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treatment than the rest. One feels this not so much because of the relative 
amount of space devoted to the various subjects but rather because these 
'set-theoretical' results are more final and self-sufficient in character than the 
others, some of which sometimes appear to be somewhat technical and not as 
much justified in themselves. 

Many things (Keisler's two-cardinal theorem, Morley's "Hanf-number" 
theorem on omitting types) could have been put in their true contexts only 
in extensions of first order model theory (generalized quantifiers, infinitary 
logic). 

A particular matter that should have received more attention in the book 
is Fraissé-Ehrenfeucht games (and some generalizations). These are treated 
only in exercises. These games are important, particularly through the work 
of Lindström who applied them to give a theory of preservation theorems 
("regular relations") (Theoria 32 (1966), 171-185), and to his celebrated 
work on characterizing first order logic. 

It should be added to the discussion of transcendence rank that the rank 
of a formula defined in a not necessarily coi-saturated model is simply taken 
to mean rank in any (cf. Lemma 7.1.20) wi-saturated elementary extension. 
Then the first sentence of the proof of 7.1.23 can be deleted, and it should 
be because as it stands it is incorrect. Furthermore, the proof of 7.1.23 uses 
the fact that a is regular (and Victor Harnik tells us that the theorem is false 
without this assumption). 

The proof of 7.2.2 is written up in a somewhat awkward way, and in fact, 
the induction hypothesis (4) is not stated correctly. In the proof of 7.3.7, the 
definition of the structure A was omitted (but can be guessed). On p. 480 
the numerical code (1) should be shifted to the next displayed formula. 

In the review, the reviewer could not bring himself to suppressing the use of 
the word "structure" in favor of the word "model" as it is done in the book. 

In conclusion, let us say that in this book model theory has received a 
thoroughly worthy exposition that will no doubt help establish the deserved 
status of model theory as an original, rich, useful and mature branch of 
mathematics. 

M. MAKKAI 
BULLETIN OF THE 
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Mathematical theory of dislocations and fracture, by R. W. Lardner, Univer­
sity of Toronto Press, Toronto, 1974, xi + 363pp. 

The mathematical theory of elasticity has a rich and varied history. It is 
concerned with the mathematical study of the response of elastic bodies to 
the action of forces. There is no doubt that the linear theory is one of the 
more successful theories of mathematical physics. A beautiful account of this 
theory is found in Gurtin (1970). 

The first attempt to set the elasticity of bodies on a scientific foundation 
was undertaken by Galileo and is described in his Discourses, published in 
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1638. The elasticity properties are characterized by certain functions relat­
ing forces to deformations. In this regard, Hooke's law (1678) is of funda­
mental importance. His law states, in effect, that the extension of springlike 
bodies, produced by the tensile forces, is proportional to the forces. This law 
really forms the basis of the mathematical theory of elasticity. In the interval 
of time between the discovery of Hooke's law and that of the general 
differential equations of elasticity by Navier, about 1821, research was 
chiefly directed toward the solution and extension of Galileo's problem, the 
related theories of the vibrations of bars and plates, and the stability of 
columns. Significant contributions during this period were made by Jacob 
and Daniel Bernoulli, Euler, and Coulomb. Navier's memoir (1827) marks 
the birth of the mathematical theory of elasticity. His work attracted the 
attention of Cauchy (1828) who, working from different assumptions, gave a 
formulation of the linear theory of elasticity that remains virtually un­
changed to the present day. The next major contribution was that of George 
Green who in 1837 deduced the basic equations of elasticity from the 
principle of virtual work. The theoretical development of the subject 
flourished until the early twentieth century with the work of Beltrami, Bette, 
Boussenesq, Kelvin, Kirchoff, Lamé, Saint-Venant, Somigliana, Stokes, and 
others. The basic theorems of compatibility, reciprocity, and uniqueness 
were established by these authors. In addition, they derived important 
general solutions of the underlying field equations. The twentieth century 
saw a shift in emphasis to the solution of boundary value problems, and the 
theory remained relatively dormant until the middle of the twentieth cen­
tury. Then new results appeared concerned with, among other things, 
Saint-Venant's principle, stress functions, variational principles, and unique­
ness. 

During recent years a large number of new books has appeared which, in 
company of the older classics such as Love (1892), provides an excellent 
comprehensive treatment of the subject, and a basis for the understanding 
and evaluation of the steady stream of research papers. The most notable of 
this list are Lekhnitzki (1950), Savin (1951), Muskhelishvili (1953), Galin 
(1953), Green and Zerna (1954), and Knops and Payne (1971). The 
preponderance of Russian titles, both for books and research articles, is 
striking. The importance of the elegant work on the application of function 
theoretic methods to two dimensional problems in elasticity of Muskhelish­
vili and his school in Tbilisi cannot be overstressed. 

Among the more active areas of research concerned with special applica­
tions of the mathematical theory are the subjects of dislocation and fracture. 
A dislocation is the principal type of defect that influences the mechanical 
properties of crystals. Elastic deformations in a crystal may arise not only by 
the action of external forces on it but also because of internal structural 
defects present in the crystal. For the purpose of a macroscopic discussion, 
we can regard a crystal as a continuous medium. Dislocations are the type of 
defects produced when cuts are made in the medium, the two sides of the 
cut are displaced relative to each other (material being added or removed as 
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necessary), and the cuts rewelded. These defects were first studied by 
Volterra (1907) and Somigliana (1914, 1915). Their main concern was with 
certain deformations of an elastic body in which the displacement field is not 
single-valued. The dislocation deformation has the following general prop­
erty: let L denote any closed contour which encloses the dislocation line D 
(see Figure 1). After a passage around L, the elastic displacement vector u 
receives a certain finite increment b (i.e., b = Wfinai - initiai, the change in 
displacement between the initial and final points on the path). The vector b 
is called the Burgers vector. The above property can be expressed by, 

(1) Q dn = 
L L dXj 

where uh b\ are the components of the displacement vector, and the Burgers 
vector, respectively. The direction in which the contour is traversed and the 
chosen direction of the tangent vector T to the dislocation line are assumed 
to be related by the corkscrew rule (see Figure 1). The dislocation line is 
itself a line of singularities of the deformation field. If T is perpendicular to b 
the dislocation is called an edge dislocation, while if T is parallel to b it is 
called a screw dislocation. Condition (1) states the essential fact that in the 
presence of a dislocation the displacement vector is not a single-valued 
function. The main problem is to determine the effect of dislocations on the 
stress field. For an isotropic medium, this requires an investigation into the 
solutions of the differential equation 

1 
Au + 1 ? grad div u = T<8>b8(Ç) 

subject to appropriate boundary conditions. Here u represents the disloca­
tion, 7] Poisson's ratio of the material and r, b as above. A review of the 
literature in this area up to 1967 is contained in a very nice article by Bilby 
and Eshelby (1968). 

Dislocations enter the theory of fracture in several ways. First, as crystal 
dislocations, they play a role in the physics of fracture. Secondly, they can 

FIGURE 1 
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serve as a convenient "mathematical element" in the macroscopic treatment 
of fracture. This is a result of the fact that a crack is equivalent to a 
continuous array of dislocations. One can utilize this equivalence to develop 
the mathematical theory of dislocation arrays and cracks. We can think of a 
crack as a discontinuity in the displacement vector. Interest in crack prob­
lems in the mathematical theory of elasticity arises from the theory of brittle 
fracture, which itself originated nearly fifty years ago in the classical work of 
Griffith (1921). Since the number of materials that fail under normal 
conditions in a brittle fashion is relatively small, this theory was regarded as 
of academic rather than practical interest for many years, more as a source 
of interesting mixed boundary value problems (Sneddon, 1966) than as a 
growing part of solid mechanics. Interest has been revived in the theory in 
recent years as a result of the experimental discovery that at high or low 
temperatures many structural elements composed of commonly used materi­
als that display plastic properties in standard tensile tests fail by a "quasi-
brittle" process. By this we mean that failure occurs by the propagation of 
cracks and that although there is a plastic zone, it is of limited extent and 
concentrated at the crack tip. Surveys of research in the mathematical 
aspects of this subject are contained in Sneddon and Lowengrub (1968), 
Goodier (1968), and Lih (1973). In recent years a steady stream of articles 
has appeared in the literature, but the most notable work (concerning the 
mathematical theory) is that of Willis (1971, 1972) and Knowles and 
Sternberg (1973, 1974). Willis solves the appropriate boundary value prob­
lems by first setting up and solving an integral equation for the Radon 
transform of the relative displacement of the crack faces. His formulation 
unifies a large part of the literature on elastostatics and elastodynamics. 
Knowles and Sternberg consider an asymptotic treatment, consistent with 
the nonlinear equilibrium theory of compressible elastic solids, of the 
stresses and deformations near the tip of a traction-free crack in a slab of all 
around infinite extent under conditions of plane strain. The asymptotic 
analysis of the problem is reduced to a nonlinear eigenvalue problem. The 
solution of this problem is established in closed form in terms of elementary 
functions and a transcendental integral of such functions. Their results are of 
extreme importance in the development of the theory of crack problems 
beyond the scope of classical elasticity. 

It is appropriate at this stage also to include a brief discussion of the 
uniqueness question for domains containing cracks. Although boundary 
value problems in linear elastostatics for domains containing cracks have 
received considerable attention, the uniqueness of solutions to these prob­
lems is not guaranteed by the standard uniqueness theorem due to Kirchoff. 
This theorem states (see Knops and Payne (1971) for an exposition of such 
theorems) that there is at most one solution to the isotropic standard boundary 
value problems of plane strain provided —oo< v<\, where v is Poisson's ratio 
and v^O. In the traction boundary value problem there is uniqueness to within 
a rigid body displacement. The inapplicability of this theorem to crack 
problems arises from the presence in their solutions of singularities at the 
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crack tips, so that the smoothness ordinarily assumed in proving uniqueness 
is lacking. Knowles and Pucik (1973) prove the uniqueness (in two dimen­
sions) of the solution to the traction boundary value problem in linear 
elastostatics for a bounded domain containing a crack. One would hope that 
this can open the door to uniqueness theorems for other boundary value 
problems for domains containing cracks. Their proof does require the 
displacement field to be bounded near the crack tips. 

The book by Lardner is an attempt to describe those aspects of dislocation 
theory which are closely related to the theories of elasticity and macroscopic 
plasticity, to modern continuum mechanics, and to the theory of cracks and 
fracture. It is intended for students and research workers in both mechanics 
and applied mathematics. It is disappointing that this text, although titled, 
The mathematical theory of dislocations and fracture, does not consider any 
questions of uniqueness. Most of the book is concerned with special prob­
lems. No mention is made of the work of Willis, or Knowles and Sternberg 
described above. 

More specifically, the first three chapters of the text cover the basic 
material. The style in these chapters seems uneven and students would 
certainly have difficulty in viewing the subject as a coherent entity. As far as 
the remaining chapters are concerned, the eighth chapter is the most 
interesting. This chapter poses and solves the internal stress problem for 
linear isotropic materials. The text does include a very good set of refer­
ences at the end of each of the chapters. 

The entire subject of the theory of fracture needs careful mathematical 
attention. One need only look at the abundance of papers in both engineer­
ing and applied mathematics journals for verification. Unfortunately, this 
book is not going to attract the interest of young applied mathematicians. 
Books written on the level and style of Gurtin (1970) will provide a far 
greater incentive for such investigations. 
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Group theory and quantum mechanics, by B. L. van der Waerden, Die 
Grundlehren der math. Wissenschaften, Band 214, Springer-Verlag, Ber­
lin, 1974, vii + 211pp. 

In 1932 B. L. van der Waerden published Die gruppentheoretische 
Methode in der Quantenmechanik. Forty-two years later he published a 
translated and revised edition, Group theory and quantum mechanics. In the 
preface of the translated edition van der Waerden explains the intent of the 
original book and the reasons for a revision: 

Its aim was, to explain the fundamental notions of the Theory of Groups 
and their Representations, and the application of this theory to the 
Quantum Mechanics of Atoms and Molecules. The book was mainly 
written for the benefit of physicists who were supposed to be familiar with 
Quantum Mechanics. However, it turned out that it was also used by 
mathematicians who wanted to learn Quantum Mechanics from it. Natur­
ally, the physical parts were too difficult for mathematicians, whereas the 
mathematical parts were sometimes too difficult for physicists.... In order 
to make the book more readable for physicists and mathematicians alike, I 
have rewritten the whole volume. 

Before discussing whether van der Waerden has succeeded in his goal for 
the revised edition, let us briefly summarize the contents of the book. The 
book opens with Schrödinger's equation governing the state of a quantum 
mechanical system. Hubert space is defined (as L2 spaces only) and we are 
told a little about operators on Hubert space. Some, but not all, of the 
details of the solution of the one electron atom (and, in particular, the 
hydrogen atom) are given. We meet the azimuthal, main, and magnetic 
quantum numbers and the terms of the spectroscopic series. Perturbation 
theory is touched upon, as is angular momentum, the normal Zeeman effect, 
and selection rules. This is all part of the explanation of the basics of 
quantum mechanics. 


