THE HASSE NORM PRINCIPLE FOR ABELIAN EXTENSIONS OF NUMBER FIELDS BY FRANK GERTH III

Communicated by Olga Taussky Todd, August 9, 1976

1. Introduction. Let K be a finite extension of Q, the field of rational numbers, and let L be a finite abelian extension of K. We say that the Hasse norm principle is valid for L/K if the following statement is true: each nonzero element of K is the norm of an element of L if and only if it is the norm of an element from each completion of L. It is well known that the Hasse norm principle is valid when L/K is cyclic, but the Hasse norm principle is not always valid for L/K when L/K is not cyclic (see [1, p. 199]). Our goal in this paper is to give an explicit, computable algorithm for determining whether the Hasse norm principle is valid for a given finite abelian extension L/K. Proofs will appear elsewhere. Before stating our results, we remark that Garbanati (see [2]) has obtained such an algorithm for certain finite abelian extensions L of Q of prime power degree, and Razar (see [3]) has also obtained some interesting results on the Hasse norm principle. Razar's results include results equivalent to Theorems 1 and 2 in the next section.

2. Main results.

THEOREM 1. Let K be a finite extension of \mathbf{Q}' , and let L be a finite abelian extension of K. Let l_1, \ldots, l_t be the distinct prime numbers dividing the order of Gal(L/K), and let L_i be the maximal l_i -extension of K contained in L, $1 \le i$ $\le t$. Then the Hasse norm principle is valid for L/K if and only if the Hasse norm principle is valid for each L_i/K , $1 \le i \le t$.

REMARK. Theorem 1 reduces the problem to the case where L/K is a finite abelian *l*-extension, where *l* is a prime number.

THEOREM 2. Let K be a finite extension of Q, and let L be a finite abelian l-extension of K, where l is a prime number. Let M be the maximal extension of K of exponent l contained in L. Then the Hasse norm principle is valid for L/Kif and only if the Hasse norm principle is valid for M/K.

REMARK. Theorem 2 reduces the problem to the case where L/K is a finite abelian *l*-extension with exponent *l*.

THEOREM 3. Let K be a finite extension of \mathbf{Q} , and let L be a finite abelian <u>AMS</u> (MOS) subject classifications (1970). Primary 12A35, 12A65. extension of K with exponent l, where l is a prime number. Let G = Gal(L/K), and let X be the group of characters of G. If $[L: K] = l^r$, let χ_1, \ldots, χ_r be a basis for X over \mathbf{F}_l , where \mathbf{F}_l is the finite field of l elements. For each nonarchimedean prime v of K which ramifies in L/K, let K_v (resp., L_w) be the completion of K at v (resp., L at w, where w is a prime of L above v). Let $G^v =$ $Gal(L_w/K_v)$, and if $[L_w: K_v] = l^s$, let g_1, \ldots, g_s be a basis for G^v over \mathbf{F}_l . (Note $G^v \subseteq G$.) Let

$$[\delta_{tu,\alpha\beta}]_v, \quad 1 \le t < u \le s, \quad 1 \le \alpha < \beta \le r$$

be the matrix over \mathbf{F}_l with s(s-1)/2 rows and r(r-1)/2 columns whose entry $\delta_{tu,\alpha\beta}$ in the tu row and $\alpha\beta$ column satisfies

$$\zeta^{\circ tu,\alpha\beta} = (\chi_{\alpha} \wedge \chi_{\beta})(g_t \wedge g_u),$$

where ζ is a primitive lth root of unity, and " \wedge " is the exterior (or alternating) product. Let Δ be the matrix (over \mathbf{F}_l) whose rows consist of all the rows of the matrices $[\delta_{tu,\alpha\beta}]_v$ as v ranges over all nonarchimedean primes v of K which ramify in L/K. Then the Hasse norm principle is valid for L/K if and only if rank $\Delta = r(r-1)/2$.

REMARK. For convenience we order the s(s-1)/2 pairs of numbers tu lexicographically. Also we order the r(r-1)/2 pairs of numbers $\alpha\beta$ lexicographically.

REMARK. Rank $\Delta \leq r(r-1)/2$ since Δ has r(r-1)/2 columns. If L/K is cyclic, then r = 1, and the matrix Δ has zero columns. Then rank $\Delta = 0 = r(r-1)/2$, and the Hasse norm principle is valid for L/K.

To facilitate the computation of $\delta_{tu,\alpha\beta}$, we have the following result.

THEOREM 4. Let notations and assumptions be the same as in Theorem 3. Let $K' = K(\zeta)$ and $L' = L(\zeta)$. Let $a_1, \ldots, a_r \in K'$ such that

$$L' = K'(\sqrt[l]{a_1}, \ldots, \sqrt[l]{a_r}).$$

Next let N_{L_w/K_v} be the norm map from L_w to K_v . Let $b_1, \ldots, b_s \in K_v^*$ such that the image of b_i in $K_v^*/N_{L_w/K_v}(L_w^*)$ corresponds to g_i under the isomorphism $K_v^*/N_{L_w/K_v}(L_w^*) \cong G^v$ of local class field theory, where $K_v^* = K_v - \{0\}$ and $L_w^* = L_w - \{0\}$. Let $\gamma_{ij} \in \mathbf{F}_i$ be defined by

$$\zeta^{\gamma_{ij}} = (a_i, b_i)_{v'}, \quad 1 \le i \le s, \quad 1 \le j \le r.$$

Here $(,)_{\upsilon'}$ denotes the lth power Hilbert symbol in $K'_{\upsilon'}$ (cf. [1, p. 351]), where υ' is a prime of K' above υ , and $K'_{\upsilon'}$ is the completion of K' at υ' . Then $\delta_{tu,\alpha\beta} = \gamma_{t\alpha}\gamma_{u\beta} - \gamma_{u\alpha}\gamma_{t\beta}$.

REMARK. Let \hat{L}_w be the maximal abelian extension of K_v of exponent l,

and let $G_{\max x}^{v} = \operatorname{Gal}(\hat{L}_{w}/K_{v})$. Then G^{v} is isomorphic to a factor group of $G_{\max x}^{v}$; i.e., $G^{v} \cong G_{\max X}^{v}/G^{w}$, where $G^{w} = \operatorname{Gal}(\hat{L}_{w}/L_{w})$. Now it is not actually necessary to determine G^{v} in order to compute rank Δ . Instead of G^{v} we can use $G_{\max x}^{v}$, and then it is easy to find b_{1}, \ldots, b_{s} . Of course using $G_{\max x}^{v}$ instead of G^{v} may increase the number of rows in the matrix Δ , but rank Δ remains the same. This is true because G^{w} corresponds to $N_{L_{w}/K_{v}}(L_{w}^{*})/N_{\hat{L}_{w}/K_{v}}(\hat{L}_{w}^{*})$ under the isomorphism $K_{v}^{*}/N_{\hat{L}_{w}/K_{v}}(\hat{L}_{w}^{*}) \cong G_{\max x}^{v}$ of local class field theory, and $(a_{1},)_{v'}, \ldots,$ $(a_{r},)_{v'}$ are trivial on $N_{L_{w}/K_{v}}(L_{w}^{*})$.

REFERENCES

1. J. W. S. Cassels and A. Fröhlich, editors, *Algebraic number theory*, Academic Press, London; Thompson Book Co., Washington, D.C., 1967. MR 35 #6500.

2. D. Garbanati, The Hasse norm theorem for l-extensions of the rationals (preprint).

3. M. Razar, Central and genus class fields and the Hasse norm theorem (preprint).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712