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We are concerned with the problem 

m i n Jo Jo K(*> rt~é "/(*>/0) dxdy, 
u^ | /=i | 

where ui9 vtGLl[0, l]9n fixed. The solution of the L2 version of this problem 
is a classical result of E. Schmidt [3] (see also Courant and Hubert [1, p. 161]). 

For the class of strictly totally positive kernels K9 we are able to show 
that a best choice of functions ux, . . . , un9 vx, . . . , vn is determined by cer­
tain sections K(x, %x)9 . . . , K(x, £„), K(TV y), . . . , K(rn, y) of the kernel K. 

DEFINITION. A real-valued kernel K(x, y), defined and continuous on 
[0, 1] x [0, 1], is called strictly totally positive (S.T.P.) if all its Fredholm 
minors 

l » * • * » sm \ 
UdetWK(sif tt)l^x 

1' * • • > tm) 

are positive for 0 <sx < * • • < sm < 1, 0 < tx < • • • < tm < 1, and all m > L 
For every *» (* , , . . . , sm), 0 = s0 < sx < • "<sm <sm + x = l,de-

fine the step function 

hs(x) * O"1)'* si <* < * / + P ' = °> 1. • • • f m-

Furthermore, let 11/11 x = / J \f{x)\dxt and 

(KhsXx) = £ K{x, y)hs(y)dy, (KThs)(y) = J j K(xf y)hs(x)dx. 

The following theorem plays a central role in this work. 

THEOREM 1. Let K be a S.T.P. kernel Given n > 1, there exists 
£ = (Ép . . . , £„), 0 < £j < • • • < $n < 1, swcft that for any t~(tX9.. .,tn), 
0<tx<--<tn<l9 
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Moreover, Kh^ has exactly n distinct sign changes at r = {rx, . . . , r„), 0 < rx 

< * • • < rn < 1, and 
(1) sgn Kh^ = hT, 
(2) sgn KThr = hv 

(When if Aç or KThr are zero in (1) or (2), we assign a value to the sgn so that 
the equations are valid.) 

COROLLARY. Let r = (rl,. . . , rn) be the r-point defined in Theorem 1. 
Then, 

\\Kh^\\x = lKThrll<\KThMil 

for every s-point, s = (s{, . . , , sn)9 0 < s j < • • • < J„ < 1. 

We are now prepared to state the main theorem. To this end observe that 
the function 

(3) 

(where £ and T are obtained from Theorem 1) may be expressed as 

where 

K(x,y)- £ clfK(x, Wir,, y), 

V • • • , r ;_,, T / + 1 , . . . , r„\ / /Tlt...,Tn\ 

Therefore 

(4) 

furosfflta{fo 
"i^i 

£(*> J0 - Z «AH(J) 
i=? 

ixdfy 

< J 0
1 J 0

1 1 ^ , ^ ) 1 ^ ^ . 

Actually, we have 

THEOREM 2. 

r l f l ! i f ( x , 7 ) -

wfcrc u?(x) = K(x, *,), out/ u,°(y) = Z / ^ ctjK(r,9y). 

« JJ£'*<*• ̂  " s ^(^o)!^^, 
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PROOF. By the Hobby-Rice Theorem [2], we know that given any n 
functions vx,. . . , vn G L1 [0, 1], there exists a t = (tx,. . . , tk\ 0 <k <n9 

such that $ v((y)ht(y)dy = 05 / = 1,. . . , n. Let h(x, y) = ht(y)sgn(Kht)(x). 
Then, for any ux,. . . , un E L1 [0, 1], 

JT 
Jo Jo 

dxdy. 

Since Wj,. . . , un9 vx,. . . , vn were arbitrarily chosen in Ll [0, 1], we have 
\\KhK\\l <EXX{K). Also, in view of (1), (2), and (3), 

Jo Jo ' ^ y)ldxdy = J J Jo E(>x> y)Kb)h&)dxdy 

= JJ l(^X*)ldbc= (l^(ll9 

which, together with (4), finishes the proof. 
Full details, extensions, and the relationship of this problem to «-widths 

will appear elsewhere. 
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