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1. Introduction. Let K be a finite extension of Q, the field of rational 
numbers, and let L be a finite abelian extension of K. We say that the Hasse 
norm principle is valid for L/K if the following statement is true: each nonzero 
element of K is the norm of an element of L if and only if it is the norm of an 
element from each completion of L. It is well known that the Hasse norm 
principle is valid when L/K is cyclic, but the Hasse norm principle is not always 
valid for L/K when L/K is not cyclic (see [1, p. 199]). Our goal in this paper is 
to give an explicit, computable algorithm for determining whether the Hasse norm 
principle is valid for a given finite abelian extension L/K, Proofs will appear else
where. Before stating our results, we remark that Garbanati (see [2]) has ob
tained such an algorithm for certain finite abelian extensions L of Q of prime 
power degree, and Razar (see [3]) has also obtained some interesting results on 
the Hasse norm principle. Razar's results include results equivalent to Theorems 
1 and 2 in the next section. 

2. Main results. 

THEOREM 1. Let K be a finite extension of Q', and let L be a finite abelian 
extension of K. Let lx, . . . ,lt be the distinct prime numbers dividing the order 
of GslQL/K), and let Lf be the maximal l-extension of K contained in L9 1 < i 
< t. Then the Hasse norm principle is valid for L/K if and only if the Hasse norm 
principle is valid for each L(/K, 1 < i < t. 

REMARK. Theorem 1 reduces the problem to the case where L/K is a fi
nite abelian /-extension, where / is a prime number. 

THEOREM 2. Let K be a finite extension of Q, and let L be a finite abelian 
l-extension ofK, where I is a prime number. Let M be the maximal extension of 
K of exponent I contained in L. Then the Hasse norm principle is valid for L/K 
if and only if the Hasse norm principle is valid for M/K. 

REMARK. Theorem 2 reduces the problem to the case where L/K is a fi
nite abelian /-extension with exponent /. 

THEOREM 3. Let K be a finite extension of Q, and let L be a finite abelian 
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extension ofK with exponent /, where I is a prime number. Let G = Gal (/,/£), 
and let X be the group of characters ofG. If [L: K] = lr, let xX9 . . . 9xrbe a 
basis for X over F7, where F7 is the finite field of I elements. For each non-
archimedean prime v of K which ramifies in L/K, let Kv (resp.9 Lw) be the com
pletion of K at v (resp.9L at w, where w is a prime of L above v). Let Gv = 
G*1(LJKV)9 and if [Lw: Kv] = Is, let gt, . . . , gs be a basis for Gv over F7. 
(NoteGv CG.) Let 

lstu,a(î\v> Kt<u<s, l<a<fi<r 

be the matrix over Ft with s(s — l)/2 rows and r(r — l)/2 columns whose entry 
àtu ap in the tu row and aj3 column satisfies 

r Ô <"^ = (XaAX0)Ùr,AifM), 

where f is a primitive Ith root of unity, and "A" is the exterior (or alternating) 
product. Let A be the matrix (over Fz) whose rows consist of all the rows of the 
matrices [5tu aj3] v as v ranges over all nonarchimedean primes v of K which rami
fy in L/K. Then the Hasse norm principle is valid for L/K if and only if rank A 
= r(r - l)/2. 

REMARK. For convenience we order the s(s — l)/2 pairs of numbers tu 
lexicographically. Also we order the r(r — l)/2 pairs of numbers aj3 lexicographi
cally. 

REMARK. Rank A < r(r - l)/2 since A has r(r - l)/2 columns. If L/K 
is cyclic, then r = 1, and the matrix A has zero columns. Then rank A = 0 = 
r(r — l)/2, and the Hasse norm principle is valid for L/K. 

To facilitate the computation of Stu0lp, we have the following result. 

THEOREM 4. Let notations and assumptions be the same as in Theorem 3. 
LetK' = K(S) andl! = L(f> Let ax, . . . ,arGK' such that 

Next let NL ,K be the norm map from Lw to Kv. Let bt, . . . , bs G K* 

such that the image of bt in K*/NL ,K (Z,*) corresponds to gt under the isomor

phism K*/NL /K (Z,*) s Gv of local class field theory, where K* =KV~ {0} 

and L„ = Lw- {0}. Let yif E Ft be defined by 

f7<7 = (*,, bt)v.9 Ki<s9 Kf<r. 

Here (, ) v , denotes the Ith power Hubert symbol in Kf
v> (cf. [1, p. 351]), where 

v is a prime ofK' above u, and K'v> is the completion ofK! at v'. Then b 

REMARK. Let Lw be the maximal abelian extension of Kv of exponent /, 
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and let G^ a x = Gal(Lw/Kv). Then Gv is isomorphic to a factor group of Gm a x ; 

i.e., Gv s G^ax/G
w, where Gw = Gal(Lw/Lw). Now it is not actually necessary to 

determine Gv in order to compute rank A. Instead of Gv we can use G m a x , and 

then it is easy to find bt, . . . , bs. Of course using G^ a x instead of Gv may 

increase the number of rows in the matrix A, but rank A remains the same. This 

is true because Gw corresponds to NL /K (X* )/W£ /K (Z*) under the iso

morphism K*/N£ jK (Lw) = G^ a x of local class field theory, and (al9 )v>, . . . , 

(ar> )v' are trivial o n NLW/KV(LZ)-
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