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Given a modulus m>2 and a multiplier X relatively prime to m, a sequence 
^O'^i > • • • °f integers in the least residue system mod m is generated by the 
recursion yn+1 ~ \yn (mod m) for n = 0, 1, . . . , where the initial value y0 is 
relatively prime to m. The sequence x0, xx, . . . in the interval [0, 1), defined 
by xn = yn/m for n = 0, 1, . . . , is then a sequence of pseudo-random numbers 
generated by the linear congruential method. The sequence is periodic, with the 
least period r being the exponent to which X belongs mod m. 

For fixed s > 2, consider the s-tuples xn = {xn9 xn+ x, . . . , xn+s_x), n = 
0, 1, . . . . We determine the empirical distribution of the s-tuples x0 , x1? . . . 
and compare it with the uniform distribution on [0, l]s. The original sequence 
x0,xl9 . . .of linear congruential pseudo-random numbers passes the serial test 

(for the given value of s) if the deviation between these two distributions is 
small. To measure this deviation, we introduce the quantity 

DN = sup \FN(J) - V(J)\ for N > 1, 

where the supremum is extended over all subintervals / of [0, 1]*, Fj^J) is N~x 

multiplied by the number of terms among x0 , Xj, . . . , xN__x falling into / , and 
V(J) denotes the volume of J. 

For a nonzero lattice point h = (ht, . . . , hs) e Zs, let r(h) be the absolute 
value of the product of all nonzero coordinates of h. We set 

RW(\9m,q)= Z (rOOr1, 
h (mod m) 
h • \ s 0(q) 

where the sum is extended over all nonzero lattice points h with - m/2 < hj < 
mil for 1 < j < s and h • X = ht 4- h2\ + • • • 4- hs\

s~l = 0 (mod q). For 
prime moduli m, a somewhat simplified version of our result reads as follows. 

THEOREM 1. For a prime m and for a multiplier X belonging to the ex

ponent T mod m, we have 
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Dr <± + m i n ( l , ^ S - V | log m + 2-Y + | /J«(X,m,fn). 

The second term in the upper bound is nonincreasing as a function of r 
and so becomes minimal for r = m - 1. Values of X that minimize i?(s)(X,w,m) 
are of fundamental importance in the theory of good lattice points in the sense 
of Korobov and Hlawka (see [2, Chapter 2, §5]). We conclude that a multiplier 
X is favorable with regard to the s-dimensional serial test if X = (1, X, . . . , X*'1) 
is a good lattice point mod m (or, equivalently, X is an optimal coefficient 
mod ra) and X is a primitive root mod m. It can be shown that there exist 
primitive roots X0 mod m for which R^(\0i m, m) is of the order of magnitude 
m~x\Q%sm log log m. 

For an odd prime power m = pa, p prime, a > 2, and for |X| > 1, let 
T(P) be the exponent to which X belongs mod p and let |3 be the largest integer 
such that pP divides Xr(p) - 1. 

THEOREM 2. For an odd prime power modulus m = pa with a > |3, we 
have 

THEOREM 3. Ifm = 2a with a>3 and X = 5 (mod8), then 

Z ) T < ^ + i ^ ) ( X , m , 2 ^ 2 ) . 

If m = 2a with a>4and\ = 3 (mod 8), then 

£>T<^ + \Ris)fr, m9 2
a~l) 4- — (*(S)(X, m9 2*~3) - R^fr, m, 2<*~2)). 

1 2\/2 

Since the upper bounds in Theorems 2 and 3 can be estimated in terms of 
R(S\\, m\ m) with a suitable m < m, the remarks following Theorem 1 apply, 
mutatis mutandis, to prime power moduli. 

For computational purposes, it is more convenient to replaceR^s\\9m,m) 
by the quantity 

p<5)(X, m) = min r(h), 
h 

where the minimum is extended over the range of lattice points used in the def
inition of R^(K, m, m). 

1ÜEOREM 4. For any dimension s>2 and for any integers m>2 and 
X, we have 

R^(\, m, m) < p-^Oog 2) w ( (2 log m)s + 4(2 log m/- 1 ) 

+ p- 1 2'+^^- l ) (*+J 1 " 2 ) f 
where p = p^s\\9 m) and k = [(log m)/log 2]. 
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There exists an interesting relationship between the two-dimensional serial 
test and continued fractions. It is based on the fact that R^2\\9 m, m) can be 
estimated in terms of the partial quotients in the expansion of \/m into a finite 
simple continued fraction. As a consequence, one obtains that X is favorable 
with regard to the distribution of pairs whenever these partial quotients are small. 
This is in accordance with results of Dieter [1] concerning the case s = 2. 

The proofs of Theorems 1, 2 and 3 depend on estimates for exponential 
sums with linear recurring arguments established in [3]. The case of inhomo-
geneous linear congruential pseudo-random numbers and the serial test for parts 
of the period can be treated by similar techniques (see [5]). 

Details and proofs, as well as further results, will appear in [4]. 
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