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BY WILHELM STOLL 

During the last fifty years value distribution in one complex variable has 
been established as one of the most beautiful branches of complex analysis. 
In several variables, value distribution was slow to grow up. Only a few 
people were concerned and many obstacles had to be overcome. However, 
recently, the theory has gained wide recognition. The outlook for the future is 
bright and promises a theory even broader in scope than its one-dimensional 
counterpart. 

1. The classical theory. At first let us look at some basic results in one 
variable. Realize the Riemann sphere Pj as a sphere of diameter 1 in R3. The 
chordal distance between points w and a in P t is denoted by \\w9 a\\. Then 
0 < || w, a|| < 1. The Riemann sphere carries a rotation invariant volume 
element Q giving the sphereJotal volume 1. As on each complex manifold, the 
exterior derivative d = 3 + 3 twists to 

</«- (//4ir)(9-8). 

On ?! - {#}, the volume element £2 is computed by 

(1.1) fi « -ddc\o%\a,wf. 

If r > 0, let C[r] be the closed disc, C(r) be the open disc and C<>> be the 
circle, all of radius r and with center 0. Let ƒ: C -» P{ be a nonconstant 
holomorphic map, i.e., a nonconstant meromorphic function. The spherical 
image of ƒ is defined by 

M')-f A«)>o. 
•'ceo 

For 0 < s < r, the Ahlfors-Shimizu characteristic of ƒ is defined by 

(Tf(r,s)) = [rAf(t)dt/t. 

Then Tf(r, s) -> oo for r -» oo. On C<r>, a rotation invariant line element o 
exists which gives the circle C<r> length 1. For r > 0, the compensation 
function of ƒ for a G Pj is defined by 

mf(r9 a) = J log a > 0. 
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Let 0fa(z) be the a-multiplicity of ƒ at z G C. For r > 0, the counting function 

zGCW 

is the number of a-points in C[r]. For 0 < s < r9 the valence function of ƒ to 
a E P! is defined by 

Nf(r9s;a) « f /!ƒ(/; a) -7-

The Fir-stf Mam Theorem asserts 

Tf(r9 s) = TVy (r, s; a) + ra^r, a) - mf(s9 a) 

for 0 < s < r. The Afedw Value Theorem states 

2 > ( r , j ) - ( Nf(r,s;a)Q(a). 

So the growth measure 7} of ƒ is the average of the growth measure of the 
fibers of/. The First Main Theorem implies 

mf(r;a) Nf(r9s;a) 
0 < 8f(a) = lim inf - — — - = 1 - lim sup —— 7— < 1. 

/v / MCC Tf(r9s) r-̂ 00 Tf(r9s) 
Here 8f(a) is called the Nevanlinna defect of ƒ at a. The Mean Value Theorem 
implies jv8j{a)ü{a) = 0. Hence 8f(a) = 0 for almost all a EPV Therefore 
almost all fibers grow as quickly as ƒ itself. A much sharper result is 
Nevanlinna9s Defect Relation 

2 8f(a) < 2. 
EP 

Therefore 8y(a) > 0 for at most countably many points a EPV Also 8y(a) — 
1 can occur only twice. If f~l(a) = 0, then 8f(a) = 1. Hence the theorem of 
Picard that ƒ omits at most two values is obtained. 

2. The general First Main Theorem in several variables. Let M and TV be 
connected, complex manifolds of dimensions m and n9 respectively. Assume 
that a family © = {Ea}aGA of analytic subsets Ea of TV is given. Each Ea has 
pure dimension n — s < n. Let ƒ: M -» TV be a holomorphic map. Define 
Fa = f~l(Ea) for all a E A. Value distribution studies the magnitude of the 
inverse family (&f = {F f l}ûe^. Do the First Main Theorem, the Mean Value 
Theorem, and the Defect Relation hold? Certainly some additional assump
tions have to be made. We shall sketch a basic procedure underlying practi
cally all derivations of a First Main Theorem. 

Inspired by (1.1), we require the existence of a form fi of bidegree (s, s) and 
class C°° on TV and the existence of a form Aa of class C00 and of bidegree 
(s — 1, s — 1) on TV — Ea for each a G A9 such that Aa has residue 1 on Ea 

and such that 

(2.1) ddcAa - fi 

on TV — Ea. The following examples show that these assumptions can be 
satisfied in many cases. 

EXAMPLE 1. Let © be the family of complex projective planes of dimension 
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n — s in the «-dimensional complex projective space Pn. Let co be the exterior 
form of the Fubini-Study Kaehler metric on Prt. Take fi = to5 > 0. Then 
Chern [5] and Levine [17] construct Aa > 0 explicitly. 

EXAMPLE 2. Let <& be the point family, i.e., N = A and 2?fl = {a} for all 
a E N. Assume A is a compact Kaehler manifold. Let fl be the Kaehler 
volume form of A normalized such that j^fl = 1. Hodge theory provides 
Aa > 0. See Wu [32], Hirschfelder [14], and Stoll [24]. 

Let X and Y be complex spaces. Let h: X -» Y be a holomorphic map. 
Then A is said to be projective if for every z G X open neighborhoods [7 of z 
and F of A (z) exist such that there is a complex space Jf and a biholomor-
phic map a: U-+V X W such that A| £/ = P ° a where P: V X W->V is 
the projection. Assume that h is proper, projective and has pure fiber 
dimension q. Then the fiber integration operator h^is defined and associates 
to each form x of bidegree (k, /) and class C°° on X a form A#x of bidegree 
(k — q, I — q) and of class C°° on Y provided k > q and I > q. See Tung 
[29]. 

EXAMPLE 3. The family © = {Ea}a^A is said to be admissible if the 
following conditions are satisfied. 

(i) The index set A is a connected, complex Kaehler manifold. 
(ii) The incidence set S = {(*, à) e M X A\x G 2Tfl} is analytic. 
(iii) The projections r:S -> M and A*: S -> a are surjective and T is proper 

and projective. 
Determine Q(A) and Aa(A) for the point family on A as in Example 2. 

Then B = T^7T*2(A) > 0 and Aö — T#TT*(AÖ(^)) > 0 satisfy assumption 
(2.1). Also T: TT"1^) -> 2sfl is biholomorphic. See Tung [29]. Also observe that 
the point family in Example 2 is admissible. 

We return to the general situation and assume (2.1). Also suppose that Fa is 
either empty or has pure dimension m — s if a E A. Then (2.1) pulls back to 
ddcf*(K) « f*(Q) on M - Fa. Let <p be a form of class C°° and of bidegree 
(m — s, m — s) on M. Assume <p has compact support. The singularity of 
f*(Aa) on Fa is so weak that Stokes' Theorem applies: 

f f*(K) A ddc<p - - f <#*(Aa) A </V 

For degree reasons df*(Aa) A ^C<P 3 ^ A dcf*(Aa). A second application of 
Stokes' Theorem leaves a residue 

[ j*(K) A ^C«P - - f d(<p A </!f(Aa)) + f <p A ddT(Aa) 
JM JM JM 

- - f V P + ( ? A / * ( 0 ) . 

Here fya is an integral-valued nonnegative multiplicity function. The unin-
tegrated First Main Theorem is obtained: 

(2.2) f y»(Q) A <P = f e/ö<P + f / * ( A J A ^C<P-

The integral on the left does not depend on a. So (2.2) can be viewed as a 
preservation principle. Also (2.2) can be considered as an identity between 
currents. Let us consider two applications of (2.2). 
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1. APPLICATION. Assume M = N is compact and ƒ is the identity. Then 
0fa = 1 o n ^ . Suppose dtp = 0. Then fNQ A <P = ƒ'EaV- Therefore fi is the 
Poincaré dual of Ea for each a E A. 

2. APPLICATION. Take JV = C and s = 1. Then ƒ is a holomorphic function. 
Choose Aa(z) = -log|z - a\2. Then ddcAa =s 0. Hence fi = 0. Therefore 

f Ö/<p = f l o g | / - a | 2 A ^ V 

Hence the current of integration over the zeroes of ƒ is the current 
d!rfc[log|/|2], a theorem due to Lelong [16]. 

Now assume ÏÏ > 0 and Aa > 0, which can be satisfied in many cases, for 
instance in the examples. Then (2.2) shall be used to estimate the volume of 
Fa. Still the requirements that <p ought to be the volume element on each Fa 

and that <p has compact support are incompatible. We shall refine the 
method. Assume a form x > 0 of bidegree (m — s, m — s) and class C °° and 
with d\ = 0 is given on M. If M is Kaehlerian, the (m — ,s)th power of the 
Kaehler form will do. Let G and g be relatively compact, open subsets of M 
with smooth boundaries T « dG and y = dg. Assume g c G . Let if/: M -» R 
be a continuous function such that if>|(M — G) = 0 and if/|g = i* > 0 are 
constant. Assume 0 < if/ < i* on M. Also assume that tf/|(G — g) is of class 
C00. Then (G, if/) is called a condensor. The characteristic 7}(G), the valence 
function N^(G9 a), the owter compensation function mj(T9 a), the wner compensa
tion function mf(y, a) are defined by 

Ï } ( G ) - ( # * ( 0 ) A X > 0 , 

Nf(G,a)-J 0fa*X>O, 
t'a 

mf(T, a) = [f*(Aa)(-d
ct) A X > 0, 

»V(Y><0 - (f*(K)(~W) A x > 0, 

where the integrands are nonnegative. The deficit is defined by 

Df (G, a) - f /*(Aa) A (-<WV) A X-

In general the sign of the integrand of Df(G, a) is not fixed. If the proof of 
(2.2) is repeated with due regard to boundary integrals, the First Main 
Theorem is obtained: 

(2.3) 7}(G) - Nf(G9 a) + mf(T9 a) - mf(y, a) - Df(G, a). 

Assume that the index set A is a compact Kaehler manifold with volume 
elements Sl(A) such that fASl(A) » 1. Then 1(h) - Ĵ AQCd) is the average of 
h on A. Define m/T) = I(mf(T, a)) and m/y) = I(mf(y, a)). Also define 
/^(G) = I(Df(G, a)). Then the Mean Value Theorem 

(2.4) Tf{G)-I(Nf(G,a)) 

is equivalent to 
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(2.5) Df{G)~ mf(T) - mf(y) 

by (2.3). The Mean Value Theorem may not hold. In Example 1, the identity 
(2.5) can be proven directly by an exchange of integrals. See [22] and [23]. In 
Example 3, we^proceed as follows: Let (Ô, r, ƒ) be the relative product of ƒ 
and r. Define ƒ = TT <> ƒ. Then/ maps f~l(a) biholomorphically onto Fa. Also 
0fa(x) = 1 for all x G Fa and almost all a G A. Moreover, 

M i 

i » ( 0 ) - ^ T / ( B ( ^ ) ) - rJ***(Q(A)) - fJ*(Q(A)). 

Hence, 

Tf(G) - f f(Q) A *x - ( fJ*(Q(A)) A 40C 

= f f*(®(A)) A f*(*x) = [ fc*ttxMA) 

= fA{fF^y(A) = I(Nf(G,a)). 

So the Mean Value Theorem holds for admissible families. 
Assume (2.4). Define B ~ {a E. A\Fa ¥> 0} . Then 0 < bf = fBQ(A) < 1 is 

the probability that ƒ (M) intersects Ea. Define 

Df(G, «)+ - /"Max(0, f*(Aa) A ddy A x) 

and />/(G)+ = I(Df(G, a)+). If a G A - B, then Nf(G9 a) - 0. Hence, 

(2.6) fy(G, a) < 7}(G) + mf(y9 a) + Z), (G, a) + 

implies 

7}(G) - (Nf(G,a)Q(A) < bfTf(G) + m^y) + £ / (G) + . 

If 7}(G) > 0, then 

(2.7) (1 - bf) < (m,(y) + Df(G)+ )/7}(G). 

Keep g fixed. Let G exhaust M with convenient \p = \^G. If 7}(G) grows more 
quickly than mf(y) + Df(G)+, we obtain £y = 1. Then / (M) n £a ^ 0 for 
almost all a G 4̂ which is called a Casorati- Weierstrass Theorem. 

At this point, more accurate choices have to be made which lead to specific 
situations. Especially, (G, g, \p) has to be chosen. Some of these choices shall 
be mentioned here. 



VALUE DISTRIBUTION THEORY 171 

1. CHOICE. Take s = 1, The closed C°°-form x has bidegree (m — l, m — 
1). Assume x > 0. Then choose \p = \pG and R = R(G) > 0 such that ddc\p 
A x = 0 o n G - g , such that i//|T = 0 and $\y = R(G) with fT(-dc\pG) A X 
= 1. This Dirichlet problem has one and only one solution. Then Df(G9 a) = 
0 = Df(G, a)+ and Df(G) = 0 = Df(G)+. The First Main Theorem is freed 
from the deficit. A Casorati-Weierstrass Theorem and a Defect Relation can 
be obtained for the hyperplane family. See Weyl [30] if m = 1 and [21] if 
m > 1. 

In the other cases, a nonnegative function T: M —> R of class C00 is used. If 
AT C M and r > 0, define 

(2.8) K[r] = [z G JT|T(Z) < r 2 } , 

(2.9) K{r) = {zG K\T(Z) < r2}9 

(2.10) K(r) - {z e A-|T(Z) - r 2 } . 

Then T is said to be an exhaustion if M [r] is compact for all r > 0. We call 
M [A*] the closed pseudoball, M(r) the open pseudoball, and M<r> the/wewrftf-
sphere. Let w be an increasing function. Take 0 < r0 < r and define G — 
M(r) and g = M(r0) and \pr = u(r2) — u © T on G — g. Now, other choices 
can be made. 

2. CHOICE. Take an exhaustion T with ddcr < 0 outside M[r0] =£ 0 . Then T 

is called pseudoconcave. Take w(x) = x. Then £>/(CJ, a )< 0. Hence Df(G) < 
Df(G)+ = 0. Also my(y) is constant. If 7}(G)-> oo for r -> oo, a Casorati-
Weierstrass Theorem holds. See Chern [5], Bott and Chern [2], and Cowen [6]. 

3. CHOICE. Take an exhaustion r with ddcr > 0. Then r and M are called 
pseudoconvex. Take u{x) = x. Then £>ƒ((?, a) = D/(G, a)+ > 0 and Df(G) = 
/^(G)4" > 0. A Casorati-Weierstrass Theorem follows if Df(M(r))/Tf(M(r)) 
-» 0 for r -> oo. In many cases Df(M(r)) can be computed. Observe that M is 
a Stein manifold if and only if a pseudoconvex exhaustion r exists with 
ddcr > 0 on M. Stein manifolds are the most important noncompact complex 
manifolds and value distribution applies to them. 

4. CHOICE. Take an exhaustion r such that ddclog r > 0 and (ddclog r)m = 
0. Also (ddcr)m ^ 0 and M [0] of measure zero are required. Then T is called a 
parabolic exhaustion and M is called parabolic. Take w = —[(2m — 2)xw]""1. 
A Casorati-Weierstrass Theorem and a defect relation hold. For more details 
see below. 

3. Some historical remarks. In 1938, H. Kneser [15] established the First 
Main Theorem for meromorphic functions on Cm. About this time, Ahlfors 
[1], H. Weyl and J. Weyl [30] proved the First Main Theorem and the Defect 
Relation for holomorphic maps from Riemann surfaces into the complex 
projective space Prt and for the hyperplane family. In 1970, Wu [33] re
novated this theory. In 1953-1954, these theories were united and expanded 
to meromorphic maps of complex manifolds into Prt for the hyperplane 
family; see [21]. The First Main Theorem and the Defect Relation were 
proved in [21] under Choice 1. In 1960, Levine [17] and Chern [5] established 
the First Main Theorem for holomorphic maps of Cm into Prt for the family 
of /7-planes in Prt. Here the deficit term first appears. In 1967-1969, this 
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theory was extended to holomorphic maps of pseudoconvex manifolds into 
P„; see [22] and [23]. Up to date, no Defect Relation for the/7-plane family 
has been found and this remains one of the most difficult open problems in 
this subject matter. 

Around 1968, the First Main Theorem for admissible families was proved. 
Wu [32] treated the point family only. Hirschfelder [13] required that the 
parameter space A is homogeneous. In [24], the general case was established. 
In 1973 Tung [29] extended this theory to complex spaces and meromorphic 
maps. In 1973, Ahlfors estimates were established in [26] for meromorphic 
maps of pseudoconvex spaces into Pn for the hyperplane family. The results 
were applied to the Bezout Problem. In 1974, Murray [19] completed these 
investigations by establishing a Defect Relation. 

In 1965, Bott and Chern [2] created a new theory of value distribution for 
holomorphic sections in a holomorphic vector bundle. Let M and N be 
complex spaces of pure dimensions m and n respectively. Let ƒ: M -> N be a 
holomorphic map. Let E be a holomorphic vector bundle of fiber dimension/? 
over N. For each holomorphic section s of E, let Z(s) be the zero set of s. 
Assume, a finite-dimensional vector space V of holomorphic sections of E 
over N is given, which generates each fiber of E over C. Then © = 
{Z(s)}sGV_{0} is the family considered on N. Bott and Chern proved the 
First Main Theorem and the Casorati-Weierstrass Theorem on pseudocon
cave manifolds if M = N and p = n and if ƒ is the identity. In 1970, an 
indication was given in [25] how to extend the Bott-Chern theory to Stein 
manifolds if 1 < p < n. In 1971, Co wen [6] introduced Schubert zeroes of 
vector bundles and proved the First Main Theorem and a Casorati-
Weierstrass Theorem on pseudoconcave manifolds for Schubert zeroes. In all 
this M = N and ƒ is the identity. The general case/: M -* N is investigated in 
[28] on pseudoconvex manifolds. 

During the last six years, Phillip Griffiths and his school considered the 
case of a line bundle (p = 1) and introduced a wealth of new ideas into value 
distribution. One of the main accomplishments is a new proof of the Defect 
Relation. The previous proofs by Ahlfors, Weyl, Stoll, and later ones by 
Murray and Wong use so-called associated maps. In 1972, Carlson and 
Griffiths [4] constructed a singular volume form £ on N such that Ric £ > 0 
and (Ric £)" > £. This form yields the Defect Relation. In 1973, Griffiths and 
King [12] extended this theory to holomorphic maps ƒ: M -» N, where M is 
affine algebraic and N is projective algebraic. As above, a holomorphic line 
bundle L over N is given and © is the family of zeroes of holomorphic 
sections of L. An important assumption is Rank/= dim N < dim M. In 
1974-1975 this theory of Carlson, Griffiths and King was made intrinsic and 
extended to parabolic manifolds M; see [27]. An outline of this extended 
theory follows. For meromorphic maps from parabolic manifolds into projec
tive space Wong [31] proves a Defect Relation without dimension restrictions 
using associated maps. 

4. Value distribution on parabolic spaces. Here, we will consider the 
Carlson-Griffiths-King theory [4], [12] as extended in [27]. This section is 
restricted to codimension 1. Higher codimensions are treated in the next 
section. Let M and JV be connected, complex manifolds of dimensions m and 
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n respectively. Assume N is compact, but M is not compact. On N, a 
holomorphic line bundle L is given. Let ƒ: M -» N be a holomorphic map. 
This situation will prevail through the remainder of this report. 

Let K be a hermitian metric along the fibers of L. Let c(L, K) be the 
associated Chern form. If U ¥= 0 is open in M and if s: U-> L is a 
holomorphic section without zeroes, then 

c(L, /c)= -ddc\og\s\2
K 

on U. Assume L is nonnegative, that is, c(L, K) > 0 for a choice of K and 
choose fc so. 

Since N is compact, the vector space V of all holomorphic sections of L 
over N has finite dimension fc + 1. Assume fc > 0. If 0 =£ a E F, define 
P(a) - Ca. If ^ Ç K, define P(yl) - {P(a)|0 ¥> a E A}. Then P(F) is the 
complex projective space associated to V and P: V — {0} -»P(K) is holo
morphic. If a E P(F), then a = P(a) for some 0 i- a E F and £L[a] = Z(a) 
does not depend on the choice of a but on a only. The set EL[a] is empty or 
pure (n — l)-dimensional. Also a is called a projective section and EL[a] its 
zero set. Then @ = { ^ L N } Û 6 P ( K ) *S ^ e vah*e distribution family to be 
considered on N. 

Take a hermitian metric / o n F. If x E TV and a E P( F), choose a E 
P_ 1(a) with |a|7 = 1. Then 0 < ||a, JC||K = |a(x)|K does not depend on the 
choice of a. Then K is said to be distinguished if ||a, x\\K < 1 f or all a E P(K) 
and x E N. If *c is not already distinguished a constant X > 0 exists such that 
X/c is distinguished. Observe c(L, XK) = c(L, /c) > 0. Hence, w.l.o.g. K can be 
assumed to be distinguished. We have 

(4-1) c(L, /c)= -<4Hog||<i,x||* 

on N — EL[a]. The base point set 

(4.2) *z,|>]= PI EL[a] 
aBP(V) 

is analytic and N^ = N — EL[oo]is open and dense. For x E TV, the evalua
tion map TJX: K-» Lx is defined by î)x(a) = a(x) for all a G V. Let Ŝ  be the 
kernel of t\x and let (Sx)^ be the orthogonal complement of Sx by /. If and 
only if * E N^y the map t]x is surjective and r\x: {SX)L -> Lx is an isomor
phism. In this case the restriction of / to {S^ carries over to a hermitian 
metric lx on Z^.This defines a hermitian metric / along the fibers of LlN^. 
Then c(L, I) > 0 on N^. Also 0 < \\a, x\\/ < 1 if a E P(V) and x E A^. 

Also M needs a measure. Let r > 0 be a nonnegative function of class C °° 
on M. If K Ç M, define AT[r], # (r ) and # < » as in (2.8), (2.9) and (2.10). 
Then r is said to be a parabolic exhaustion of M if the following conditions 
are satisfied: 

(1) For each r > 0, the closed pseudoball M[r] is compact. 
(2) The center M [0] has measure zero. 
(3) On M - M [0], assume co = ddc\og T > 0. Then u= *Wcr > 0 on M. 
(4) Assume vm as 0 but <ow = 0. 

Then M(r) ^ 0 if r > 0. Also M[0] ^ 0 . Let 9tT be the set of all r > 0 such 
that (rfr)(;t) T* 0 for all x E M<r>. If r E StT, then M<r> is the oriented 
boundary manifold of M(r). For # > 0 define 
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(4.3) aq = dc\o%TAW? and o - am_v 

Letyr: M<r> -> M - M[0] be the inclusion. If r E 9ïT, thenyr*(a) > 0 and the 
pseudosphere M<>> has constant volume 

(4.4) s - f a > 0. 
JM(r> 

For all r > 0, the volume of the pseudoball is given by 

f v
m = f v

m =%r
2m. 

JM[r] ^M(r) 

Now, M together with T is called a parabolic manifold, also denoted by 
(M, r). They are many examples of parabolic manifolds. For instance: 

1. EXAMPLE. (CW, T) is parabolic with r(a) = |â|2. 
2. EXAMPLE. Let M and M be connected, noncompact, complex manifolds 

of dimension m. Let /?: M-* M be a proper, surjective, holomorphic map. 
Let T be a parabolic exhaustion of M. Then T ° /? is a parabolic exhaustion of 
M. 

3. EXAMPLE. Any affine algebraic manifold is parabolic. 
4. EXAMPLE. Let (Mx, rx) and (M2, T2) be parabolic manifolds. Define 

M = MXX M2. Let 7T,: M-> A/, be the projections for y = 1, 2. Then r = 
Tj © TTJ + T2 © 7T2 is a parabolic exhaustion of M. Hence the product of 
parabolic manifolds is parabolic. 

5.EXAMPLE. Let B be a compact, connected complex manifold of dimension 
m — 1. Let M be a holomorphic line bundle over 5 with a hermitian metric r 
along the fibers of M. Assume c(M9 r) < 0 on M and c(M, T)(*O) < 0 at 
some point x0 E M. Then (M, r) is parabolic. 

6. EXAMPLE. A noncompact Riemann surface is parabolic if and only if it 
belongs to the class D , that is, any subharmonic function bounded above is 
constant. 

7. EXAMPLE. (C - Z) X Cm is parabolic but not affine algebraic. 
A nonnegative divisor v can be defined in various ways. Since M is a 

manifold, v can be identified with its multiplicity function. A nonnegative 
function v\ M -» Z is said to be a nonnegative divisor, if v is locally the zero 
multiplicity of a local holomorphic function. Then A = supp v is empty or a 
pure (m — l)-dimensional analytic set. Also v is locally constant on the set of 
simple points of A. For r > 0, the counting function of v is defined by 

nv(r) = r2~2m( vvm~l > 0. 
JA[r] 

The function increases. Hence nv(r) -> «„(0) > 0 for r -» 0 exists. Then 

n,(r) - [ va""1 + n,(0). 
JA[r] 

For 0 < s < r, the valence function of p is defined by 

Nw{r,s)-f\(t) f . 
Let ƒ: M -> N be a holomorphic map. For simplicity, assume that ƒ (M) is 

not contained in EL[a] if a E P(K). The spherical image is defined by 
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AAr, L, K) = r2~2m f f*{c{L, K)) Avm~ » > 0. 

175 

'j#[r] 

The function increases. The limits Af(r, L, K) -> ^ (0 , L, /c) for r -» 0 and 
v4y(r, L, K) -* ^(oo, L, K) < oo for r -» oo exist. Then 

^ ( r , L, /c) - f f(c(L9 K)) A co""1 + ^ ( 0 , L9 *)• 
•'Mir] 

For 0 < s < A-, the characteristic of ƒ is defined by 

Tf(r,s9L,K)-frAf(t9L9K) f > 0. 

If ƒ is not constant and c(L, K) > 0 on TV, then 

(4.5) 7}(>,.?, L, K) -» oo for r -> oo, 

(4.6) 2)(r, 5, L, ic)/ (log r) -» ^(oo, L, /c) > 0 for r -> oo. 

In any case, assume ^(oo, L, /c) > 0 which implies (4.5) and (4.6). For 
a EP(V) and r G 9tT, the compensation function is defined by 

mf(r, a9 L, K) = f log a > 0. 

The function extends to a continuous function of r for all r > 0. For 
a e P( F), the map ƒ defines a nonnegative divisor 0fa with support Ffl = 
f~\EL[a]). The counting function of 0fa is denoted by fy(r; a9 L) and the 
valence function by Nf(r9 s; a, L). For 0 < s < r the F/rj/ Ma/rt Theorem 
holds: 

(4.7) 7}(r, 5, L, K) = JVy (r, s; a, L) + m^(r; a9 L, /c) — m^s; a9 L, /c). 

Assume i ^ = f~\EL[oo]) has at most dimension m - 2. Let <p be the 
exterior form of the Fubini-Study-Kaehler metric defined by / on P(F). Then 
P(K) has volume 1. Unfortunately, the Mean Value Theorem does not hold. 
Fortunately, the statements above remain correct if K is replaced by /, 
although / is defined over N^ only. Then the Mean Value Theorem holds: 

TAr, s9 L, /) - f NAr9 s; a9 L)<p(a)k. 
JP(V) 

Assume (4.5) for K and /. Define the Nevanlinna defect of a E P(K) by 

(4.8) 0 < 8Aa9 L) = lim inf -f- —— . 
/ V } —°° Tf(r9s9L9ic) 

The First Main Theorem and (4.5) imply 

Nf(r9s; a9L) 
(4.9) 1 > 8f (a, L) - 1 - lim sup -f- —— . 

/ V r-»oo Tf(r9S9L9K) 

Then fy(<z, L) does not depend on s and /c. However, if in (4.8) K is replaced 
by /, another defect 8f(a, L) may be obtained. Of course if EL[oo] = 0, then 
8/(a9 L) = 8f(a9 L). Also (4.9) holds for /. Hence 0 < 8f°(a9 L) < 1. If Fa = 
0 , then fy°(fl, L) = ^(tf, L) = 1 since ^ ( r , s; a, L) = 0. The Mean Value 
Theorem and Fatou's Lemma imply I (8f (a, L)) = 0. Hence 8j{a9 L) = 0 for 
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almost all a G P(K). Therefore F (M) n EL[a] ¥= 0 for almost all a G P(F). 
A Casorati-Weierstrass Theorem is obtained. 

The results stated so far in this section extend to complex spaces and 
meromorphic maps. For the remainder of this section M and N have to be 
complex manifolds and ƒ is holomorphic. Now, the Second Main Theorem 
and the Defect Relation shall be stated, which requires a number of prepara
tions. 

To each form fi > 0 of degree 2 m and class C00 on Af, a Ricci form Rie Q 
of bidegree (1,1) and class C°° is assigned. Let <xv . . . , am be local holomor
phic coordinates on an open subset U of M. Then a positive function Qa of 
class C °° exists on U such that 

Q\U = Qai
mdax AdâlA^-AdamA dâm. 

Then Ric fi| U = ddc\o% tia on U. For 0 < s < r, the iücci function of £2 is 
defined by 

Ric(r, s, fi) - f V" 2 m f Ric S2 A^ m _ 1 A. 

Actually, Ric(r, s, fi) can be interpreted as the characteristic function of the 
canonical bundle KM of M for a certain hermitian metric along KM. However, 
Ric(r, s, Î2) may not have a fixed sign. Ideally, we would like to consider 
Ric(r, s, vm) but vm > 0 may not be true on all of Af. Hence an alternative is 
needed. A function v > 0 of class C°° on M is defined by vm = t;S2. For 
almost all 0 < s < r, the ü/ccZ function of r is defined by 

RicT(r, s) = - f log w - - ƒ log vo + Ric(r, 5-, Î2) 

and does not depend on the choice of Î2. If vm > 0 on Af, then v = 1 implies 
RicT(r, s) = Ric(r, ,y, vm). If /?: M -» Cw is a proper, surjective holomorphic 
map and if T = | /? |2, let JU be the branching divisor of /?. Then 

(4.10) R i c ^ r , * ) - ^ , * ) . 

If the (m — l)-dimensional component of /?(supp M) is algebraic, then 
(4.11) N^ (r, s) = O (log r) for r -» oo. 

If M = C", then RicT(r, s) = 0. If (4.5) holds, the Ricci defect is defined by 

RicT(r, s) 
(4.12) Rf = Hm sup — < oo 

f r^oo Tf(r,S9L,K) 
and is independent of the choice of s and /c. 

Let A^ and KN be the canonical bundles of M and TV respectively. Let K% 
be the dual of KN. The holomorphic map/: Af -> TV pulls back A^ and A$ to 
KNf and A$/5 respectively, such that K$f is dual to KNf. Call Kf=KN® K%f 

the Jacobian bundle of ƒ. A global holomorphic section F ^ 0 is called a 
Jacobian section off Let PF be the divisor of F. If (4.5) holds, the ramification 
defect is defined by 

N (r, s) 
(4.13) 0 < 0 . = lim inf w / F ' — - < oo. 
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A ufM-valued inner product (•,-) exists between Kf = KM ® Kfy and KNy 
Hence F can be interpreted as an operator on certain forms. Let Qn(U) be the 
set of all holomorphic forms of bidegree («, 0) on the open subset U of N. 
Assume Uf = f~l(U) ¥* 0. Then F acts as a homomorphism F: Qn(U)-> 
tim{Uf). Take xp G Qn(U). Then xp is a holomorphic section of KN over U 
which pulls back to a holomorphic section \pf of À ^ over Uf. In general, \/y is 
not the pullback f*(\p) of forms. The inner product defines a holomorphic 
section F[\p] = (F, \pf) of ATM over Uf which is a holomorphic form of 
bidegree (m, 0) on Uf. This action extends to forms of degree In. Let A2n(U) 
be the forms of degree In and class C00 on [/. Then F acts as a homomor
phism F: A2n(U) ^> A2m(Uf) such that the following condition is satisfied: 
For each integer/? > 0 define 

l-l-iyo-MpHi/iw)'. 
If <p G &"(£/) and x e fin(f/), then the action of F on A2n(U) is determined 
by 

*IVP A x ] - /wF[<p] Aconj(F[x]) 

where conj denotes conjugation. If 0 < \p G A2n(U), and if Z(F) is the zero 
set of F, then F[\p] > 0 on Uf - Z(F) and 

Ric F[xp] = y*(Ric i//) on Uf - Z(F) . 

Define M+ = {x G M\v(x) > 0} and M+(r) » M + n M(r). Then F is 
said to be dominated by r if for each r > 0 there exists a minimal constant 
y(r) > 1 such that for all open sets U of N with M+(r) n Uf¥=0 and for 
all forms vp > 0 of bidegree (1,1) and class C00 on (/ the inequality 

(4.14) n(F[xfsn]/vm)l/nvm < Y(r)f*(xP)Avm-{ 

holds on Uf n M +(r). The function y increases and is called the dominator 
of F. If y exists, then dim M > dim Af = rank/. If this necessary condition 
is satisfied, Y exists under reasonable assumptions, for instance, if v > 0 on 
M. For example, if m = «, then a Jacobian section dominated by Y = m is 
defined by F[<p] = ƒ*(<?). For instance, if there exists a proper, surjective 
holomorphic map /?: M -» Cm such that r = | /?|2, then a Jacobian section F 
dominated by T exists such that Y = m. (2. Example of parabolic manifolds). 

Let F be Jacobian section of ƒ dominated by T with dominator Y. Then the 
dominator defect is defined by 

log Y(r) 
(4.15) 0 < YF - lim sup — ^ T > ° 

r-»oo Tf(r9S,L9K) 

and does not depend on 5 and /c. 
Now, the Second Main Theorem can be formulated. For each index 

j = 1, . . . , q, let Lj be a holomorphic line bundle on N with a hermitian 
metric Kj along the fibers of Ljt Let Ĵ . be the vector space of all global 
holomorphic sections of L, and let lj be a hermitian metric on Ly Take 
aj G P(fy). Then a, A are said to be in general position (or have strictly 
normal crossings) if the following conditions are satisfied for each x G N: Let 
ü, be a holomorphic section of L, over an open neighborhood Uj of * with 
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Z(vj) = 0 . Take 0 ¥= o, G F with P(ay) = ay Holomorphic functions wy on U 
are defined by a, = WJVJ. A sequence of integers 1 < /x(l) < • • • < /x(0 < q 
exists such that wM(/l)(x) = 0 for allp = 1, . . . , t, but Wj(x) =£ 0 if j i- \ip for 
all/? - 1, . . . , /. Then (<fy(1) A . . . A dw^x) * 0, i.e., wM(1), . . . , wK0 is a 
subset of a set of coordinate functions at x. 

Let a,, . . . , aq be in general position. Define L = Lx® . . . ® Lq and 
K = /Cj ® . . . ® Kq. Assume c(L, K) > 0. Take a positive integer w. A smallest 
integer /? > 0 exists such that Lp ® A$ is nonnegative. Assume p < w. Take 
6 > 0 and s > 0. Define c2 = (« + e)$ and c3 = 2eSw. Then there exist a 
constant q » c{(e) > 0 and a measurable subset A == A(e) of R + = {x G R|JC 
> 0} such that the Second Main Theorem holds: 

N„F(r9 ' ) + ( l - £ )Tf(r, s, L, K) < 2 ty(r, s; ap L,) 

+ Cjlog 7}(r, s, L, K) + c2log F(r ) + c3log r 

for all r > s with /• 6 R + - A where fAxe dx < ÖO. 
For the Defect Relation, assume Lx = • • • = Z^. It may be helpful to 

recount the assumptions here. Let N be a compact, connected complex 
manifold of dimension n > 0. Let L be a positive holomorphic line bundle on 
TV. (Hence N is projective algebraic.) Let V be the vector space of global 
holomorphic sections of L on N. Let / be a hermitian metric on V. Let K be a 
distinguished hermitian metric along the fibers of L with c(L, K) > 0. Let 
p = inf u/w with w > 0, w > 0 such that Lu ® K™ is nonnegative. Let 
tfp . . . , aq be given in P(F) such that q > p and such that av . . . , aq are in 
general position for L. Let (M, r) be a parabolic manifold of dimension 
m > 0. Let f: M -* N be a holomorphic map with a Jacobian section F 
dominated by r. Let Y be the dominator. Then the Defect Relation holds: 

q 

(4.16) @F + S «ƒ (ty i ) < P + *ƒ + S/iI>. 

Of course, (4.16) is only meaningful if i?y < oo and YF < oo. If TV is the 
projective space and if L is the hyperplane section bundle, then/? = n + 1. If 
m = n = Rank/ , then F can be taken such that Y = m. Also, if m > n = 
Rank ƒ and if a proper, surjective, holomorphic map /?: M -» Cm exists such 
that T = | /?|2, then F can be chosen such that Y = m. In both cases, r F = 0. 
Hence 

(4.17) ^8f{apL)<p + Rf. 

Observe, that (4.17) does not depend on the choice of F. Consider the 
covering case. Let \i be the branching divisor of /?. Assume that the (m — 1)-
dimensional component of /? (supp JU) is algebraic. (If M is affine algebraic, all 
this can be realized.) Assume ƒ has transcendental growth, i.e., Af(cc, L, K) = 
oo. Then (4.6), (4.10), (4.11) and (4.12) imply Rf = 0. Hence 

(4.18) %8f(aj,L)<p. 

If f(M) n EL[aj\ = 0 , then 8f(ap L) = 1. Since # > /?, at least one index j 
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exists such that ƒ (M) n EL[ajl ^ &- The Borel Picard Theorem is proved. 
The proof of the Defect Relation and (4.16) itself depends on the choice of 

the Jacobian section F. Moreover F has to satisfy requirement (4.14) which 
implies m > n = rank/. If N = Pn is the complex projective space and if L is 
the hyperplane section bundle, a Defect Relation can be obtained using a 
holomorphic form B 2É 0 of bidegree (m — 1, 0). Again, additional assump
tions have to be made on B. Differentiation in the direction of B is 
introduced and defines associated maps. No relation between m and n is 
required. Again, a ramification defect, a Ricci defect and a dominator defect 
appear. In both cases, the task of the operator F, respectively B, is to link KN 

with KM. For details to the method using the form B and associated maps see 
[1], [19], [21], [26], [30], [31] and [33], where [31] gives a Defect Relation quite 
similar to (4.16). For references to the method using Jacobian sections see [4], 
[12] and [27], where F appears openly in [27] only. Also, applications are 
given in [4], [12] and [27]. 

5. Higher codimensions. The case of the common zero set of several 
holomorphic sections of the line bundle L shall be considered. Only the First 
Main Theorem and a Casorati-Weierstrass Theorem have been established. 
Again, let N be a connected, compact, complex manifold of dimension n > 0. 
Let L be a holomorphic line bundle on N with a hermitian metric K along the 
fibers of L such that c(L, K) > 0. Let V be the vector space of all global 
holomorphic sections of V. Then dim V = k + 1 < oo. Assume k > 0. Take 
a hermitian metric / on V. Take 0 < p < k. Then Gp(V) = {a0 A • • • A 
ap\cij G V) is analytic in /\p+xV and Gp(V) = P(Gp(V) is a smooth, con
nected compact submanifold of dimension d(p, n) = (n - p)(p + 1) in 
P(A;,+i *0 called the Grassmann manifold of order p. 

Take a E Gp(V). Then a = P(ct) with a = a0 A . •. A V For 0 < /x < p, 
define a^ = P(aM) e P(F) and 

a" « a0A . •. A V i A V i A • • • A<V 

A section a*1 of the trivial bundle Wp = N X A ^ is defined by aM(x) = 
(x, a**). A holomorphic section Tja of L ® ^ over TV is defined by 

i«(*)- i (-i)v*)®s'(*)-
/i = 0 

Here 7]a depends on a but not on a0, . . . , ap. Let Z(77a) be the zero set of r\a. 
The hermitian metric / on V defines a hermitian metric / on /\pV and a 
hermitian metric / along the fibers of the trivial bundle Wp = N X A ^ -
Hence a hermitian metric K <S> / is defined along the fibers of L ® Pf̂ . Take 
x G M, then 

o <||«;*L- ((«),)" W*)U 
is defined and depends on a but not on the choice of a G P~\a). Also 
EL[a] = Z(rja) depends on a only. Obviously, 

p 

EL[a] = {x<EM\ \\a, X\\K = 0} = f ) ELM 
/x = 0 
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The Grassmann manifold Gk(V) consists of one and only one point denoted 
by oo. Then £^[00] is the base point set of L consistent with (4.2) with 
N^ = N - EL[co] 7* 0 . The hermitian metric / on V defines a hermitian 
metric / along the fibers of LjA^ as explained in §4. If x E N^ then 
0 < \\a, x\\i < 1 and 

IIML=IIMI/II^>*L-
Here ||oo, JCĤ  is called the deviation of K. By multiplying K with a positive 
constant, 0 < ||oo, x\\K < 1 can be assumed w.l.o.g. Hence K is distinguished 
and || a, *||K < 1 f or all a E Gp(V) and x E N by continuity. The form 

0 < * L [* ] = c(Ly K) + ddclog\\a, xfK 

is defined o n i V - EL[a] and is independent of K with $L[aY*1 — 0- On 

JV — EL[a]9 the Chern-Levine form 

0 < AL[a]K= -log||a,*||* 2 $ L [ ^ A ^ ( ^ ^ " " 
/ I - O 

is defined with 

^<AL[a]K=c(L,/c) '+ 1 . 

Let (Af, T) be a parabolic manifold of dimension m. Assume 0 < p < k and 
q=* m — p — 1 > 0 . Let ƒ: M -> ]V be a holomorphic map. For simplicity, 
assume that /^ - / ' ^ [ a ] ) is empty or has pure dimension q for all 
a E Gp(V). For r > 0 the spherical image of orderp is defined by 

Af (r, L, /c) - r"2« f /*(c(L, /c)p + 1) A ^ > 0. 
•'Mir] 

The function increases. The limits for r -» 0 and r -> 00 exist and are denoted 
by Af(0, L, K) and ^(00, L, K), respectively. Then 

Af (r, L, /c) - f />(c(L, ic)p+') A <»« + ^ / (0, L, JC). 

For 0 < s < r, the characteristic of order p is defined by 

I / (r, j , L, K) - f ,4/ (f, L,K) 4L> 0. 

The function increases and 

Tf (r, s, L, K)/ (log r) -» ^ (00, L, K) for r -> 00. 

For each a 6 C^F), a multiplicity function 0fa > 0 is defined on M with 
Fa = supp 6^ such that 0fa is locally constant on the set of simple points of 
Fa. For r > 0, the counting function of ƒ for a E Gp(K) is defined by 

nf(r; a, L) = r~~lq( 0fav
2q > 0. 

The function increases. Hence, nf(r; a, L) -» nf(0; a, L) for r -» 0. If r > 0, 
then 

V ; a,L)-f 0fao>2« + a,(0; a, L). 
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For 0 < s < r9 the valence function of ƒ for a E Gp(V) is defined by 

nf(t; a9L) — . 

Also define M(s9 r] = M[r] - M[^]. Then the deficit of ƒ for a is defined by 

Df(r9s;a,L9K)-\ f f*(AL[a]K) A <o'+1 >0 . 
^ */A/(5,r] 

The function increases with A- and is semicontinuous from the right. For 
r E 9tT, the compensation function of ƒ for a E G/>(K) is defined by 

mf(r; a9L,K)-\ [ r(AL[a]K) Aoq>0 
L JM<yy 

where oq is defined by (4.3). The function continues to a function which is 
semicontinuous from the right for all r > 0. For 0 < s < r the First Main 
Theorem holds: 

Tf (r, s, L, K) = N/(r, s'> a> L) + my(r; a, L, K) 

— mf(s; a9 L, K) — Df (r, s; a, L, K). 

Assume F^ = ƒ _1(2?Joo]) has at most dimension q — 1. Then # can be 
replaced by / in the preceding statements, although / is singular over EL[oo]. 
The hermitian metric / on A^+i V defines a Fubini-Study-Kaehler metric on 
P(A^+i V) which restricts to a Kaehler metric on Gp(V) whose exterior form 
is denoted by yp. Let D{p9ri) be the degree of the Grassmann manifold 
Gp(V) in P(f\p+lV). If h is an integrable function on Gp(V), its average is 
defined by 

>y } D(p,n)JGp(v) *p 

Then Ip(\) = 1. Define 

1 P k'P 1 

Then the following Mean Value Theorems hold: 

/ , ( # i / r ; a , L ) ) - , 4 / ( r , L , / ) , 

Ip(Nf(r,s;a,L))- Tf (r, s; L, /), 

^ (m^r ; a, L, /)) - ypAf~l(r9 L9 /) , 

/ ^ ( ^ ( r , s; a9 L9 /)) - yp(Af~l (r, L, /) - ^ l / " 1 (j, L, /)). 

Assume Fa i- 0 for at least one a E G/F) . Then Tf{r9 s; L, /)-» oo for 
r ^ oo. Define x(#) = 1 if Fa ¥= 0 and x(<0 - 0 if Fa = 0 . Then x is 
integrable over Gp(V) with 0 < bf(p) = ^(x) < 1. Here bf(p) is the probabil
ity that ƒ (M) n EL[a] ¥= 0 . The First Main Theorem and the Mean Value 
Theorems imply easily that 

0 < 1 - bf{p) < ypAf~l(r9 L9 l)/Tf (r, s;L, I) 

for all 0 < s < r. Hence, if 
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(5.1) Af-l(nL,t)/Tf(r,s;L9l)-*0 forr->oo, 

then bf{p) = 1, which means / (M) n EL[a] ¥= 0 for almost all a E Gp(V), 
which is a Casorati- Wierstrass Theorem. 

The results of this section hold even if M and N are complex spaces and if 
ƒ is meromorphic. Also the full force of the parabolic exhaustion r is not 
needed. The assumption com = 0 can be dropped, in which case r is called a 
logarithmic pseudoconvex exhaustion. The results of this section extend also to 
the case where the line bundle L is replaced by a vector bundle E and a 
family of Schubert zeroes is considered. A Casorati-Weierstrass Theorem can 
be obtained; see [28]. For references to §5 see [4], [12] and [27]. 
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