INFINITE LOOP MAPS AND THE COMPLEX J-HOMOMORPHISM

BY VICTOR SNAITH

Communicated by P. T. Church, December 23, 1975

ABSTRACT. We study the complex J-homomorphism $j \colon U \to SG$ as the composition of two infinite loop maps.

1. Introduction. Let p be an odd prime and let q be a prime generating the units of \mathbb{Z}/p^2 . All spaces will be p-localized. The solution of the Adams conjecture establishes a commutative diagram of fibre sequences.

$$(1.1) \qquad U \xrightarrow{\psi^{q}-1} U \xrightarrow{\omega} J^{\bigoplus} \longrightarrow BU^{\bigoplus} \xrightarrow{\psi^{q}-1} BU^{\bigoplus} \qquad \qquad \downarrow^{q} \qquad \downarrow^{$$

Several, possibly different, τ have been constructed ([2], [5] and [8]). Given τ , then μ is unique. The fibre sequences are sequences of infinite loop maps and it is natural to ask whether (1.1) can be extended arbitrarily to the right—the infinite loop Adams conjecture. By [4] this would be true if τ were an infinite loop map. These results suggest strongly the validity of the conjecture.

In [2] an H-map, τ , is given. If \mathbf{F}_q is the field with q elements the finite dimensional vector spaces over \mathbf{F}_q under direct sum form a permutative category from which the infinite loopspace J^{\bigoplus} is constructed by the technique of [1]. Similarly SG is obtained from a category of finite sets under cartesian product. The forgetful functor gives the "discrete models" infinite loop maps $\delta \colon J^{\bigoplus} \to SG$.

THEOREM 1. If τ is the map constructed in [2] then $\mu = \delta$ in (1.1).

 J^{\bigotimes} is the infinite loopspace obtained from a category of vector spaces of \mathbf{F}_q under tensor product. Assigning to a set the vector space generated by its elements gives $\nu \colon SG \longrightarrow J^{\bigotimes}$. Define Coker J^{\bigotimes} by the infinite loop fibering Coker $J^{\bigotimes} \xrightarrow{\pi} SG \xrightarrow{\nu} J^{\bigotimes}$.

THEOREM 2. $v \circ f: J^{\bigoplus} \longrightarrow J^{\bigotimes}$ is a homotopy equivalence for any map $f: J^{\bigoplus} \longrightarrow SG$ such that $f_{\#}$ is nontrivial on π_{2p-3} .

AMS (MOS) subject classifications (1970). Primary 55E50, 55F25; Secondary 55D35, 55B20.

Key words and phrases. J-homomorphism, infinite loop Adams conjecture, transfer, permutative category, discrete models map.

Theorem 3. In (1.1), $j = \delta \circ \omega$.

Combining this with Theorem 2 we easily obtain

THEOREM 4 [9]. There is an equivalence of infinite loopspaces $\delta + \pi$: $J^{\bigoplus} \times \text{Coker } J^{\bigotimes} \longrightarrow SG$.

2. If the infinite loop Adams conjecture were true then there would exist an infinite loop map $J^{\bigoplus} \longrightarrow SG$ satisfying Theorems 1, 3 and 4.

Theorems 2, 3 and 4 can be proved without mentioning τ at all, i.e. without the solution of the Adams conjecture. For example cf. [7, I].

PROOF OF THEOREM 3. In [6] a cohomology theory, Ad_q^* is constructed satisfying

$$[X, Z \times J^{\bigoplus}] = Ad_q^0(X)$$

and giving an infinite loopspace structure to $Z \times J^{\bigoplus}$ extending the usual one on J^{\bigoplus} . $Ad_q^0(X)$ has a description in terms of isomorphisms of Z/q-vector bundles

$$\theta \colon E^{\bigotimes q} \longrightarrow E \oplus (E' \otimes N)$$

where E, E' are complex vector bundles over X and N is the complex regular representation of \mathbb{Z}/q . A similar theory constructed from isomorphisms, θ , such that

$$\mu(\theta): E \xrightarrow{\operatorname{diag}} E^{\bigotimes q} \longrightarrow E \oplus (E' \otimes N) \xrightarrow{\operatorname{proj}} E$$

is a proper map is also Ad_q^* . Sending θ to the stabilization of $\mu(\theta)$ gives an exponential H-map,

$$\mu\colon \bigcup_{n\geq 0} \, (n) \times J^{\bigoplus} \longrightarrow \bigcup_{n\geq 0} \, Q_q^n S^0,$$

where $Q_{q^n}S^0$ is the set of maps of degree q^n in $\Omega^\infty S^\infty$. It is easy to show explicitly that

$$\mu \circ \omega = j: U \longrightarrow (0) \times J^{\bigoplus} \longrightarrow Q_1 S^0 \longrightarrow SG.$$

Also Ad_q^0 has a transfer for cyclic coverings which admits an explicit bundle-theoretic description from which it is simple to see that μ commutes with cyclic covering transfers [3] of the two infinite loopspaces J^{\oplus} and SG. Since δ extends to an exponential H-map

$$\delta : \bigcup_{n \geq 0} (n) \times J^{\bigoplus} \longrightarrow \bigcup_{n \geq 0} Q_n S^0$$

which commutes with transfers for finite coverings, Theorem 3 is a consequence of the following result.

Theorem 5. There is a unique exponential H-map μ : $\bigcup_{n\geqslant 0}(n)\times J^{\bigoplus} \to \bigcup_{n\geqslant 0}Q_{q^n}S^0$ which commutes with p-fold cyclic covering transfers and maps $(n)\times J^{\bigoplus}$ to $Q_{q^n}S^0$.

Since τ induces a unique μ we may also deduce Theorem 3 from Theorem 1, once we acknowledge the existence of τ .

PROOF OF THEOREM 1 (cf. [7, II]). τ is described explicitly in terms of the geometry of fibre bundles of the form $U(n)/N \longrightarrow BN \longrightarrow BU(n)$. The transfer on SG/U may be extended to the space $\bigcup_{n \ge 0} (n) \times (SG/U)$. Furthermore τ may be extended to an H-map

$$\bar{\tau}: \bigcup_{n\geq 0} (n) \times BU^{\bigoplus} \longrightarrow \bigcup_{n\geq 0} (n) \times (SG/U),$$

which maps $(n) \times BU^{\bigoplus}$ to $(n) \times (SG/U)$. Also $\overline{\tau}$ commutes with p-fold cyclic covering transfers. The proof of Theorem 1 is completed by means of the analogue of Theorem 5 for H-maps $\bigcup_{n \geq 0} (n) \times J^{\bigoplus} \longrightarrow \bigcup_{n \geq 0} (n) \times (SG/U)$.

REFERENCES

- 1. D. W. Anderson, Simplicial K-theory and generalized cohomology theories (to appear).
- 2. J. C. Becker and D. H. Gottlieb, *The transfer map and fibre bundles*, Topology 14 (1975), 1-12.
- 3. D. S. Kahn and S. B. Priddy, Applications of the transfer to stable homotopy theory, Bull. Amer. Math. Soc. 78 (1972), 981-987. MR 46 #8220.
- 4. I. Madsen, V. Snaith and J. Tornehave, Homomorphisms of spectra and bundle theories, Aarhus Univ. Preprint Ser., no. 31, 1974/75.
- 5. D. G. Quillen, The Adams conjecture, Topology 10 (1971), 67-80. MR 43 #5525.
- 6. R. M. Seymour, Vector bundles invariant under the Adams operations, Quart. J. Math. Oxford Ser. (2) (1974), 395-414.
- 7. V. P. Snaith, *The complex J-homomorphism*. I, II, Proc. London Math. Soc. (to appear).
- 8. D. Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) 100 (1974), 1-80.
- 9. J. Tornehave, The splitting of spherical fibration theory at odd primes, Aarhus Univ. Preprint Ser., no. 28, 1972/1973.

DIVISION OF MATHEMATICAL SCIENCES, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907