ON SURFACES OBTAINED FROM QUATERNION ALGEBRAS OVER REAL QUADRATIC FIELDS¹

BY IRA SHAVEL

Communicated by Hyman Bass, May 9, 1976

Let A be a totally indefinite division quaternion algebra with center $k = \mathbb{Q}(\sqrt{d}), d > 0$, \mathcal{O} a maximal order in A, and $\Gamma(1) = \{\alpha \in \mathcal{O} | \nu(\alpha) = 1\}$ where ν is the reduced norm from A to k. Fix an isomorphism λ such that $A \otimes_{\mathcal{Q}} \mathbb{R} \cong M_2(\mathbb{R}) \oplus M_2(\mathbb{R})$. Then $\lambda(\Gamma(1) \otimes_{\mathcal{Q}} 1) \subseteq \operatorname{SL}_2(\mathbb{R}) \times \operatorname{SL}_2(\mathbb{R})$, and $j(\Gamma(1)) = \Gamma(1)/(\operatorname{center} \Gamma(1))$ acts holomorphically and properly discontinuously on $X = H \times H$, where H is the usual upper half plane. In general, if Γ is any group of holomorphic automorphisms of X acting properly discontinuously and without fixed points, then $\Gamma \setminus X$ is a complex manifold. Since A is division the quotient is compact, and it is known to be a projective algebraic variety. In this note we discuss the numerical invariants and second cohomology group of $U(\Gamma) = \Gamma \setminus H \times H$ where Γ is commensurable with $\Gamma(1)$.

(A) For any algebraic number field F, a quaternion algebra with center F is determined up to isomorphism by a finite set S(A) of prime divisors of F. Denote this algebra by A(F, S(A)).

THEOREM 1. Assume $h(k) = class\ number\ of\ k = 1$. Let $j(\Gamma(1)) = \Gamma(1)/\{\pm 1\}$, A = A(k, S(A)), and let

$$\left(\overline{p} \right)$$

be the Kronecker symbol. $j(\Gamma(1))$ acts on X without fixed points \Leftrightarrow all of the following hold:

(1)
$$\left(\frac{-3}{p}\right) = 1 \quad or \quad \left(\frac{-D}{p}\right) = 1$$

for some $P \in S(A)$, where $p\mathbf{Z} = P \cap \mathbf{Z}$ and -D' is the discriminant of the field $\mathbf{Q}(\sqrt{-3d})$.

(2)
$$\left(\frac{-1}{p}\right) = 1 \text{ or } \left(\frac{-D'}{p}\right) = 1$$

for some $P \in S(A)$, where $p\mathbf{Z} = P \cap \mathbf{Z}$ and -D' is the discriminant of the field $\mathbf{Q}(\sqrt{-d})$.

AMS (MOS) subject classifications (1970). Primary 14J20; Secondary 12A80, 22E40.

Partial results of the author's dissertation [3] under M. Kuga.

(3) If d = 5, $\exists P \in S(A)$ such that $p\mathbf{Z} = P \cap \mathbf{Z}$ and $p \equiv 1 \pmod{5}$.

Let $A^{X++} = \{\alpha \in A^X | \nu(\alpha) \text{ is totally positive}\}$ and call such α totally positive. Let $E^{++} = \mathcal{O}^X \cap A^{X++}$. $|j(E^{++}): j(\Gamma(1))| = 2$ if ϵ_k , the fundamental unit of k greater than 1, is totally positive, and $|j(E^{++}): j(\Gamma(1))| = 1$ otherwise.

THEOREM 2. Assume h(k) = 1 and ϵ_k is totally positive. $j(E^{++})$ acts on X without fixed points \Leftrightarrow both of the following hold:

- (1) $j(\Gamma(1))$ has no elements of finite order.
- (2) $\exists P \in S(A)$ such that P splits in $k(\sqrt{-\epsilon_k})/k$.

Consider $B^{++} = \{\beta \in A^{X++} \mid \beta \mathcal{O} = \mathcal{O}\beta\} = \text{normalizer of } \Gamma(1) \text{ in } A^{X++}.$ If h(k) = 1 then the class number of a maximal order in A is also 1. Therefore every 2-sided \mathcal{O} -ideal is principal. The set of all 2-sided maximal \mathcal{O} -ideals are in one-to-one correspondence with the prime ideals of \mathcal{O}_k . Let $\mathcal{P}_i = \Pi_i \mathcal{O}$ correspond to $P_i = \pi_i \mathcal{O}_k$.

THEOREM 3. Assume h(k) = 1. Let ϵ be a fundamental unit of O_k . Let $\{\pi_i\}_{i=1,2,\dots,n}$ correspond to $\{\Pi_iO\}_{i=1,2,\dots,n} = S(A)$. For these π_i let $\eta(i_1,i_2,\dots,i_r) = \pi_{i_1}\pi_{i_2}\cdots\pi_{i_r}$ where $\pi_{i_s} \neq \pi_{i_t}$ for $s \neq t$. $j(B^{++})$ acts on X without fixed points if and only if both of the following hold:

- (1) $j(E^{++})$ has no elements of finite order.
- (2) For all totally positive $\eta(i_1, i_2, \ldots, i_r)$, $\exists P \in S(A)$ such that P splits in $k(\sqrt{-\eta(i_1, i_2, \ldots, i_r)})/k$, and for all totally positive $\eta(i_1, i_2, \ldots, i_r) \in (for some choice of <math>\epsilon$), $\exists P \in S(A)$ such that P splits in $k(\sqrt{-\eta(i_1, i_2, \ldots, i_r)} \in)/k$.
- (B) Throughout this section Γ is a group commensurable with $j(\Gamma(1))$ acting on X without fixed points. Using a result of Matsushima and Shimura [2] we have

PROPOSITION 1. (1) The Euler characteristic E, the geometric genus p_g , and the arithmetic genus p_a of $\Gamma \setminus X$ have the following relationship: $E = 4(p_\sigma + 1) = 4p_a$.

- (2) The irregularity q is 0.
- (3) Then mth plurigenus $P_m = (p_g + 1)(2m 1)^2$, $m \ge 2$.

COROLLARY. $\Gamma \setminus X$ is a surface of general type.

Using the Riemann-Roch theorem we have

COROLLARY. $c_1^2 = 8p_{\varphi} + 8$, where c_1 is the first Chern class of $\Gamma \setminus X$.

Using a formula of Shimizu [4] for the volume of a fundamental domain for the action of $j(\Gamma(1))$ on X, and the Gauss-Bonnet theorem we obtain

THEOREM 4. E(U(1)), the Euler characteristic of $j(\Gamma(1))\setminus X$ is given by

$$E(U(1)) = \frac{B_d}{12} \prod_{P \in S(A)} (N_{k/Q}P - 1)$$

where B_d is the generalized Bernoulli number of the numerical character modulo d associated to the field $k = \mathbb{Q}(\sqrt{d})$.

For $d \neq 5$, B_d is an integer. With the aid of a computer, James Maiorana has calculated B_d for d < 750.

We have a complete list of surfaces with $p_g = 0$ and $p_g = 1$ which come from groups Γ , $i(\Gamma(1)) \subset \Gamma \subset i(B^{++})$.

(c) Let $U(1) = j(\Gamma(1)) \setminus X$ be an algebraic variety. $H_1(U(1), \mathbf{Z})$ is isomorphic to $H^2(U(1), \mathbf{Z})_{\text{torsion}}$ by Poincaré and Pontrjagin duality. Thus

$$H^2(U(1), \mathbf{Z})_{tor} \cong j(\Gamma(1))/[j(\Gamma(1)), j(\Gamma(1))] \cong \Gamma(1)/\{\pm 1\}[\Gamma(1), \Gamma(1)].$$

By constructing a normal subgroup of $\Gamma(1)$ containing $[\Gamma(1), \Gamma(1)]$, we obtain

Theorem 5. Let $j(\Gamma(1))$ act on X without fixed points. Then $|H^2(U(1), \mathbf{Z})_{tor}|$ is divisible by $a \cdot b \cdot c \cdot \prod_{P \in S(A)} (N_{k/Q}P + 1)$ where

$$a = \begin{cases} \frac{1}{2} & \text{if } N_{k/Q}P \equiv 1 \pmod{4} \text{ for some } P \in S(A), \\ 1 & \text{otherwise}; \end{cases}$$

$$b = \begin{cases} 4 & \text{if } \exists P, Q \text{ such that } P \neq Q, PQ = 2\mathbf{Z} \text{ and } P, Q \notin S(A), \\ 2 & \text{if } \exists P, Q \text{ such that } PQ = 2\mathbf{Z} \text{ and } P \notin S(A) \text{ but } Q \in S(A), \text{ or if } \exists P \text{ such that } P^2 = 2\mathbf{Z} \text{ and } P \notin S(A), \\ 1 & \text{otherwise}; \end{cases}$$

$$c = \begin{cases} 9 & \text{if } \exists P, Q \text{ such that } P \neq Q, PQ = 3\mathbf{Z} \text{ and } P, Q \notin S(A), \\ 3 & \text{if } \exists P, Q \text{ such that } PQ = 3\mathbf{Z} \text{ and } P \notin S(A) \text{ but } Q \in S(A), \text{ or if } \exists P \text{ such that } P^2 = 3\mathbf{Z} \text{ and } P \notin S(A), \end{cases}$$

$$1 & \text{otherwise}$$

EXAMPLE. Let $A = A(\mathbf{Q}(\sqrt{5}, \{P_5, P_{31}\}))$. We have $P_5^2 = 5\mathbf{Z}$, $N_{k/Q}P_5 = 5$, $P_{31}P_{31}' = 31\mathbf{Z}$, $N_{k/Q}P_{31} = 31$, $N_{k/Q}P_2 = 4$, $N_{k/Q}P_3 = 9$, $\epsilon_k = (1 + \sqrt{5})/2$, $N_{k/Q}\epsilon_k = -1$, and $B_5 = 4/5$. $U(1) = j(\Gamma(1))\backslash X$ is smooth, $E(U(1)) = (1/12) \cdot (4/5)(5-1)(31-1) = 8$, so $p_g = 1$. $|H^2(U(1), Z)_{tor}|$ is divisible by (1/2)(5+1)(31+1) = 96. There are two subgroups between $j(\Gamma(1))$ and $j(B^{++})$ yielding $p_g = 0$ surfaces. For more examples see [3].

(D) Let K be the canonical line bundle of a surface of the above type. In conjunction with Gordon Jenkins, we have shown that in the case $P_g = 0$, 3K is very ample, that is, 3K determines a biholomorphic imbedding into some complex projective space.

Gordon Jenkins [1] has investigated cases where $[k : \mathbf{Q}] \ge 3$.

730 IRA SHAVEL

REFERENCES

- 1. G. Jenkins, Thesis, SUNY at Stony Brook, 1976.
- 2. Y. Matsushima and G. Shimura, On the cohomology groups attached to certain vector valued differential forms on the product of the upper half planes, Ann. of Math. (2) 78 (1963), 417-449. MR 27 #5274.
 - 3. I. Shavel, Thesis, SUNY at Stony Brook, 1976.
- 4. H. Shimizu, On discontinuous groups operating on the product of the upper half planes, Ann. of Math. (2) 77 (1963), 33-71. MR 26 #2641.

For correction see: H. Shimizu, On zeta functions of quaternion algebras, Ann. of Math. (2) 81 (1965), 166-193. MR 30 #1998.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, CENTER AT STONY BROOK, STONY BROOK, NEW YORK 11794