GENERATORS OF THE UNITARY Z/ p BORDISM RING

BY CZES KOSNIOWSKI

Communicated by P. T. Church, December 29, 1975
I. Serendipity. Let p be a prime number, let \mathbf{Z} / p be the cyclic group of order p and let $\mathscr{A}_{*}^{Z / p}$ be the unitary \mathbf{Z} / p bordism ring.

Theorem 1. $\mathfrak{U}_{*}^{\mathrm{Z} / \boldsymbol{p}}$ is multiplicatively generated, over \mathscr{A}_{*}, by the following:

$$
\begin{aligned}
& \left\{\Gamma^{m}(\mathrm{pt}), m \geqslant 0\right\}, \\
& \bigcup\{\mathbf{Z} / p\}, \\
& \bigcup\left\{\Gamma^{m}\left(\mathbf{C} P_{j}^{1}\right), m \geqslant 0,(p+1) / 2 \leqslant j<p-1\right\}, \\
& \bigcup\left\{S_{j}, 1 \leqslant j \leqslant(p-1) / 2\right\}, \\
& \bigcup\left\{\Gamma^{m}\left(C_{j}\right), m \geqslant 0,1<j \leqslant(p+1) / 2\right\}, \\
& \bigcup\left\{\Gamma^{m}\left(\mathbf{C} P_{j}^{n}\right), m \geqslant 0, n \geqslant 2,1 \leqslant j \leqslant p-1\right\} .
\end{aligned}
$$

Furthermore, this set is irredundant.
The notation is explained by the following.
(a) pt the point, with obvious \mathbf{Z} / p action.
(b) $\mathbf{Z} / p, p$ points with obvious \mathbf{Z} / p action.
(c) $\mathbf{C} P_{j}^{1},((p+1) / 2 \leqslant j<p-1)$, the complex projective, line $\mathbf{C} P^{1}$ with \mathbf{Z} / p action given by $\left[z_{0} ; z_{1}\right] \mapsto\left[z_{0} ; \xi^{j} z_{1}\right]$ where $\xi=\exp (2 \pi i / p)$.
(d) $S_{j},(1 \leqslant j \leqslant(p-1 / 2)$, the Riemann surface of genus $(q-1)(p-1) / 2$ associated to the complex function $u=\left(z^{p}-1\right)^{1 / q}$ where q satisfies $q j=-1$ $\bmod p, 0<q<p$. The action of \mathbf{Z} / p on S_{j} is induced by $z \mapsto \xi z$.
(e) C_{j}, $(1<j \leqslant(p+1) / 2)$, the complex projective plane $\mathbf{C} P^{2}$ with \mathbf{Z} / p action given by $\left[z_{0} ; z_{1} ; z_{2}\right] \mapsto\left[z_{0} ; \xi z_{1} ; \xi^{j} z_{2}\right]$.
(f) $\mathbf{C} P_{j}^{n},(n \geqslant 2,1 \leqslant j \leqslant p-1)$, the complex projective space $\mathbf{C} P^{n}$ with \mathbf{Z} / p action given by $\left[z_{0} ; z_{1} ; \ldots ; z_{n-1} ; z_{n}\right] \mapsto\left[z_{0} ; z_{1} ; \ldots ; z_{n-1} ; \xi^{j} z_{n}\right]$.
(g) Let M be a unitary \mathbf{Z} / p manifold for which the \mathbf{Z} / p action extends to a unitary S^{1} action. For example, the unitary \mathbf{Z} / p manifolds in (a), (c), (e) and (f) satisfy this property.

The circle S^{1} acts freely on the product $M \times S^{3}$ by $\left(m, z_{1}, z_{2}\right) \mapsto(t m$, $\left.t z_{1}, t z_{2}\right), t \in S^{1}$, where $S^{3}=\left\{\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2} ;\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}$. Let $\Gamma(M)$ denote the quotient $\left(M \times S^{3}\right) / S^{1}$, with \mathbf{Z} / p action given by $\left[m, z_{1}, z_{2}\right] \mapsto$ [$\xi m, \xi z_{1}, z_{2}$]. Of course, this action extends to an S^{1} action and we can define,

AMS (MOS) subject classifications (1970). Primary 57D85, 57E25; Secondary 57D20. Key words and phrases. Equivariant bordism, Z / p manifolds, characteristic numbers.
inductively, $\Gamma^{n}(M)$ by $\Gamma^{n}(M)=\Gamma\left(\Gamma^{n-1}(M)\right)$. Also we set $\Gamma^{0}(M)$ to be M.
II. Applications. Note that most of the generators of $\mathscr{A}_{*}^{\mathbf{Z} / p}$ are in fact S^{1} manifolds and so we can use known results concerning S^{1} manifolds to obtain corresponding results for \mathbf{Z} / p manifolds. The following $\bmod p$ characteristic numbers formula is the analogue of the formula for S^{1} manifolds given in $\S 8$ of [1].

Theorem 2. Suppose M is a unitary \mathbf{Z} / p manifold of dimension $2 n$ and suppose that f is any symmetric homogeneous polynomial in n variables of degree less than or equal to n, then

$$
\begin{gathered}
\sum\left\{f\left(y_{1}, y_{2}, \ldots, y_{d}, t_{1}+z_{1}, t_{2}+z_{2}, \ldots, t_{n-d}+z_{n-d}\right) \Pi\left(t_{j}+z_{j}\right)^{-1}\right\}[F] \\
=f\left(w_{1}, w_{2}, \ldots, w_{n}\right)[M] \bmod p
\end{gathered}
$$

where the sum is taken over the components F of the fixed point set. The t_{i} are the "rotation numbers", and elementary symmetric functions of y_{i}, z_{i} and w_{i} respectively, give the chern classes of F, normal bundle of F and M respectively $(\operatorname{dim} F=2 d)$.

Such a formula was known [2] but in the case that each component of the fixed point set has dimension less than $2(p-1)$, we require no such restrictions.

Let s_{n} be the polynomial defined by $s_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}^{n}+x_{2}^{n}+$ $\cdots+x_{n}^{n}$; then we can say more.

Theorem 3. Suppose M is a \mathbf{Z} / p manifold of dimension $2 n$, then

$$
\begin{aligned}
\sum\left\{s _ { n } \left(y_{1}, y_{2}, \ldots, y_{d}, t_{1}+z_{1},\right.\right. & \left.\left.t_{2}+z_{2}, \ldots, t_{n-d}+z_{n-d}\right) \Pi\left(t_{j}+z_{j}\right)^{-1}\right\}[F] \\
& = \begin{cases}s_{n}[M] \bmod p^{2} & \text { if } n=p^{k}-1 \text { for some } k \\
s_{n}[M] \bmod p & \text { otherwise. }\end{cases}
\end{aligned}
$$

Using Theorems 1 and 3 we obtain
Theorem 4. Let M be a \mathbf{Z} / p manifold of dimension $2 n$ such that
(i) $n=0 \bmod (p-1)$,
(ii) either $n=-1 \bmod p$ or else each component of the fixed point set has trivial normal bundle in M,
(iii) no component of the fixed point set is of dimension $2 n$, and
(iv) $n \neq p^{k}-1$ for any $k \geqslant 0$;
then M is decomposable $\bmod p$, i.e. decomposable as an element of $\mathfrak{A}_{*} / p \mathfrak{U}_{*}$.
As an example, \mathbf{Z} / p manifolds of dimension $2 n=2(k p+1)(p-1)$, where $k>0$ and $k \neq 1 \bmod p$, which have no component of the fixed point set of dimension $2 n$ are decomposable $\bmod p$.

Finally, we mention a result whose proof uses a free \mathfrak{A}_{*} basis for $\mathfrak{A}_{*}^{Z / p}$.
Theorem 5. Let M be a \mathbf{Z} / p manifold such that
(i) no component of M has a trivial Z / p action,
(ii) each component of the fixed point set has trivial normal bundle and
(iii) M has no isolated fixed points;
then M is equivariantly decomposable modulo free \mathbf{Z} / p manifolds, i.e. decomposable in $\mathfrak{U}^{\mathrm{Z} / p} / p \mathfrak{A}_{*}$.

The fact that such manifolds are decomposable in $\mathfrak{A}_{*} / p \mathfrak{A}_{*}$ follows quite easily from Theorem 3.

All the above results have obvious analogues in the oriented case so long as p is an odd prime.

Details of proofs will appear elsewhere.
REFERENCES

1. M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604. MR 38 \#5245.
2. L. Illusie, Nombres de chern et groupes finis, Topology 7 (1968), 255-269. MR 37 \#4822.

SCHOOL OF MATHEMATICS, UNIVERSITY OF NEWCASTLE UPON TYNE, NEWCASTLE UPON TYNE, NE1 7RU, ENGLAND

