STATISTICAL INDEPENDENCE OF LINEAR CONGRUENTIAL PSEUDO-RANDOM NUMBERS

BY HARALD NIEDERREITER¹

Communicated by J. T. Schwartz, June 5, 1976

Given a modulus $m \ge 2$ and a multiplier λ relatively prime to m, a sequence y_0, y_1, \ldots of integers in the least residue system mod m is generated by the recursion $y_{n+1} \equiv \lambda y_n \pmod{m}$ for $n = 0, 1, \ldots$, where the initial value y_0 is relatively prime to m. The sequence x_0, x_1, \ldots in the interval [0, 1), defined by $x_n = y_n/m$ for $n = 0, 1, \ldots$, is then a sequence of pseudo-random numbers generated by the linear congruential method. The sequence is periodic, with the least period τ being the exponent to which λ belongs mod m.

For fixed $s \ge 2$, consider the s-tuples $\mathbf{x}_n = (x_n, x_{n+1}, \ldots, x_{n+s-1}), n = 0, 1, \ldots$. We determine the empirical distribution of the s-tuples $\mathbf{x}_0, \mathbf{x}_1, \ldots$ and compare it with the uniform distribution on $[0, 1]^s$. The original sequence x_0, x_1, \ldots of linear congruential pseudo-random numbers passes the *serial test* (for the given value of s) if the deviation between these two distributions is small. To measure this deviation, we introduce the quantity

$$D_N = \sup_{I} |F_N(J) - V(J)| \quad \text{for } N \ge 1,$$

where the supremum is extended over all subintervals J of $[0, 1]^s$, $F_N(J)$ is N^{-1} multiplied by the number of terms among $\mathbf{x_0}, \mathbf{x_1}, \ldots, \mathbf{x_{N-1}}$ falling into J, and V(J) denotes the volume of J.

For a nonzero lattice point $\mathbf{h} = (h_1, \ldots, h_s) \in \mathbb{Z}^s$, let $r(\mathbf{h})$ be the absolute value of the product of all nonzero coordinates of \mathbf{h} . We set

$$R^{(s)}(\lambda, m, q) = \sum_{\substack{\mathbf{h} \pmod{m} \\ \mathbf{h} \cdot \lambda \equiv \mathbf{0}(q)}} (r(\mathbf{h}))^{-1}$$

where the sum is extended over all nonzero lattice points \mathbf{h} with $-m/2 < h_j \leq m/2$ for $1 \leq j \leq s$ and $\mathbf{h} \cdot \lambda = h_1 + h_2\lambda + \cdots + h_s\lambda^{s-1} \equiv 0 \pmod{q}$. For prime moduli m, a somewhat simplified version of our result reads as follows.

THEOREM 1. For a prime m and for a multiplier λ belonging to the exponent $\tau \mod m$, we have

AMS (MOS) subject classifications (1970). Primary 65C10, 68A55; Secondary 10G05, 10K05.

 $^{^1}$ This research was supported by NSF Grant MPS72-05055A02 at the Institute for Advanced Study, Princeton, New Jersey, in the academic year 1974-1975.

Copyright © 1976, American Mathematical Society

$$D_{\tau} < \frac{s}{m} + \min\left(1, \frac{\sqrt{m-\tau}}{\tau}\right) \left(\frac{2}{\pi} \log m + \frac{7}{5}\right)^{s} + \frac{1}{2} R^{(s)}(\lambda, m, m).$$

The second term in the upper bound is nonincreasing as a function of τ and so becomes minimal for $\tau = m - 1$. Values of λ that minimize $R^{(s)}(\lambda, m, m)$ are of fundamental importance in the theory of good lattice points in the sense of Korobov and Hlawka (see [2, Chapter 2, §5]). We conclude that a multiplier λ is favorable with regard to the s-dimensional serial test if $\lambda = (1, \lambda, \ldots, \lambda^{s-1})$ is a good lattice point mod m (or, equivalently, λ is an optimal coefficient mod m) and λ is a primitive root mod m. It can be shown that there exist primitive roots $\lambda_0 \mod m$ for which $R^{(s)}(\lambda_0, m, m)$ is of the order of magnitude $m^{-1}\log^s m \log \log m$.

For an odd prime power $m = p^{\alpha}$, p prime, $\alpha \ge 2$, and for $|\lambda| > 1$, let $\tau(p)$ be the exponent to which λ belongs mod p and let β be the largest integer such that p^{β} divides $\lambda^{\tau(p)} - 1$.

THEOREM 2. For an odd prime power modulus $m = p^{\alpha}$ with $\alpha > \beta$, we have

$$D_{\tau} < \frac{s}{m} + \frac{1}{2} R^{(s)}(\lambda, m, p^{\alpha-\beta}).$$

THEOREM 3. If $m = 2^{\alpha}$ with $\alpha \ge 3$ and $\lambda \equiv 5 \pmod{8}$, then

$$D_{\tau} < \frac{s}{m} + \frac{1}{2} R^{(s)}(\lambda, m, 2^{\alpha-2}).$$

If $m = 2^{\alpha}$ with $\alpha \ge 4$ and $\lambda \equiv 3 \pmod{8}$, then

$$D_{\tau} < \frac{s}{m} + \frac{1}{2} R^{(s)}(\lambda, m, 2^{\alpha-1}) + \frac{1}{2\sqrt{2}} \left(R^{(s)}(\lambda, m, 2^{\alpha-3}) - R^{(s)}(\lambda, m, 2^{\alpha-2}) \right).$$

Since the upper bounds in Theorems 2 and 3 can be estimated in terms of $R^{(s)}(\lambda, m', m')$ with a suitable m' < m, the remarks following Theorem 1 apply, *mutatis mutandis*, to prime power moduli.

For computational purposes, it is more convenient to replace $R^{(s)}(\lambda, m, m)$ by the quantity

$$\rho^{(s)}(\lambda, m) = \min_{\mathbf{h}} r(\mathbf{h}),$$

where the minimum is extended over the range of lattice points used in the definition of $R^{(s)}(\lambda, m, m)$.

THEOREM 4. For any dimension $s \ge 2$ and for any integers $m \ge 2$ and λ , we have

$$R^{(s)}(\lambda, m, m) < \rho^{-1}(\log 2)^{1-s}((2\log m)^s + 4(2\log m)^{s-1})$$

 $+ \rho^{-1} 2^{s+1} (2^{s-2} - 1) \binom{k+s-2}{s-1},$ where $\rho = \rho^{(s)}(\lambda, m)$ and $k = [(\log m)/\log 2].$ There exists an interesting relationship between the two-dimensional serial test and continued fractions. It is based on the fact that $R^{(2)}(\lambda, m, m)$ can be estimated in terms of the partial quotients in the expansion of λ/m into a finite simple continued fraction. As a consequence, one obtains that λ is favorable with regard to the distribution of pairs whenever these partial quotients are small. This is in accordance with results of Dieter [1] concerning the case s = 2.

The proofs of Theorems 1, 2 and 3 depend on estimates for exponential sums with linear recurring arguments established in [3]. The case of inhomogeneous linear congruential pseudo-random numbers and the serial test for parts of the period can be treated by similar techniques (see [5]).

Details and proofs, as well as further results, will appear in [4].

REFERENCES

1. U. Dieter, Pseudo-random numbers: The exact distribution of pairs, Math. Comp. 25 (1971), 855-883. MR 45 # 7776.

2. L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Interscience, New York, 1974.

3. H. Niederreiter, Some new exponential sums with applications to pseudo-random numbers, Colloq. on Number Theory (Debrecen, 1974), North-Holland, Amsterdam (to appear).

4. ———, Pseudo-random numbers and optimal coefficients, Advances in Math. (to appear).

5. _____, The serial test for pseudo-random numbers generated by the linear congruential method (in preparation).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024

Current address: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801