV is a 
nonempty set of sources and T C TV (T O S = 0) is the set of sinks. A flow ƒ 
is an n x n matrix such that 0 < fif < ci} (i, ƒ G TV) and SJL j (/^ - JJ,) = 0 for 
ƒ £ SUT. Denote s = 151, f = 171. 

Let ( / [T^] denote the s-tuple [f-tuple] of the numbers S j L j ^ ""/)•/), 
i E S [SyLj (/J7 ""ƒ#), i E T] arranged in order of increasing magnitude, ƒ is 
called optimal if it maximizes both </ and Tf in the lexicographic orders on Rs 

and Rf, respectively. 
Optimal flows reduce to maximum flows (see [5]) when s = t = 1. Ex­

istence of optimal flows is proved in [7]. The goal of this note is to present a 
good algorithm (in the sense of [2] ) for finding an optimal flow. 

2. The algorithm. The algorithm has two phases. In Phase I the network 
is decomposed to two networks, one with a single source and t sinks, and the 
other with s sources and a single sink. In Phase II optimal flows are found in 
these two networks. 

PHASE I. Find a flow ƒ which maximizes S/G(S 2/= i(/# ""//ƒ)• Any o f 

the following algorithms may be utilized: Karzanov [6] terminates within 
0(n3) operations, Dinic [1] and Even and Tarjan [4] 0(n4), and Edmonds and 
Karp [3] 0(n5). During the computation of ƒ a set X, S C X C TV\T, is gener­
ated such that for j E X and ƒ £ X, ftj = cif and f}i = 0. Next, construct the X-
condensed and the (TV\X)-condensed networks (see [7]). 

PHASE II. Find optimal flows in the X-condensed and the (TV\X)-condensed 
networks independently. These two are treated symmetrically and, hence, with­
out loss of generality assume that S = { 1 ). 
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The following terminology is used throughout Phase II. The flow is the 
current flow through the network. An active sink is a sink i such that it is pos­
sible to increase the net flow into i without decreasing the net flows into other 
sinks. The graph is a directed graph whose set of nodes is N and (/, /) is an arc 
if and only if f^ - fjt < c^. The manual is the subgraph consisting of all nodes 
and arcs of the graph that lie on a shortest chain from the source to some active 
sink. The tree is a directed subtree of the manual satisfying: a. The source is 
the root of the tree. b. Every active sink is a node of the tree. c. Every tip of 
the tree is an active sink. 

A rough description of Phase II follows. We start with the zero flow. The 
manual is constructed and a tree is chosen. Next, using tree-arcs only, we in­
crease the net flows into active sinks equally until one of the tree-arcs leaves the 
graph. Then, if all the active sinks remain active, another tree is chosen and an­
other maximum equal increase is employed as before; otherwise, the new manual 
is determined and again a tree is chosen. The algorithm terminates when the 
new manual is empty, or equivalently, when no sink is active. Specifically, 
Phase II is processed as follows. 

Step 1. Construction of the manual. The set M of the nodes of the man­
ual is partitioned into layers M0, Mt, . . . ,Mr. These are constructed as follows. 
First, set M0 = S. Then, set Mv (y > 0) to consist of all graph-nodes adjacent 
to nodes in Mv„x but do not belong to U£L*0 MX. Let Mr be the first layer 
such that either U\=o ^\ c o n t a i n s ^ the active sinks, or Afr+1 = 0. In the 
latter case every sink i $ U\=o ^x becomes inactive. If every sink is inactive, 
terminate. Next, every i E Mr which is not an active sink is deleted from Mr 

and, recursively, every i G Mp„t which is neither an active sink nor adjacent to 
a node in Mv, is deleted from Mv„t. During the computation we maintain, for 
each i E M„, lists of the nodes in Mv„x and Mv+1 which are adjacent to I 

Step 2. Construction of a tree. Every i E Mr is a node of the tree. Sup­
pose that the part of the tree that connects the layers Mv9 . • . , Mr (v < r) has 
been specified. For each / E Af which either belongs to the tree or is an active 
sink, let ƒ be the first node in Mv„x adjacent to l Then (/, i) also belongs to the 
tree. During the construction keep track of the numbers i/ of active sinks ƒ 
such that i lies on the unique chain of the tree that leads from the source to /. 

Step 3. Flow change. Let c be the minimum, taken over tree-arcs, of the 
numbers (c^ - fif + /^)/t/. For each tree-arc (/, ;), if « / < f^ set fit = fJ( -
eu;; otherwise, set //;. = fy - f}i 4- et/ and ffi = 0. 

Step 4. Manual change. During this step we maintain a list L of manual-
arcs which are successively deleted. Initially, L consists of those arcs of the last 
tree such that j)j -fy = Cy. Let (i, /) be the first in L which has not been de­
leted yet. If there is no k & i such that (k, ƒ) is a manual-arc then add all man­
ual-arcs of the form (j, k) to the end of X. Similarly, all manual-arcs of the 
form (k, i) are added to the end of L if there is no manual-arc (/, k) with k ¥* j . 
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Then (/, ƒ) is deleted and the next in L is treated. Once L = 0 , if none of the 
active sinks has been deleted go to Step 2; otherwise, go to Step 1. 

3. Discussion. Let v1 be the index of that layer of the manual to which 
the active sink i belongs currently (0 < vl < n). Throughout the computation, 
vl does not decrease and at least one of the vl - s increases when a new manual 
is constructed. Thus, no more than n2 manuals are constructed. A tree is con­
structed within 0(n) operations. A flow change results in a deletion of at least 
one manual-arc. A deletion of a manual-arc requires no more than 0(n) opera­
tions for updating L. Thus, since a manual has n2 arcs at most, it will be de­
leted completely within 0(n3) operations. This implies that the algorithm termi­
nates within 0(n5) operations. Optimality of the final flow follows from the 
standard theorem on max-flow and augmenting paths (see [5] ). 

REFERENCES 

1. E. A. Dinic, Algorithm for solution of a problem of maximum flow in a network 
with power estimation, Dokl. Akad. Nauk SSSR 194 (1970), 754-757 = Soviet Math. Dokt. 
11 (1970), 1277-1280. MR 44 #5178. 

2. J. Edmonds, Paths, trees, and flowers, Canad. J. Math. 17 (1965), 449 -467 . MR 
31 #2165. 

3. J. Edmonds and R. M. Karp, Theoretical improvements in algorithm efficiency 
for network flow problems, J. Assoc. Comput. Mach. 19 (1972), 248-264 . 

4. S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SI AM 1, 
Comput. 4 (1975), 507-518 . 

5. L. R. Ford, Jr. and D. R. Fulkerson, Flows in networks, Princeton Univ. Press, 
Princeton, N. J., 1962. MR 28 #2917. 

6. A. V. Karzanov, Determining the maximal flow in a network by the method of 
preflows, Dokl. Akad. Nauk SSSR 215 (1974), 4 9 - 5 2 = Soviet Math. Dokl. 15 (1974), 
4 3 4 - 4 3 7 . 

7. N. Megiddo, Optimal flows in networks with multiple sources and sinks, Math. 
Programming 7 (1974), 9 7 - 1 0 7 . MR 50 #15878. 

DEPARTMENT OF STATISTICS, TEL AVIV UNIVERSITY, TEL AVIV, ISRAEL 


