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Abstract. A new description of cobordism is given and, by analogy, co­
bordism theories are defined for an arbitrary ring. 

1. Let A be a ring with a unit. A cohomology theory, MA> might reason­
ably be called "the algebraic cobordism of A" if 

(i) geometry over A gave rise to elements in n*(MA), and 
(ii) the existence of Chern classes for A induced a transformation of co­

homology theories from MA to the algebraic ^-theory of A. 
Below I sketch the construction of theories which often satisfy (i) and (ii). 

Details will appear in [2], [3]. 
Let X be a homotopy associative and commutative //-space. Let T C ii*(X) 

be a finite subset of homogeneous elements. To this data is associated a periodic, 
commutative ring spectrum X(T). X(T)* is the associated cohomology theory. 
For example, when X = BU and T consists of the generator B G ir2(BU), then 
X(T)2k = 22BUmd e2k: l>2X(T)2k - » X(T)2k+2 is equal to 

X2ÇL2BU) ~> X2(S2 x BU) — — ^ X2(BU). 

Here h is a Hopf construction and "id" is the identity map of BU. 
When X = BGLA+ for a ring A and T C <nl{BGLA+), X{T)* is called the 

algebraic cobordism of A associated with T. The terminology is motivated by 
(a)—(c) of the following result: 

THEOREM 1.1. Suppose dim Y < °°; then: 
(a) BU(T)°(Y) ~MU2*(Y) if T= (generator of ir2(BU)); 
(b) BSp(T)°(Y) ~ MSp4*(Y) ifT~ (generator ofir^BSp)); 
(c) BO(T)°(Y) ~ MO*(Y) ifT~ (generator of nx(BO)); 
(d) if Fis a finite field and T is a subset ofKJJF) then BGLF+ (T)°(Y) ** 

= 0; 
(e) if T = (generator ofKx(Z)) then BGLZ+(T)°(Y) in general is a non-

trivial group in which each element is of order 2. 
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Theorem 1.1 relates A -̂theory and cobordism very satisfactorily. For ex­
ample, Adams operations in KU* induce Adams operations in MU* while Adams 
idempotents in KU* induce Adams idempotents in MU*. 

The starting point for Theorem 1.1 is the following: 

THEOREM 1.2. If 1 < n < «> there exist stable equivalences 
(i) BU(n) = V?=*M£/(*), 
(ii) BSp(n)= \Jn^kMSp(k)9 

(iii) BO(2n)= Jn
t::zkBO(2k)/BO(2k - 2) and 

(iv) BSO(2n + 1) = \Jn
i::zkBSO(2k + \)/BSO{2k - 1) wften focatoecf 

tfway /row 2. 

2.1. SKETCH OF PROOF OF THEOREM 1.2. The Becker-Gottlieb transfer is 
used to embed each classifying space, as a filtered space, into QW = XMIQ^IPW 

for suitable W. For example BU is embedded in QBU(\). The decompositions 
then follow from the decomposition theorem of [1]. 

2.2. SKETCH OF THEOREM 1.1. Consider the unitary example. Then 

BU(T)°(Y) = Hm {22N Y9 BU} 
N 

where { , } means homotopy classes of 5-maps. Hence, by Theorem 1.2, if 
dim Y<4t 

(2.3) BU(T)°(Y) ~ lim © {S4Mr, MU(k)} © U MU2l(Y). 
*Jj~> t+M<k t~M<l 

A careful study of the S-equivalences of Theorem 1.2 and some obstruction 
theory shows that only the cobordism part of (2.3) remains in the limit. 
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