ON A CLASS OF FOLIATIONS AND THE EVALUATION OF THEIR CHARACTERISTIC CLASSES

BY DANIEL BAKER

Communicated by J. A. Wolf, January 3, 1977

This note discusses a class of foliations and a technique for evaluating the generalized Godbillon-Vey invariants on these foliations. The information obtained yields information about the cohomology of the Haefliger spaces $H^*(B\Gamma_n^r, \mathbf{R})$ and $H^*(F\Gamma_n^r, \mathbf{R}), r \ge 2$. The class of foliations contains examples which have been studied by others as well. In particular, the foliations examined in [KT2] and in [Y] are of this type.

Let $G^{\mathbf{C}}$ be a complex semisimple Lie group. There is a class of subgroups of $G^{\mathbf{C}}$ called parabolic subgroups, and the conjugacy classes of these subgroups are in 1-1 correspondence with subsets of the Dynkin diagram for $G^{\mathbf{C}}$, the Lie algebra of $G^{\mathbf{C}}$ (see [S] for a more detailed exposition). If $P^{\mathbf{C}}$ is a parabolic subgroup then the Lie algebra $P^{\mathbf{C}}$ of $P^{\mathbf{C}}$ can be written in the form $P^{\mathbf{C}} = G_1^{\mathbf{C}} \oplus T_1^{\mathbf{C}} \oplus N^{\mathbf{C}}$. Here $G_1^{\mathbf{C}}$ is semisimple and has a Dynkin diagram obtained by removing the subset of vertices mentioned above from the Dynkin diagram for $G^{\mathbf{C}}$. $T_1^{\mathbf{C}}$ is an abelian subalgebra of $G^{\mathbf{C}}$, $G_1^{\mathbf{C}} \oplus T_1^{\mathbf{C}}$ contains a Cartan subalgebra of $G^{\mathbf{C}}$, and $N^{\mathbf{C}}$ is a nilpotent subalgebra. In fact, $G^{\mathbf{C}} = G_1^{\mathbf{C}} \oplus T_1^{\mathbf{C}} \oplus N^{\mathbf{C}} \oplus N^{\mathbf{C}}$ where $N^{\mathbf{C}}$ is a nilpotent subalgebra isomorphic to $N^{\mathbf{C}}$, and $[G_1^{\mathbf{C}}, T_1^{\mathbf{C}}] = 0$, $[G_1^{\mathbf{C}} \oplus T_1^{\mathbf{C}}, N^{\mathbf{C}}] \subset N^{\mathbf{C}}$, $[G_1^{\mathbf{C}} \oplus T_1^{\mathbf{C}}, N^{\mathbf{C}}] \subset N^{\mathbf{C}}$.

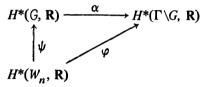
Now let G be a real form of $G^{\mathbb{C}}$ such that $G = G_1 \oplus T_1 \oplus N \oplus N^-$ where $G_1 = G_1^{\mathbb{C}} \cap G$, etc. Then G has a subalgebra $P = G_1 \oplus T_1 \oplus N$. If G has Lie algebra G, then there is a discrete subgroup, $\Gamma \subset G$, with $\Gamma \backslash G$ a compact manifold (see [R]), and the left translates of P determine a foliation on $\Gamma \backslash G$. This is the foliation we study.

Let $W_n = P_n[c_1, \ldots, c_n] \otimes \Lambda^*(u_1, \ldots, u_n)$ be the cochain complex with deg $c_i = 2i$, deg $u_i = 2i - 1$, $dc_i = 0$, $du_i = c_i$. $P_n[c_1, \ldots, c_n]$ is the polynomial algebra in c_1, \ldots, c_n , truncated above deg 2n where n is the codimension of the above foliation. There is a map $\varphi \colon H^*(W_n, \mathbb{R}) \to H^*(\Gamma \backslash G, \mathbb{R})$ giving characteristic classes for the foliation (see [BT] for the construction of φ). We analyse this map φ .

First note that, since a left invariant form on G induces a form in $\Lambda^*(\Gamma \backslash G, \mathbf{R})$, there is a map $\alpha: H^*(G, \mathbf{R}) \longrightarrow H^*(\Gamma \backslash G, \mathbf{R})$ where $H^*(G, \mathbf{R})$ is the cohomology of the Lie algebra G.

AMS (MOS) subject classifications (1970). Primary 57D20, 57D30.

PROPOSITION (SEE ALSO LEMMA 4.88 [KT1]). There is a commutative diagram where the map α is injective.



We analyze the map ψ . Let \overline{G} be a compact form of G. The key observation is that $H^*(G, \mathbb{C}) \approx H^*(\overline{G}, \mathbb{C})$. Let \overline{G}_1 , \overline{T}_1 be the subgroups of \overline{G} corresponding to G_1^C , T_1^C . We use the results of [BO] to describe $H^*(\overline{G}, \mathbb{C})$ in terms of the spectral sequence for the bundle $\overline{G}_1 \times \overline{T}_1 \to \overline{G} \to \overline{G}/\overline{G}_1 \times \overline{T}_1$. Specifically, let $x_1, \ldots, x_n \in H^*(\overline{G}_1 \times \overline{T}_1, \mathbb{C})$ be the primitive elements transgressing to $g_1, \ldots, g_n \in H^*(B_{\overline{G}_1 \times \overline{T}_1}, \mathbb{C}) = S$. Let $\rho: H^*(B_{\overline{G}}, \mathbb{C}) \to S$ represent the map on characteristic classes induced by inclusion $\overline{G}_1 \times \overline{T}_1 \subset \overline{G}$. Let $I \subset S$ be the ideal generated by the image of ρ . Let $A = S/I \otimes H^*(\overline{G}_1 \times \overline{T}_1, \mathbb{C})$ be the complex with $d(1 \otimes x_i) = g_i \otimes 1$, $d(g_i \otimes 1) = 0$. Then $H^*(A, \mathbb{C}) \approx H^*(\overline{G}, \mathbb{C}) \approx H^*(G, \mathbb{C})$.

There is a homomorphism $\sigma\colon \overline{G}_1\times \overline{T}_1\longrightarrow \mathrm{Gl}(n,\,\mathbb{C})$ given by the adjoint representation of $\overline{G}_1\times \overline{T}_1$ on the Lie algebra $\mathbb{N}^{-\mathbb{C}}$. σ induces a map $\overline{\sigma}\colon H^*(B_{\mathrm{Gl}(n,\mathbb{C})},\mathbb{C})\longrightarrow S$. For each Chern class c_k we can choose an element ξ_k in the acyclic complex $S\otimes H^*(\overline{G}_1\times \overline{T}_1,\mathbb{C}), d(g_i\otimes 1)=0, d(1\otimes x_i)=g_i\otimes 1$, with $d\xi_k=\overline{\sigma}(c_k)\otimes 1$. ξ_k determines an element $\overline{\xi}_k$ in A. Then we have a map $\nu\colon W_n\longrightarrow A, \nu(c_k)=(\sqrt{-1})^k\overline{\sigma}(c_k)\otimes 1, \nu(u_k)=(\sqrt{-1})^k\overline{\xi}_k$.

THEOREM. There is a commutative diagram where γ is induced by the coefficient map $R \subset C$, and $\overline{\alpha}$ is injective

$$H^*(A, \mathbb{C}) \xrightarrow{\overline{\alpha}} H^*(\Gamma \backslash G, \mathbb{C})$$

$$\uparrow_{\nu^*} \qquad \qquad \uparrow_{\gamma}$$

$$H^*(W_n, \mathbb{R}) \xrightarrow{\omega} H^*(\Gamma \backslash G, \mathbb{R})$$

The power of this theorem stems from the fact that A is a finitely generated complex whose cohomology is an exterior algebra on the primitive elements of \overline{G} . Thus, given a cocycle in A, it is feasible to try to determine the class it lies in.

EXAMPLES. Let
$$G = sl(n + k, R)$$
, $k < n$ or $k = n = 1$,
$$G_1 \oplus T_1 \approx sl(n, R) \oplus sl(k, R) \oplus R$$

$$= \{ ||a_{ij}|| \in sl(n + k, R) | a_{ij} = 0 \text{ for } i > k, j \le k \text{ or } i \le k, j > k \},$$

$$P = \{ ||a_{ij}|| \in sl(n + k, R) | a_{ij} = 0 \text{ for } i > k, j \le k \}.$$

Then in $H^*(\Gamma\backslash SL(n+k, R), R)$ (and thus in $H^*(F\Gamma_{nk}^r, R)$) the classes $c_1^{nk}u_1 \cdots u_k u_{i_1} \cdots u_{i_l}$ for all $k < i_1 < \cdots < i_k \le n$ are nonzero and linearly

independent (this includes the class $c_1^{nk}u_1 \cdots u_k$).

These results have been obtained by Kamber and Tondeur for the case when k = 1 and can be found in [KT1] and [KT2].

It is possible to obtain information about the independence of classes when c_1^{nk} is replaced by another monomial in c_1, \ldots, c_{nk} by comparing examples for different values of n and k. For instance, by comparing the example k=2, n=q with the example k=1, n=2q one obtains: For $q \neq 2$, in $H^*(F\Gamma_{2q}^r, \mathbb{R})$ the set of classes

$$\{c_1^{2q}u_1u_2u_{i_1}\cdots u_{i_l}, c_2c_1^{2q-2}u_1u_2u_{i_1}\cdots u_{i_l}| 2 < i_1 < \cdots < i_l \le q\}$$

are linearly independent.

By examining foliations on $\Gamma \backslash G/K$, where K is a compact subgroup of P, analogous information for classes in $H^*(B\Gamma_n^r, \mathbb{R})$ is obtained. For example, in $H^*(B\Gamma_{2a}^r, \mathbb{R})$ the set of classes

$$\begin{aligned} \{c_1^{2q} u_1 u_{i_1} \cdots u_{i_l}, \ c_2 c_1^{2q-2} u_1 u_{i_1} \cdots u_{i_l} | \\ 1 < i_1 < \cdots < i_l \le q \text{ and the } i_j \text{ are odd} \end{aligned}$$

are linearly independent.

For these constructions, other examples, and a more detailed exposition, see [B].

REFERENCES

- [B] D. Baker, On a class of foliations and the evaluation of their characteristic classes, Ph. D. Thesis, SUNY, Stony Brook, 1976.
- [BO] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207. MR 14, 490.
- [BT] R. Bott, Lectures on characteristic classes and foliations, (Notes by L. Conlon, Mexico, 1971), Lecture Notes in Math., vol. 279, Springer-Verlag, Berlin and New York, 1972. MR 50 #14777.
- [KT1] F. Kamber and Ph. Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Math., vol. 493, Springer-Verlag, Berlin and New York, 1975.
- [KT2] ———, On the linear independence of certain cohomology classes of BT (to appear).
- [R] M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse, Band 68, Springer-Verlag, Berlin and New York, 1972.
- [S] I. Satake, Classification theory of semi-simple algebraic groups, Marcel Dekker, New York, 1971. MR 47 #5135.
- [Y] K. Yamato, Examples of foliations with non trivial characteristic classes, Osaka J. Math. 12 (1975), 401-417.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH CAROLINA, CHAPEL HILL, NORTH CAROLINA 27514