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concerning numbers which are representable as a sum of two squares. Selberg 
[14] has shed further light on the relationship between the large sieve and the 
Selberg sieve. Diamond and Jurkat (unpublished) have extended the analysis 
of the iterated Selberg sieve to dimension K ¥= 1 (see also Porter [11]). 
Bombieri [2], [3] has had some innovative ideas concerning weighted sieves. 
Vaughan [15] has given a simple proof of a sharp form of Bombieri's mean 
value theorem. 

For years to come, Sieve methods will be vital to those seeking to work in 
the subject, and also to those seeking to make applications. The heavy 
notation in the book seems to be essential in formulating such general 
methods. Some parts of the book are much more difficult to read than others, 
but generally the text is lively and conversational. In concept and execution 
this is an excellent, long-needed work. 
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Fourier series with respect to general orthogonal systems, by A. M. Olevskiï 
(translated by B. P. Marshall and H. J. Christoffers), Ergebnisse der 
Mathematik und ihrer Grenzgebiete, Band 86, Springer-Verlag, Berlin, 
Heidelberg, New York, 1975, viii + 136 pp., $33.60. 

Fourier series-the original Fourier series, that is, the ones using trigono­
metric functions-were the first series of orthogonal functions. They are either 
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very satisfactory or very unsatisfactory, depending on the point of view. For 
example, it would be pleasant if the Fourier series of continuous functions 
converged to the functions that gave rise to them (as Fourier seems to have 
believed, in common with some present-day physicists); but du Bois-Rey-
mond showed that the Fourier series of continuous functions can in fact 
diverge at some points. However, Dirichlet showed (in effect) that at least the 
Fourier series of a function of bounded variation converges to the function 
(succeeding, as J. L. Walsh once remarked, where Fourier failed, because 
Dirichlet knew more trigonometry); and Fejér showed that the Fourier series 
of a continuous function is at least (C, 1) summable, so that at this point the 
representation problem looked fairly satisfactory. Then Kolmogorov showed 
that the Fourier series of an integrable function can diverge at every point; 
but eventually Carleson showed that the Fourier series of an L2 function 
(hence of a continuous function) must converge almost everywhere (thus 
almost justifying Fourier's intuition). However, the convergence properties of 
Fourier series are strongly tied to the natural ordering of the trigonometric 
functions: Kolmogorov discovered that the Fourier series of an L2 function 
can be rearranged into an almost everywhere divergent series. One can also 
consider trigonometric series that are not initially known to be Fourier series. 
Such a series may (for example) converge everywhere, in which case it is the 
Fourier series of its sum; at the other extreme it may have a sequence of 
partial sums that converge almost everywhere to any measurable function you 
like. Thus even trigonometric series are by no means as simple as they appear 
at first. 

Olevskifs book is a survey of the developments of the last 15 years in the 
theory of general systems of orthogonal functions, along the lines of asking 
which convergence and divergence properties of trigonometric Fourier series 
carry over to the more general systems. Are other orthogonal systems as good 
as the trigonometric system, or better, or worse? To what extent are the 
special properties of the trigonometric system-such as uniform boundedness, 
ordering, or completeness-decisive in determining the properties of Fourier 
series? There are isolated classical results along these lines, but a great deal 
more has been learned recently, so much, indeed, that although Olevskiï 
surveys the field rather fully, he is able to give proofs only of a rather small 
number of results that particularly interest him. Perhaps inevitably in an 
expanding field, it is hard to see any unifying ideas; there is a rather 
overwhelming array of special results, some of them involving such special 
terminology that they cannot be appreciated without explanation. Fortunately 
Olevskiiî is rather good at saying, in informal language, what the general idea 
of each class of results really is; and some of the results are quite striking. The 
proofs presented in the book are extremely "classical"; they depend, for the 
most part, on ingenious and difficult constructions. It is rather noticeable that 
the subject is currently being developed mostly in the Soviet Union and 
Hungary (with a few notable exceptions). Since the book is primarily a 
survey, it would be impossible to summarize it in detail without making the 
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review almost as long as the book; I shall, however, try to give an idea of the 
contents by picking out some representative results. Throughout the book we 
are working on a finite interval and usually with real-valued functions. 

The central theme of the first chapter is the question of what can be said 
about orthonormal systems {<pn(x)} that share with the trigonometric func­
tions the property of being uniformly bounded. The possibility of having a 
Fourier series that diverges at some points depends on the unboundedness of 
the Lebesgue functions 

• ( * ) -ƒ 2 <P*(*)«P*(0 
A : = l 

du 

It turns out that the unboundedness of the Ln(x) follows merely from the 
uniform boundedness of the set {yn(x)}. Moreover, Ln(x), which is asymptot­
ically k log n for the trigonometric system, cannot (for a uniformly bounded 
system) even be o (log n) on a set of positive measure. In particular, it follows 
that no uniformly bounded orthonormal system can be a basis in space C; 
this accounts neatly for the fact that the first orthonormal basis for C, the 
Haar system, is indeed unbounded. These results, and a number of others, 
depend on a difficult inequality of the author's for the partial sums of a series 
2cA:(pA:(x). (Another property of uniformly bounded orthonormal systems, 
which appeared too late for inclusion in this book, is that there is always a 
Fourier series that diverges on a set of positive measure: Bochkarev, Mat. Sb. 
98 (140) (1975), 436-449.) 

In Chapter II the problem is, given an orthonormal system {<pn(x)}, to find 
conditions on sequences {cn} that will make 2cn<p„(x) converge almost 
everywhere. For the trigonometric system we now know (Carleson) that 
{cn} e I2 suffices by itself; but it has been known for a long time that there 
are other orthonormal systems for which an L2 Fourier series can diverge 
almost everywhere. It is reasonable to ask, then, for a characterization of 
multipliers <o(«) such that *2cncpn(x) converges almost everywhere when 
2c^(o(«) < oo. The boundary between successful and unsuccessful factors is 
at co(n) = (log Yif (this is the Rademacher-Menshov theorem); for monotonie 
{cn} the author presents a tidy recent result by Tandori: if cnl then a 
necessary and sufficient condition for *2cn<pn(x) to converge almost every­
where for all orthonormal systems {<pn} is the convergence of 2c^(log ri)2. 

In another direction, it is classical (Paley and Zygmund) that for an 
arbitrary orthonormal system {<p„} almost all series 2 ± cn<pn(x) converge 
almost everywhere when [cn] E I2. The author presents a recent result of 
Garsia's: the same conclusion holds if, instead of varying the signs of the 
terms, we vary their order, i.e. almost all rearrangements of 2c„cpw(x) con­
verge almost everywhere. 

If a trigonometric series converges on a set of positive measure its 
coefficients tend to 0. The property of the trigonometric system that is 
significant here is the completeness of the system. In fact, for any complete 
orthonormal system {<p„} the convergence of ^cncpn(x) on a set of positive 
measure implies at least that 21/(c^ + 1) = oo, and conversely if the latter 
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condition is satisfied, there is a complete orthonormal system {<pn} such that 
^cn(pn{x) converges almost everywhere (and also in Lp for 1 < p < 2); the 
novelty is in the second part. 

Chapter HI considers further properties of complete systems. The central 
thesis of the chapter is that the Haar system is extremal among complete 
orthonormal systems: any divergence phenomenon for the Haar system 
carries over to all complete orthonormal systems. Thus we have, in particular, 
a new approach to the construction of an L2 trigonometric series which can 
be rearranged to diverge almost everywhere (since the construction of such a 
series of Haar functions is relatively easy). We still do not know whether a 
trigonometric series can diverge to + oo on a set of positive measure; this 
cannot happen for Haar series (Talalyan and Arutyunyan; a neat proof by 
Skvortsov is given in this chapter). The author also describes a sense in which 
the Haar system is the best of all bases for the space of continuous functions. 

For the trigonometric system we know that the Fourier coefficients of a 
continuous function can have H\cn\

p = oo for all p < 2 (Carleman singular­
ity). This carries over to all complete orthonormal systems, even in a localized 
sense. Moreover, there is a function, continuous on a compact set K of 
measure 0, such that every continuous extension from K to the whole interval 
has a Carleman singularity. Thus the values of a function on a set of measure 
0, which do not affect its individual Fourier coefficients, can have a decisive 
influence on their behavior as a whole. Still another result about the Haar 
system {xn(

x)} (Nikishin and and Ulyanov) is that every series *2cnxn(x) that 
converges unconditionally almost everywhere also converges absolutely al­
most everywhere (unconditional convergence almost everywhere means that 
every rearrangement converges except on a set of measure 0 that may depend 
on the rearrangement, so that a series that converges unconditionally almost 
everywhere need not converge absolutely at any point at all). 

In Chapter IV we are again concerned with convergence almost everywhere 
or in Lp

9 but under conditions on the function instead of on the coefficients. 
By a classical theorem, the boundedness of the Lebesgue functions Ln{x) at 
each x E E makes the Fourier series of every L2 function converge almost 
everywhere on E, and uniform boundedness of Ln(x), for a closed system, 
makes the Fourier series of an Lp function converge in Lp, and also almost 
everywhere if p > 2. For the usual systems there is also convergence in Lp, 
p < 2; but in the general case, with Ln{x) uniformly bounded, the Fourier 
series of a function that belongs to every Lp

9 p < 2, can diverge almost 
everywhere, and for every rearrangement (so that Garsia's theorem does not 
extend from L2 to Lp, p < 2). 

Other theorems in this chapter show, in other ways, how much more 
complicated than L2 the Lp spaces for p < 2 are. For the trigonometric 
system, Lp Fourier series converge almost everywhere when/? > 1, but this is 
not true for complete orthonormal systems in general. In fact, even for 
uniformly bounded complete orthonormal systems it can be true, for any 
p0 > 1, that the Fourier series of functions of Lp converge almost everywhere 
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for p > p0, but can diverge almost everywhere for p = p0. Again, for an L2 

function ƒ, the Fourier series with respect to a complete orthonormal system 
converges to ƒ in L2, and so if it converges almost everywhere it converges to 
ƒ. However, for p < 2, even for a complete bounded orthonormal system, the 
Fourier series of an Lp function can converge to some function other than ƒ; 
indeed, it is possible to rearrange it (or to take a subsequence of its partial 
sums) so that it converges to any measurable function we like, or to oo. 

The theory of trigonometric series has given us (for better or worse) many 
gifts, notably Dirichlet's concept of a function, the Riemann integral and the 
theory of sets. It remains to be seen whether the general theory of series of 
orthogonal functions will be as fruitful. Meanwhile we can take comfort from 
Hermann Weyl's dictum that "special problems in all their complexity con­
stitute the stock and core of mathematics." 

The book has not been published in Russian. Unfortunately the translation 
reads, in uncomfortably many places, like a translation: that is to say, too 
often for the reader's comfort it preserves Russian word order or sentence 
structure. 
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Hewitt-Nachbin spaces, by Maurice D. Weir, North-Holland/American 
Elsevier, Amsterdam, 1975, 270 + vii pp., $15.50. 

What does it mean to say that a completely regular, Hausdorff space X is 
realcompact? To Edwin Hewitt,, who introduced the class of realcompact 
spaces under the title g-spaces [18], it means that for every maximal ideal M 
in the ring C(X, R) of continuous real-valued functions on X, either M = {ƒ 
G C(X): f(p) = 0} for some/? 6 l o r the linearly ordered field C(X, R)/M 
is non-Archimedean. To a point-set topologist, it means that for some 
cardinal a the space X is homeomorphic with a closed subspace of the power 
space Ra [34], [9]. To a category-theorist, that X is an object in the epi-reflec-
tive hull generated in 5£t)ct) by R [16], [17]. To a topological linear space 
theorist, that C (X, R) is bornological in the compact-open topology [31], [32], 
[35], or that for every nontrivial multiplicative linear functional 0 on C(X) 
there isp G X such that $(ƒ) = ƒ(/?) [18], [8, Problem 3W(b)], [19, p. 170]. To 
a descriptive set theorist, that X is the intersection of Baire subsets of its 
Stone-Cech compactification fiX [24, Theorem 9], [33, Corollary 3.11]. To a 
uniform spaceman, that X is complete in the uniformity defined by C(X) 
[30], [18, p. 92], [34]. And so forth. The ubiquity with which the concept 
appears, and the elegance of the characterizations available in quite diverse 
contexts, justify both its introduction into the literature over 25 years ago and 
the present undertaking of a comprehensive survey. 

In his Introduction, Professor Weir sets forth briefly and to good effect the 
historical data which led him to adopt the name "Hewitt-Nachbin spaces" for 
the classes he studies here. It is an elementary courtesy due the author that 
today's remarks in review follow his lead in this respect, but I reserve the 


