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1. Weil representation. Let Q be a nondegenerate quadratic form on Rk. 
Let 0 ( 0 be the orthogonal group of Q. One owes to A. Weil [4] the construc
tion of a certain unitary representation TTQ of the group Sl2 x 0 ( 0 in L2(Rk), 
where Sl2 is a two fold covering of S12(R), i.e. given by pairs (g, e) with g E 
S\2(R) and e = ± 1 satisfying the group law (g, e)(g\ e) = (gg\ V(g, g) ee'), 
where V is the Kubota cocycle on S12(R) (with values in Z2). Let w0 E Sl2 be 
the element ([J ~~Q] , -1) . Then TTQ is given by 

(i) nQ(w0MX) = 8Q(p(-MQ(X)l * E L2(Rk\ 

where MQ E Aut(R*) so that [X, MQ(Y)] = Q(Xf Y) for all X, Y E Rk (with 
[ , ] the usual dot product on Rk) and ÔQ = | det Q\~1^2UQ with UQ a certain 
eighth root of unity determined explicitly in [2]. Moreover, " denotes the Four
ier transform on L2(Rk). Also we have 

(ii) «Q ( [J £_ j] , l) tfO) = IOL \k'2 ef+*»*Q<*'*W*), with a > 0 

and 

(iii) ^ f e M l ) = ^ - ^ for g E 0 ( 0 . 

Then (i), (ii), and (iii) determine TTQ explicitly. The main problem is to give a 
spectral decomposition of ÎTQ. 

2. Discrete spectrum of ITQ. Let AT be the maximal compact subgroup of 
Sl2 given by 

T cos 0 sin 01 \ 
, e) | - T T < 0 <TT, e = ± l | 

Lrsin 0 cos 0J / 

Then every unitary character of K is given by 

fc(0, e) w-> (sgn e)2m e^"1 md with m E UZ. 

We let 

A - M G i-]-iy>o 
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and 

H"w-(C 'H H-
Let O, n, and f be the infinitesimal generators of A,N, and K, respectively. Then 

" s i 2 = - ' 2 + *2+(n+Ad(w0)n)2 

is the Casimir element of Sl2. We let 

E+ = f + yf~\(n 4- Ad(w0)rt) and E__=k-yFT(n + Ad(w0)n). 

We assume that Q has inertia type (a, b) where a > b > 1 and a + b = 
k > 3. Then we choose a splitting of Q on R* = Ra © R* so that X = Z + + 
X_ with X+ G Rû, X_ € R* and Ö(X, X) = ||X+||2 - | |XJ|2 (|| || = usual 
length of vector in Rf). 

We consider Fg(X) = {y G Fg |cosl • <p = X<p} where F^ is the space of 
C°° vectors in L2(Rk) of TTÖ. Let fi+ = {X\Q(X, X)>0} and Î2_ = 
{X\Q(X,X)<0}. 

THEOREM 1. The spaces F£(X) = { ^ G Fö(X)Mn_ = 0} and F£(X) = 
{<£ G Fö(X)Mn s 0} «re Sl2 x 0(Q) staWe subspaces. Moreover, Fg(X) flrcd 
F^(X) (if nonzero) determine topologically irreducible representations ofS\2 x 
0(0) M*&* ore inequivalent. Also Fg(X) /s tf*e d/ratf sum of F^(X) am* F^(X). 

We let 

Z,2(Whit) = {ƒ: Si; - • C\f(gn(x)) = f(g)e27I^lx 

for all g G sÇ, x G R and / g ^ M * ) ' 2 d M ^ < J ' 

where <i/x is an Sl2 invariant measure on S12/7V. We consider the subspace 
L2(Whit)x = {\jj GL2(Whit)ce|cosl2 * i// = Xtf/}. (( )„ denotes C°° vectors of 
representation.) 

THEOREM 2. The discrete spectrum of I2(Whit)00 is tfie d/ratf st/m 
®,e2l2(Whit) 2 > w f t m ? ^ = {lÂm > 0 | m G Z}. Moreover, each 
Z,2(Whit) 2 is W2 irreducible and corresponds to a square integrable represen
tation of §C. 

("Discrete spectrum" means the sum of all those irreducible representations 
of Sl2 which occur discretely in Z,2(Whit).) 
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THEOREM 3. The space F£(X) =£ 0 if and only if X = s2 - 2s with s G 
A- {tt} and settle mod 1. The representation ofW2x 0(Q) in F^(s2 - 2s) 
is equivalent to the tensor product o/Z,2(Whit) 2 ® At, where At = 

s —2s 

{<p G FQ I f • if = yf^l Sip and E+y^ 0}. Moreover, A * /s fl« irreducible 0(Q) 
module. 

We note that for the case k = 3 an analogous tensor product as in Theorem 
3 is discussed in [1]. 

REMARK 1. If ft = 1, then F£(X) = 0 for all X. And if b > 1, then as in 
Theorem 2, F£(X) =É 0 if and only if X = s2 - 2s with 5 G 2 - 04} and s = 
Hfc mod 1. Similarly FQ(S2 - 2s) is Sl̂  x 0 ( 0 equivalent to the tensor product 
Z,2(Whit)*2 _ ® AlJ, with Z,2(Whit)*2 _ the representation of SÎ̂  in 
Z,2(Whit) 2 after conjugation by the unique outer automorphism of Sl2, and 
Ai, = {J G Fff I f ? = - v^Ts^, £ » = 0}. 

Then the space A/ is characterized in several ways. 

THEOREM 4. A* is 0(Q) equivalent to the representation of 0(Q) in the 
spaces {fi G L2^)^ \ W^ * |8 = (s2 - 2s + k - M*2)8} where Tx is the hyperbo-
hid {XeRk \ Q(X, X) = 1} and Wt the Laplace Beltrami operator on I \ 

— -—Wt 

REMARK 2. We note here results on the discrete spectrum of the hyper-
boloid similar to Theorem 4 are obtained in [3] in a different framework. 

We let K be the maximal compact subgroup of 0(0). Then K is isomorphic 
to the product 0(a) x 0(b), where 0(t) is the standard orthogonal group in t 
variables. We consider the family of irreducible representations [sx]a ® [s2]ô 

of K, where [x] t denotes the representation of 0(t) on spherical harmonics of 
degree t. Then let EQ(S2 - 2s, m, st, s2) be the K x K isotypic component in 
F^(s2 - 2s) which transforms according to the character 

fc(0,e)v^(sgne)2me>/:riöm 

on K and according to [sl\a ® [s2] b on K. 

THEOREM 5. The space ofKx K finite vectors in F^(s2 - 2s) is the 
direct sum of the EQ(s2 - 2s, m, sv s2), where m = s + 2/, ƒ a nonnegative 
integer and st and s2 sfltfs/y the relation sx - s2 = s - të(# - i ) + 2/. Moreover, 
each space EQ(S2 - 2s, s + 2/, Sj, s2) /s spanned by elements of the form 
(determined on ft+) 

determined by the separation of variables of 

(withX=t-

9(0 = 

• %. % e r,). 

. i l + * - i 
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ips/QQC, X))Q{X, Xf^e-iW'^wx^ \f2 ||JT+ |r<*+*/2+*2-2>, 

w/*ere 2 ^ /s f/*e ustoz/ hypergeometric function, Ps and Ps are harmonie 
polynomials of degree sx and degree s2 in Ra and Rb, respectively, and $Stj(u) 
is the polynomial 1?VZJ0CVUJ~V with 

(-xy Tjs+f) ƒ! 
Cy "" 2*V! r ( s + / - i ; ) (J-W 

As an important consequence of Theorem 5 we deduce growth and 
continuity properties of £ x K finite vectors in Fï(s - 2s). 

COROLLARY TO THEOREM 5. Every K x K finite function \p in FQ(S2 -2S) 

extends uniquely to a continuous function on Rk - {0} which vanishes 
identically on (£2_ U T0) - {0}. Moreover, ifs> )6k, then y extends uniquely 
to a continuous function on Rk which vanishes identically on £2_ U T0. Also 
such a y satisfies the Poisson Summation Formula Property, that is, for any 
lattice L C Rk with Q(L, L) C Z, the integers, 

(2.2) F(JT)= £<p(X + £), 

is continuous (with the summation satisfying absolute convergence) on Rk 

and Sç*eI,*£(£*) is absolutely convergent (L* dual lattice to L). 

We remark that similar types of statements hold for K x K functions 
/GF£(s 2 -2s). 
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