STATISTICAL INDEPENDENCE OF LINEAR CONGRUENTIAL PSEUDO-RANDOM NUMBERS

BY HARALD NIEDERREITER ${ }^{1}$

Communicated by J. T. Schwartz, June 5, 1976
Given a modulus $m \geqslant 2$ and a multiplier λ relatively prime to m, a sequence y_{0}, y_{1}, \ldots of integers in the least residue system $\bmod m$ is generated by the recursion $y_{n+1} \equiv \lambda y_{n}(\bmod m)$ for $n=0,1, \ldots$, where the initial value y_{0} is relatively prime to m. The sequence x_{0}, x_{1}, \ldots in the interval $[0,1)$, defined by $x_{n}=y_{n} / m$ for $n=0,1, \ldots$, is then a sequence of pseudo-random numbers generated by the linear congruential method. The sequence is periodic, with the least period τ being the exponent to which λ belongs $\bmod m$.

For fixed $s \geqslant 2$, consider the s-tuples $\mathbf{x}_{n}=\left(x_{n}, x_{n+1}, \ldots, x_{n+s-1}\right), n=$ $0,1, \ldots$ We determine the empirical distribution of the s-tuples $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots$ and compare it with the uniform distribution on $[0,1]^{s}$. The original sequence x_{0}, x_{1}, \ldots of linear congruential pseudo-random numbers passes the serial test (for the given value of s) if the deviation between these two distributions is small. To measure this deviation, we introduce the quantity

$$
D_{N}=\sup _{J}\left|F_{N}(J)-V(J)\right| \quad \text { for } N \geqslant 1,
$$

where the supremum is extended over all subintervals J of $[0,1]^{s}, F_{N}(J)$ is N^{-1} multiplied by the number of terms among $\mathbf{x}_{0}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N-1}$ falling into J, and $V(J)$ denotes the volume of J.

For a nonzero lattice point $\mathbf{h}=\left(h_{1}, \ldots, h_{s}\right) \in \mathbf{Z}^{s}$, let $r(\mathbf{h})$ be the absolute value of the product of all nonzero coordinates of h. We set

$$
R^{(s)}(\lambda, m, q)=\sum_{\substack{\mathbf{h}(\bmod m) \\ \mathbf{h} \cdot \lambda \equiv 0(q)}}(r(\mathbf{h}))^{-1}
$$

where the sum is extended over all nonzero lattice points \mathbf{h} with $-m / 2<h_{j} \leqslant$ $m / 2$ for $1 \leqslant j \leqslant s$ and $\mathbf{h} \cdot \lambda=h_{1}+h_{2} \lambda+\cdots+h_{s} \lambda^{s-1} \equiv 0(\bmod q)$. For prime moduli m, a somewhat simplified version of our result reads as follows.

Theorem 1. For a prime m and for a multiplier λ belonging to the exponent $\tau \bmod m$, we have

[^0]$$
D_{\tau}<\frac{s}{m}+\min \left(1, \frac{\sqrt{m-\tau}}{\tau}\right)\left(\frac{2}{\pi} \log m+\frac{7}{5}\right)^{s}+\frac{1}{2} R^{(s)}(\lambda, m, m)
$$

The second term in the upper bound is nonincreasing as a function of τ and so becomes minimal for $\tau=m-1$. Values of λ that minimize $R^{(s)}(\lambda, m, m)$ are of fundamental importance in the theory of good lattice points in the sense of Korobov and Hlawka (see [2, Chapter 2, §5]). We conclude that a multiplier λ is favorable with regard to the s-dimensional serial test if $\lambda=\left(1, \lambda, \ldots, \lambda^{s-1}\right)$ is a good lattice point $\bmod m$ (or, equivalently, λ is an optimal coefficient $\bmod m)$ and λ is a primitive root $\bmod m$. It can be shown that there exist primitive roots $\lambda_{0} \bmod m$ for which $R^{(s)}\left(\lambda_{0}, m, m\right)$ is of the order of magnitude $m^{-1} \log ^{s} m \log \log m$.

For an odd prime power $m=p^{\alpha}, p$ prime, $\alpha \geqslant 2$, and for $|\lambda|>1$, let $\tau(p)$ be the exponent to which λ belongs $\bmod p$ and let β be the largest integer such that p^{β} divides $\lambda^{\tau(p)}-1$.

Theorem 2. For an odd prime power modulus $m=p^{\alpha}$ with $\alpha>\beta$, we have

$$
D_{\tau}<\frac{s}{m}+\frac{1}{2} R^{(s)}\left(\lambda, m, p^{\alpha-\beta}\right)
$$

Theorem 3. If $m=2^{\alpha}$ with $\alpha \geqslant 3$ and $\lambda \equiv 5(\bmod 8)$, then

$$
D_{\tau}<\frac{s}{m}+\frac{1}{2} R^{(s)}\left(\lambda, m, 2^{\alpha-2}\right)
$$

If $m=2^{\alpha}$ with $\alpha \geqslant 4$ and $\lambda \equiv 3(\bmod 8)$, then
$D_{\tau}<\frac{s}{m}+\frac{1}{2} R^{(s)}\left(\lambda, m, 2^{\alpha-1}\right)+\frac{1}{2 \sqrt{2}}\left(R^{(s)}\left(\lambda, m, 2^{\alpha-3}\right)-R^{(s)}\left(\lambda, m, 2^{\alpha-2}\right)\right)$.
Since the upper bounds in Theorems 2 and 3 can be estimated in terms of $R^{(s)}\left(\lambda, m^{\prime}, m^{\prime}\right)$ with a suitable $m^{\prime}<m$, the remarks following Theorem 1 apply, mutatis mutandis, to prime power moduli.

For computational purposes, it is more convenient to replace $R^{(s)}(\lambda, m, m)$ by the quantity

$$
\rho^{(s)}(\lambda, m)=\min _{\mathbf{h}} r(\mathbf{h})
$$

where the minimum is extended over the range of lattice points used in the definition of $R^{(s)}(\lambda, m, m)$.

Theorem 4. For any dimension $s \geqslant 2$ and for any integers $m \geqslant 2$ and λ, we have

$$
\begin{aligned}
& \qquad \begin{array}{r}
R^{(s)}(\lambda, m, m)<\rho^{-1}(\log 2)^{1-s}\left((2 \log m)^{s}+4(2 \log m)^{s-1}\right) \\
+\rho^{-1} 2^{s+1}\left(2^{s-2}-1\right)\binom{k+s-2}{s-1},
\end{array} \\
& \text { where } \rho=\rho^{(s)}(\lambda, m) \text { and } k=[(\log m) / \log 2] .
\end{aligned}
$$

There exists an interesting relationship between the two-dimensional serial test and continued fractions. It is based on the fact that $R^{(2)}(\lambda, m, m)$ can be estimated in terms of the partial quotients in the expansion of λ / m into a finite simple continued fraction. As a consequence, one obtains that λ is favorable with regard to the distribution of pairs whenever these partial quotients are small. This is in accordance with results of Dieter [1] concerning the case $s=2$.

The proofs of Theorems 1,2 and 3 depend on estimates for exponential sums with linear recurring arguments established in [3]. The case of inhomogeneous linear congruential pseudo-random numbers and the serial test for parts of the period can be treated by similar techniques (see [5]).

Details and proofs, as well as further results, will appear in [4].

REFERENCES

1. U. Dieter, Pseudo-random numbers: The exact distribution of pairs, Math. Comp. 25 (1971), 855-883. MR 45 \# 7776.
2. L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Interscience, New York, 1974.
3. H. Niederreiter, Some new exponential sums with applications to pseudo-random numbers, Colloq. on Number Theory (Debrecen, 1974), North-Holland, Amsterdam (to appear).
4. —, Pseudo-random numbers and optimal coefficients, Advances in Math. (to appear).
5. The serial test for pseudo-random numbers generated by the linear congruential method (in preparation).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024

Current address: Department of Mathematics, University of Illinois at UrbanaChampaign, Urbana, Illinois 61801

[^0]: AMS (MOS) subject classifications (1970). Primary 65C10, 68A55; Secondary 10G05, $10 \mathrm{K05}$.

 1 This research was supported by NSF Grant MPS72-05055A02 at the Institute for Advanced Study, Princeton, New Jersey, in the academic year 1974-1975.

