TRANSFERENCE RESULTS FOR MULTIPLIER OPERATORS

BY R. O. GANDULFO
Communicated by François Treves, January 30, 1976

The purpose of this paper is to show a transference result of the type obtained in [4] and [5] for convolution operators acting on functions defined on Σ_{n-1}, the unit sphere of \mathbf{R}^{n}. As a consequence we obtain a multiplier theorem for expansions in spherical harmonics and Gegenbauer polynomials. Also, Zygmund's inequality for Cesáro sums and that for Littlewood-Paley function g_{δ}, due to Bonami and Clerc [1], are easily obtained using our results [6] . I wish to express my appreciation to my Ph.D advisors, Professor R. Coifman and G. Weiss, for their encouragement and help in the preparation of this work.

Introduction. Let $\operatorname{SO}(n)$ be the group of all rotations of \mathbf{R}^{n}. The left regular representation of $\operatorname{SO}(n)$ defined by $R_{u} f(x)=f\left(u^{-1} x\right), u \in \mathrm{SO}(n)$ and $f \in L^{2}\left(\Sigma_{n-1}\right)$, decomposes into a direct sum of finite dimensional irreducible representations $R^{k}(n \geqslant 3), k=0,1, \ldots L^{2}\left(\Sigma_{n-1}\right)=\Sigma_{k=0}^{\infty} H_{k}$, where H_{k}, the space of the representation R^{k}, consists of the spherical harmonics of degree k [2], [8], [9]. If $f \in L^{2}\left(\Sigma_{n-1}\right), f(x)=\Sigma_{k=0}^{\infty}\left(Z_{e, n-1}^{(k)} * f\right)(x)$, where $Z_{e, n-1}^{(k)}(x)$ is the zonal spherical harmonic of degree k and pole $e=(0, \ldots, 0,1)$ and $*$ denotes convolution on Σ_{n-1}. A multiplier M, is an operator that commutes with the action of $\operatorname{SO}(n)$ on Σ_{n-1} and is defined on the class P of finite linear combinations of elements in the spaces H_{k}. Such M assume the form

$$
M f(x)=\sum m_{k}\left(Z_{e, n-1}^{(k)} * f\right)(x) \quad \text { (finite sum) }
$$

Multipliers for expansions in spherical harmonics. Let H be a Hilbert space over the complex numbers and let $L^{p}\left(\Sigma_{n-1}, H\right), 1 \leqslant p \leqslant \infty$, be the space of functions $f: \Sigma_{n-1} \rightarrow H$ defined in the usual way replacing absolute values by $\|\cdot\|_{H}$. For the left regular representation of $\operatorname{SO}(n)$ on $L^{2}\left(\Sigma_{n-1}, H\right)$ we have a decomposition entirely similar to the one described above [3]. To a bounded operator on L^{2} which commutes with rotations, corresponds a bounded sequence $\left\{m_{k}\right\}_{k=0}^{\infty}$ of operators on H such that $M f(x)=\Sigma m_{k}\left(Z_{e, n-1}^{(k)} * f(x)\right)$ (finite sum) for every $f \in P$. The operator valued function

$$
K_{r}(x)=\sum_{k=0}^{\infty} r^{k} Z_{e, n-1}^{(k)}(x) m_{k}, \quad r \in[0,1)
$$

is continuous. We write $M f(x)=\lim _{r \rightarrow 1}\left(K_{r} * f\right)(x)$.

Theorem 1. Let M_{r} be defined on the class P on Σ_{n-2} by letting

$$
M_{r} g(x)=\left[\left(|\sin \theta| K_{r}(\theta)\right) * g\right](x)
$$

where $r \in[0,1)$ and θ is the angle between a variable in Σ_{n-1} and e.
If M_{r} is bounded uniformly for r close to 1, i.e.

$$
\int_{\Sigma_{n-2}}\left\|M_{r} g(x)\right\|_{H}^{p} d x \leqslant A_{p}^{p} \int_{\Sigma_{n-2}}\|g(x)\|_{H}^{p} d x
$$

$1 \leqslant p<\infty$ and A_{p} is a constant depending only on p, then

$$
\int_{\Sigma_{n-1}}\|M f(x)\|_{H}^{p} d x \leqslant A_{n}^{p} A_{p}^{p} \int_{\Sigma_{n-1}}\|f(x)\|_{H}^{p} d x
$$

Let $f \in L^{1}(\mathrm{SO}(n))$; then

$$
\int_{\mathrm{SO}(n)} f(u) d u=c_{n} \int_{\mathrm{SO}(n-1)} \int_{\mathrm{SO}(n-1)} \int_{0}^{2 \pi} f\left(\sigma a(\theta) \sigma^{\prime}\right)|\sin \theta|^{n-2} d \theta d \sigma d \sigma^{\prime}
$$

where $d u$ and $d \sigma, d \sigma^{\prime}$ are the Haar measures of $\mathrm{SO}(n), \mathrm{SO}(n-1)$ respectively, and $a(\theta)$ is a rotation by the angle θ in the subspace of \mathbf{R}^{n} generated by the vectors e and ($0, \ldots, 0,1,0$). Using (2) and the methods of [4] and [5] one obtains the above result.

Theorem 3. Let $\left\{K_{j}\right\}_{j=0}^{\infty}$ be a sequence of integrable zonal functions on Σ_{n-1}. Define the maximal operator $K^{*} f(x)=\sup _{j}\left\|\left(K_{j} * f\right)(x)\right\|_{H}$ on $L^{p}\left(\Sigma_{n-1}, H\right)$. If the maximal operator $k^{*} g(x)=\sup _{j}\left\|\left(|\sin \theta| K_{j}(\theta)\right) * g(x)\right\|_{H}$ is bounded on $L^{p}\left(\Sigma_{n-2}, H\right)$ with operator norm B_{p}, then K^{*} is bounded also and its norm bounded by $A_{n} B_{p}$.

When H is the field of complex numbers we obtain
Theorem 4. Let $N=[n / 2]$. If the sequence $\left\{D^{N}\left(m_{k}\right)\right\}_{k=0}^{\infty}$ defines a bounded multiplier on $L^{p}\left(\Sigma_{1}\right), 1 \leqslant p<\infty$, then $\left\{m_{k}\right\}_{k=0}^{\infty}$ defines a bounded multiplier on $L^{p}\left(\Sigma_{n}\right)$, where $\mathcal{D}\left(m_{k}\right)=k m_{k}-(k-2) m_{k-2}$ and $D^{t}\left(m_{k}\right)=$ $D\left(D^{t-1}\left(m_{k}\right)\right)$.

The Marcinkiewicz multiplier theorem [7], together with the above result, give us a multiplier theorem that contains that of Bonami and Clerc [1].

Multipliers for expansions in Gegenbauer polynomials. $L_{\lambda}^{p}(-1,1)$ denotes the space of complex valued measurable functions f on $[-1,1]$ with respect to the measure $d m_{\lambda}(x)=\left(1-x^{2}\right)^{\lambda-1 / 2} d x$, where $\lambda>0$ and $d x$ is Lebesgue measure. To each $f \in L_{\lambda}^{p}$, we associate the formal sum $f(x) \sim \Sigma_{k=0}^{\infty} c_{k} \hat{f}(k) \mathbf{C}_{k}^{\lambda}(x)$, where $\mathbf{C}_{k}^{\lambda}(x)$ is the normalized Gegenbauer polynomial of order $\lambda, \mathbf{C}_{k}^{\lambda}(1)=1, \hat{f}(k)$ the Fourier coefficient and $c_{k}^{-1}=\left\|\mathrm{C}_{k}^{\lambda}\right\|_{2, \lambda}^{2}$.

A multiplier M assumes the form $M f(x) \sim \Sigma_{k=0} m_{k} c_{k} \hat{f}(k) \mathbf{C}_{k}^{\lambda}(x)$, where $\{m\}_{k=0}^{\infty}$ is a sequence of complex numbers.

Theorem 5. Let λ, δ be positive real numbers. If the convolution operator with kernel $g(y)\left(1-y^{2}\right)^{\delta}$ is bounded on L_{λ}^{p} with operator norm $A_{p, \lambda}$, then $g(y)$ defines a bounded convolution operator on $L_{\lambda+\delta}^{p}$ with norm bounded by $C_{\beta, \delta} A_{p, \lambda}$.

This theorem implies a transference result for multipliers similar to Theorem 1

REFERENCES

1. A. Bonami and J.-L. Clerc, Sommes de Cesàro et multiplicateurs des développement en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223-263. MR 49 \#3461.
2. R. R. Coifman and G. Weiss, Representations of compact groups and spherical harmonics, Enseignement Math. (2) 14 (1968), 121-173. MR 41 \#537.
3. -, Analyse harmonique non-commutative sur certains espaces homogenes, Lecture Notes in Math., vol. 242, Springer-Verlag, Berlin and New York, 1971.
4. -, Operators associated with representations of amenable groups, singular integrals induced by ergodic flows, the rotation method and multipliers, Studia Math. 47 (1973), 285-303. MR 49 \#1009.
5. -, Central multiplier theorems for compact Lie groups, Bull. Amer. Math. Soc. 80 (1974), 124-126. MR 48 \#9271.
6. R. O. Gandulfo, Ph.D. Thesis, Washington Univ., St. Louis, Mo., 1975.
7. J. Marcinkiewicz, Sur les multiplicateurs des séries de Fourier, Studia Math. 8 (1939), 78-91.
8. E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971. MR 46 \#4102.
9. N. T. Vilenkin, Special functions and the theory of group representations, "Nauka' Moscow, 1965; English transl., Transl. Math. Monographs, vol. 22, Amer. Math. Soc., Providence, R.I., 1968. MR 35 \#420; 37 \#5429.

DEPARTMENT OF MATHEMATICS, UNIVERSIDADE DE BRASILIA, BRASILIA, BRASIL

