DISCRETE SPECTRUM OF THE WEIL REPRESENTATION

BY S. RALLIS AND G. SCHIFFMANN

Communicated by J. A. Wolf, September 10, 1976

1. Weil representation. Let Q be a nondegenerate quadratic form on \mathbb{R}^k . Let O(Q) be the orthogonal group of Q. One owes to A. Weil [4] the construction of a certain unitary representation π_Q of the group $\widetilde{Sl}_2 \times O(Q)$ in $L^2(\mathbb{R}^k)$, where \widetilde{Sl}_2 is a two fold covering of $Sl_2(\mathbb{R})$, i.e. given by pairs (g, ϵ) with $g \in Sl_2(\mathbb{R})$ and $\epsilon = \pm 1$ satisfying the group law $(g, \epsilon)(g', \epsilon') = (gg', V(g, g'), \epsilon\epsilon')$, where V is the Kubota cocycle on $Sl_2(\mathbb{R})$ (with values in \mathbb{Z}_2). Let $w_0 \in \widetilde{Sl}_2$ be the element $(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, -1)$. Then π_Q is given by

(i)
$$\pi_{\mathcal{Q}}(w_0)\varphi(X) = \delta_{\mathcal{Q}}\hat{\varphi}(-M_{\mathcal{Q}}(X)), \varphi \in L^2(\mathbb{R}^k),$$

where $M_Q \in \operatorname{Aut}(\mathbb{R}^k)$ so that $[X, M_Q(Y)] = Q(X, Y)$ for all $X, Y \in \mathbb{R}^k$ (with [,] the usual dot product on \mathbb{R}^k) and $\delta_Q = |\det Q|^{-1/2} u_Q$ with u_Q a certain eighth root of unity determined explicitly in [2]. Moreover, $\hat{}$ denotes the Fourier transform on $L^2(\mathbb{R}^k)$. Also we have

(ii)
$$\pi_{\mathcal{Q}}\left(\begin{bmatrix} \alpha & \beta \\ 0 & \alpha^{-1} \end{bmatrix}, 1\right)\varphi(X) = |\alpha|^{k/2} e^{\sqrt{-1}\pi\beta\alpha \mathcal{Q}(X,X)}\varphi(\alpha X), \text{ with } \alpha > 0$$

and

(iii)
$$\pi_Q(g)\varphi(X) = \varphi(g^{-1}X) \text{ for } g \in O(Q).$$

Then (i), (ii), and (iii) determine π_Q explicitly. The main problem is to give a spectral decomposition of π_Q .

2. Discrete spectrum of π_Q . Let \widetilde{K} be the maximal compact subgroup of $\widetilde{Sl_2}$ given by

$$\left\{ \left(\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}, \epsilon \right) \mid -\pi \leq \theta < \pi, \epsilon = \pm 1 \right\}.$$

Then every unitary character of K is given by

$$k(\theta, \epsilon) \rightsquigarrow (\operatorname{sgn} \epsilon)^{2m} e^{\sqrt{-1} m \theta} \quad \text{with } m \in \frac{1}{2}\mathbb{Z}.$$

We let

$$A = \left\{ a(r) = \left(\begin{bmatrix} r & 0 \\ 0 & r^{-1} \end{bmatrix}, 1 \right) | r > 0 \right\}$$

AMS (MOS) subject classifications (1970). Primary 22E45; Secondary 43A80.

Copyright © 1977, American Mathematical Society

and

$$N = \left\{ n(x) = \left(\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix}, 1 \right) | x \in \mathbf{R} \right\}.$$

Let a, n, and f be the infinitesimal generators of A, N, and K, respectively. Then

$$\omega_{\mathrm{S1}_2} = -\mathfrak{k}^2 + \mathfrak{a}^2 + (\mathfrak{n} + \mathrm{Ad}(w_0)\mathfrak{n})^2$$

is the Casimir element of $\widetilde{Sl_2}$. We let

$$E_{+} = \mathfrak{k} + \sqrt{-1} (\mathfrak{n} + \mathrm{Ad}(w_{0})\mathfrak{n}) \text{ and } E_{-} = k - \sqrt{-1} (\mathfrak{n} + \mathrm{Ad}(w_{0})\mathfrak{n}).$$

We assume that Q has inertia type (a, b) where $a \ge b \ge 1$ and $a + b = k \ge 3$. Then we choose a splitting of Q on $\mathbb{R}^k = \mathbb{R}^a \oplus \mathbb{R}^b$ so that $X = X_+ + X_-$ with $X_+ \in \mathbb{R}^a$, $X_- \in \mathbb{R}^b$ and $Q(X, X) = ||X_+||^2 - ||X_-||^2$ (|| || = usual length of vector in \mathbb{R}^t).

We consider $\mathbf{F}_Q(\lambda) = \{\varphi \in \mathbf{F}_Q | \omega_{\mathrm{Sl}_2} \cdot \varphi = \lambda \varphi\}$ where \mathbf{F}_Q is the space of C^{∞} vectors in $L^2(\mathbf{R}^k)$ of π_Q . Let $\Omega_+ = \{X | Q(X, X) > 0\}$ and $\Omega_- = \{X | Q(X, X) < 0\}$.

THEOREM 1. The spaces $\mathbf{F}_Q^+(\lambda) = \{\varphi \in \mathbf{F}_Q(\lambda) | \varphi|_{\Omega_-} \equiv 0\}$ and $\mathbf{F}_Q^-(\lambda) = \{\varphi \in \mathbf{F}_Q(\lambda) | \varphi|_{\Omega_+} \equiv 0\}$ are $\widetilde{\mathbf{Sl}}_2 \times O(Q)$ stable subspaces. Moreover, $\mathbf{F}_Q^+(\lambda)$ and $\mathbf{F}_Q^-(\lambda)$ (if nonzero) determine topologically irreducible representations of $\widetilde{\mathbf{Sl}}_2 \times O(Q)$ which are inequivalent. Also $\mathbf{F}_Q(\lambda)$ is the direct sum of $\mathbf{F}_Q^+(\lambda)$ and $\mathbf{F}_Q^-(\lambda)$.

We let

$$L^{2}(\text{Whit}) = \left\{ f \colon \widetilde{\operatorname{Sl}}_{2} \longrightarrow \mathbb{C} | f(gn(x)) = f(g)e^{2\pi\sqrt{-1}x} \right\}$$

for all $g \in \widetilde{\operatorname{Sl}}_{2}, x \in \mathbb{R}$ and $\int_{\widetilde{\operatorname{Sl}}_{2}/N} |f(g)|^{2} d\mu(g) < \infty \right\},$

where $d\mu$ is an $\widetilde{Sl_2}$ invariant measure on $\widetilde{Sl_2}/N$. We consider the subspace $L^2(Whit)_{\lambda} = \{\psi \in L^2(Whit)_{\infty} | \omega_{Sl_2} * \psi = \lambda \psi\}$. (()_w denotes C^{∞} vectors of representation.)

THEOREM 2. The discrete spectrum of $L^2(Whit)_{\infty}$ is the direct sum $\bigoplus_{s \in \widetilde{A}} L^2(Whit)_{s^2 = 2^s}$, where $\widetilde{A} = \{\frac{1}{2}m > 0 \mid m \in \mathbb{Z}\}$. Moreover, each $L^2(Whit)_{s^2 = 2^s}$ is \overline{Sl}_2 irreducible and corresponds to a square integrable representation of \overline{Sl}_2 .

("Discrete spectrum" means the sum of all those irreducible representations of \widetilde{Sl}_2 which occur discretely in L^2 (Whit).)

268

THEOREM 3. The space $\mathbf{F}_Q^+(\lambda) \neq 0$ if and only if $\lambda = s^2 - 2s$ with $s \in \widetilde{A} - \{\frac{1}{2}\}$ and $s \equiv \frac{1}{2}k \mod 1$. The representation of $\widetilde{SI}_2 \times O(Q)$ in $\mathbf{F}_Q^+(s^2 - 2s)$ is equivalent to the tensor product of $L^2(\text{Whit})_{s^2-2s} \otimes A_s^+$, where $A_s^+ = \{\varphi \in \mathbf{F}_Q \mid \mathfrak{k} \cdot \varphi = \sqrt{-1} \text{ s}\varphi \text{ and } E_+\varphi = 0\}$. Moreover, A_s^+ is an irreducible O(Q) module.

We note that for the case k = 3 an analogous tensor product as in Theorem 3 is discussed in [1].

REMARK 1. If b = 1, then $\mathbf{F}_{Q}^{-}(\lambda) = 0$ for all λ . And if b > 1, then as in Theorem 2, $\mathbf{F}_{Q}^{-}(\lambda) \neq 0$ if and only if $\lambda = s^{2} - 2s$ with $s \in \widetilde{A} - \{\frac{1}{2}\}$ and $s \equiv \frac{1}{2}k \mod 1$. Similarly $F_{Q}^{-}(s^{2} - 2s)$ is $\widetilde{SI}_{2} \times O(Q)$ equivalent to the tensor product $L^{2}(\text{Whit})_{s^{2}-2s}^{*} \otimes A_{-s}^{-}$, with $L^{2}(\text{Whit})_{s^{2}-2s}^{*}$ the representation of \widetilde{SI}_{2} in $L^{2}(\text{Whit})_{s^{2}-2s}^{*}$ after conjugation by the unique outer automorphism of \widetilde{SI}_{2} , and $A_{-s}^{-} = \{\varphi \in \mathbf{F}_{Q} \mid | \varphi = -\sqrt{-1} s\varphi, E_{-}(\varphi) = 0 \}.$

Then the space A_s^+ is characterized in several ways.

THEOREM 4. A_s^+ is O(Q) equivalent to the representation of O(Q) in the spaces $\{\beta \in L^2(\Gamma_1)_{\infty} | W_{\xi}^+ * \beta = (s^2 - 2s + k - \frac{1}{4}k^2)\beta\}$ where Γ_1 is the hyperboloid $\{X \in \mathbb{R}^k | Q(X, X) = 1\}$ and W_{ξ}^+ the Laplace Beltrami operator on Γ_1 determined by the separation of variables of

$$\partial(Q) = \frac{\partial^2}{\partial t^2} + \frac{k-1}{t} \frac{\partial}{\partial t} - \frac{1}{t^2} W_{\xi}^+$$

(with $X = t \cdot \xi, \xi \in \Gamma_1$).

REMARK 2. We note here results on the discrete spectrum of the hyperboloid similar to Theorem 4 are obtained in [3] in a different framework.

We let K be the maximal compact subgroup of O(Q). Then K is isomorphic to the product $O(a) \times O(b)$, where O(t) is the standard orthogonal group in t variables. We consider the family of irreducible representations $[s_1]_a \otimes [s_2]_b$ of K, where $[x]_t$ denotes the representation of O(t) on spherical harmonics of degree t. Then let $E_Q(s^2 - 2s, m, s_1, s_2)$ be the $\widetilde{K} \times K$ isotypic component in $\mathbf{F}_O^+(s^2 - 2s)$ which transforms according to the character

$$k(\theta, \epsilon) \rightsquigarrow (\operatorname{sgn} \epsilon)^{2m} e^{\sqrt{-1}\theta m}$$

on \widetilde{K} and according to $[s_1]_a \otimes [s_2]_b$ on K.

THEOREM 5. The space of $\widetilde{K} \times K$ finite vectors in $\mathbf{F}_Q^+(s^2 - 2s)$ is the direct sum of the $E_Q(s^2 - 2s, m, s_1, s_2)$, where m = s + 2j, j a nonnegative integer and s_1 and s_2 satisfy the relation $s_1 - s_2 = s - \frac{1}{2}(a - b) + 2j$. Moreover, each space $E_Q(s^2 - 2s, s + 2j, s_1, s_2)$ is spanned by elements of the form (determined on Ω_+)

$$\begin{aligned} \psi_{s,j}(Q(X, X))Q(X, X)^{s-1}e^{-\pi Q(X, X)}||X_{-}||^{s_{2}}||X_{+}||^{-(s+k/2+s_{2}-2)}, \\ {}_{2}F_{1}\left(\frac{1}{2}\left(s+s_{1}+s_{2}\right)+\frac{1}{4}k-1, -j, s_{2}+\frac{1}{2}b, \left(\frac{||X_{-}||}{||X_{+}||}\right)^{2}\right) \\ \cdot P_{s_{1}}\left(\frac{X_{+}}{||X_{+}||}\right)P_{s_{2}}\left(\frac{X_{-}}{||X_{-}||}\right), \end{aligned}$$

where ${}_{2}F_{1}$ is the usual hypergeometric function, $P_{s_{1}}$ and $P_{s_{2}}$ are harmonic polynomials of degree s_{1} and degree s_{2} in \mathbb{R}^{a} and \mathbb{R}^{b} , respectively, and $\psi_{s,j}(u)$ is the polynomial $\sum_{\nu=0}^{\nu=j} c_{\nu}u^{j-\nu}$ with

$$c_{\nu} = \frac{(-1)^{\nu}}{2^{\nu}\nu!} \frac{\Gamma(s+j)}{\Gamma(s+j-\nu)} \frac{j!}{(j-\nu)!}$$

As an important consequence of Theorem 5 we deduce growth and continuity properties of $\widetilde{K} \times K$ finite vectors in $\mathbf{F}_O^+(s^2 - 2s)$.

COROLLARY TO THEOREM 5. Every $\widetilde{K} \times K$ finite function φ in $\mathbf{F}_Q^+(s^2 - 2s)$ extends uniquely to a continuous function on $\mathbf{R}^k - \{0\}$ which vanishes identically on $(\Omega_- \cup \Gamma_0) - \{0\}$. Moreover, if $s > \frac{1}{k}$, then φ extends uniquely to a continuous function on \mathbf{R}^k which vanishes identically on $\Omega_- \cup \Gamma_0$. Also such a φ satisfies the Poisson Summation Formula Property, that is, for any lattice $L \subseteq \mathbf{R}^k$ with $Q(L, L) \subseteq \mathbf{Z}$, the integers,

(2.2)
$$F(X) = \sum_{\xi \in L} \varphi(X + \xi),$$

is continuous (with the summation satisfying absolute convergence) on \mathbb{R}^k and $\Sigma_{\sharp^* \in L^*} \hat{\varphi}(\xi^*)$ is absolutely convergent (L* dual lattice to L).

We remark that similar types of statements hold for $\widetilde{K} \times K$ functions $f \in \mathbf{F}_O^-(s^2 - 2s)$.

BIBLIOGRAPHY

1. S. Gelbart, Weil's representation and the spectrum of the metaplectic group, Lecture Notes in Math., no. 530, Springer-Verlag, Berlin and New York, 1976.

2. S. Rallis and G. Schiffmann, Weil representation. I: Intertwining distributions and discrete spectrum, 1975 (preprint).

3. R. Strichartz, Harmonic analysis on hyperboloids, J. Functional Analysis 12 (1973), 341-383. MR 50 #5370.

4. A. Weil, Sur certains groupes d'operateurs unitaires, Acta Math. 111 (1964), 143-211. MR 29 #2324.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, NOTRE DAME, INDIANA 46556

INSTITUT DE RECHERCHE MATHÉMATIQUE AVANCÉE, UNIVERSITÉ LOUIS PASTEUR, 7, RUE RENÉ DESCARTES, 67084-STRASBOURG, CEDEX, FRANCE (Current address of G. Schiffmann)

Current address (Stephen Rallis): Department of Mathematics, Princeton University, Princeton, New Jersey 08540