ON THE TOPOLOGICAL STRUCTURE OF SIMPLY-CONNECTED ALGEBRAIC SURFACES

BY RICHARD MANDELBAUM AND BORIS MOISHEZON

Communicated by S. S. Chern, April 8, 1976

Suppose X is a smooth simply-connected compact 4-manifold. Let $P = CP^2$ and $Q = -CP^2$ be the complex projective plane with orientation opposite to the usual. We shall say that X is completely decomposable if there exist integers a, b such that X is diffeomorphic to aP # bQ.

By a result of Wall [W1] there always exists an integer k such that X # (k+1)P # kQ is completely decomposable. If X # P is completely decomposable we shall say that X is almost completely decomposable. In [MM1] we demonstrated that any nonsingular hypersurface of \mathbb{CP}^3 is almost completely decomposable. In this paper we first announce generalizations of this result in two directions as follows.

THEOREM 1. Suppose W is a simply-connected nonsingular complex projective 3-fold. Then there exists an integer $m_0 \ge 1$ such that any hypersurface section V_m of W of degree $m \ge m_0$ which is nonsingular will be almost completely decomposable.

Theorem 2. Let V be a nonsingular complex algebraic surface which is a complete intersection. Then V is almost completely decomposable.

IDEA OF PROOF. The idea of the proofs is to degenerate V (or V_m) to a pair of "less complicated" nonsingular surfaces crossing transversely and then use induction. The topological analysis of such a situation is then taken care of by Corollary 2.5 of [MM2] which states:

COROLLARY. Suppose W is a compact complex manifold and V, X_1 , X_2 are closed complex submanifolds with normal crossing in W. Let $S = X_1 \cap X_2$ and $C = V \cap S$ and suppose as divisors V is linearly equivalent to $X_1 + X_2$. Let $\sigma: X_2' \longrightarrow X_2$ be the monoidal transformation of X_2 with center C. Let S' be the strict image of S in X_2' and let $T_2' \longrightarrow S'$, $T_1 \longrightarrow S$ be tubular neighborhoods of S' in X_2' and S in X_1 , respectively, with $H_1 = \partial T_1$ and $H_2' = \partial T_2'$.

Then there exists a bundle isomorphism $\eta\colon H_2' \longrightarrow H_2$ which reverses orientation on fibers such that V is diffeomorphic to $\overline{X_2' - T_2'} \cup_{\eta} \overline{X_1 - T_1}$.

Then if V, X_1 , X_2 are simply connected 4-manifolds we can use $[\mathbf{M}]$ to

AMS (MOS) subject classifications (1970). Primary 57D55, 57A15, 14J99.

conclude that $V \approx X_1 \# X_2 \# (n-1)Q \# 2g(P \# Q)$ where n = card C and g = genus S. The proofs of Theorems 1 and 2 then conclude using an inductive argument.

This method gives us other results for which we establish some additional terminology. A field F is called an algebraic function field of two variables over C if F is a finitely-generated extension of C of transcendence degree two. Let F denote the collection of all such fields. Then for $F \in F$ there exists a nonsingular algebraic surface whose field of meromorphic functions is F (see [Z]). We shall call any such nonsingular surface a model for F. It is then easy to see that given any two such models V_1 , V_2 for F their fundamental groups are isomorphic. Thus we define the fundamental group $\pi_1(F)$ for any $F \in F$ as the fundamental group of any model F for F. We then let F be the subcollection of simply-connected F in F. For $F \in F_0$ we let F be the subcollection of simply-connected F in F. For $F \in F_0$ we let F be the subcollection of simply-connected F in F. For $F \in F_0$ we let F be the subcollection of simply-connected F in F. For $F \in F_0$ we let F be the subcollection of simply-connected F in F. For $F \in F_0$ we let F be the subcollection of simply-connected F in F. For $F \in F_0$ we let F be the subcollection of simply-connected F in F. For $F \in F_0$ we let F be the subcollection of simply-connected F in F. For $F \in F_0$ we let F be the subcollection of simply-connected F in F. For $F \in F_0$ we let F be the subcollection of simply-connected F in F. For $F \in F_0$ we let F be the subcollection of simply-connected F in F. For $F \in F_0$ we let F be the subcollection of simply s

DEFINITION 3. Let $L, K \in \mathcal{F}$. Then L is a satisfactory cyclic extension of K if there exist models V_L , V_K for L, resp. K and a morphism $\Phi \colon V_L \to V_K$ with discrete fibers whose ramification locus R_Φ is a nonsingular hypersurface section of V_K whose degree is a multiple of $\deg(\Phi)$.

We then state

THEOREM 4. Let $K \in \mathcal{F}_0$. Then there exists a satisfactory cyclic extension $L \in \mathcal{F}_0$ of K which is of degree 2 over K and topologically normal.

In [M] it is further shown that if K itself is topologically normal then so is any satisfactory cyclic extension. These two results motivate a partial order in \mathcal{F}_0 defined as follows:

For L, $K \in \mathcal{F}_0$ we shall say that L is a satisfactorily resolvable extension of K iff there exists a finite sequence of fields L_0, \ldots, L_n in \mathcal{F}_0 with $L_0 = K$, L_{i+1} a satisfactory cyclic extension of L_i and $L_n = L$. We write K < L if L is a satisfactorily resolvable extension of K. Then < induces a partial ordering on \mathcal{F}_0 . Our above results then say that in terms of this partial ordering every sufficiently "large" field L is topologically normal.

Lastly we mention a purely topological counterpart of Theorem 4.

THEOREM 5. Suppose X is a smooth simply-connected 4-manifold. Let $F \in H_2(X, \mathbb{Z})$ with $F^2 \neq 0$ and F divisible by some integer $m \geq 2$. Then there exists a smooth compact simply connected 4-manifold \widetilde{X} and a map $\Phi \colon \widetilde{X} \longrightarrow X$ exhibiting \widetilde{X} as an m-fold branched cover over X whose branch locus R is a nonsingular representative of F such that

- (1) If $F^2 > 0$ then $\widetilde{X} \# P$ is completely decomposable.
- (2) If $F^2 < 0$ then $\widetilde{X} \# Q$ is completely decomposable.

BIBLIOGRAPHY

- [M] R. Mandelbaum, Irrational connected sums and the topology of algebraic surfaces (to appear).
- [MM1] R. Mandelbaum and B. Moishezon, On the topological structure of non-singular algebraic surfaces in CP³, Topology 15 (1976), 23-40.
 - [MM2] ——, On the topology of simply-connected algebraic surfaces (to appear).
- [W1] C. T. C. Wall, Diffeomorphisms of 4-manifolds, J. London Math. Soc. 39 (1964), 131-140. MR 29 #626.
- [W2] ———, On simply-connected 4-manifolds, J. London Math. Soc. 39 (1964), 141-149. MR 29 #627.
- [Z] O. Zariski, Algebraic surfaces, Ergebnisse Math. Grenzgebiete, Band 61, 2nd ed., Springer-Verlag, Berlin and New York, 1971.

DEPARTMENT OF MATHEMATICS, WEIZMANN INSTITUTE, REHOVOT, ISRAEL

DEPARTMENT OF MATHEMATICS, TEL AVIV UNIVERSITY, RAMAT-AVIV, ISRAEL