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The main purpose of this note is to give natural geometric examples of 
elliptic complexes for which the Poincaré lemma fails. Indeed: 

(a) There are natural (and even involutive) elliptic complexes which are 
not formally exact, and whose local cohomology is infinite (Examples 2, 3). On 
the other hand: 

(b) An arbitrary locally exact elliptic complex need not be formally exact 
(cf. Example 4'). 

These remarks reflect interestingly on the outstanding problem in the theory 
(Spencer's conjecture): Is a formally integrable formally exact elliptic complex 
locally exact? (See Goldschmidt [2] for a complete analysis of the formal 
theory.) Thus (a) demonstrates forcibly the independence of the hypotheses, 
whereas (b) shows that the hypothesis of formal exactness is not always 
necessary. 

Most of our examples take the following form: Let £ be a subbundle of 
AP(R" ); let E denote the sheaf of germs of sections of E. Then there are 
complexes of the following types: 

(I) Ap-2J^±p-1 ^ AplE: 

(II) £ ^ A f + 1 - ^ A ? + a . 

Note to begin with that the cohomology of (I) is equivalent to the space of 
closed sections of E, i.e., the solution space of a homogeneous system of equa­
tions. One of our basic observations is then: 

(c) There are nontrivial examples of these types which are elliptic 
(cf. Examples 2, 3). 

On the other hand, Spencer's conjecture itself cannot be disproved within 
the context of such examples: if E is nontrivial, (I) is not formally exact; if (II) 
is elliptic (no further hypotheses), one checks it is locally exact. 

Constant coefficient examples. 
EXAMPLE 1 (NIRENBERG). An arbitrary elliptic complex need not be 

formally or locally exact. Over Cn construct 
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o - > A ° e g ^ A 0 * 1 e A ° ^ > A ° > 2 0 A 0 ^ - -

The cohomology at A0,1 © A0 is infinite. 
D0 Dt 

We will say that a complex E — • F —> G is "natural" if D0 is induced 
by a surjective bundle map yD : JkE -—> F. This formal condition precludes 
artificial constructions such as the above. 

EXAMPLE 2. Let A+ be the space of *-invariant (resp. anti-invariant) 2-forms 
on R4 (standard metric). Then 

0 — A ' ^ A / ^ A » — 0 

is natural, elliptic, formally integrable, and involutive (cf. [3] and [4]), yet 
the cohomology at A1 is infinite. The dual complex is 

and is locally exact as marked above. These complexes were discovered inde­

pendently by Nigel Hitchin. 

EXAMPLE 3. In 2 complex variables 

0 - A° ± A1 ^ t A1 '1 2*> A2 '2 - 0 

is elliptic, but noninvolutive as reflected by the second order continuation 33. 
The cohomology at A1 is again infinite, but zero otherwise. This is the dual of 
the well-known resolution of the sheaf of germs of pluriharmonic functions. 

EXAMPLE 4. Let co be a symplectic form on a 4-manifold M. Then A co: 
A1 —• A3 is an algebraic isomorphism, and 

0 —•> A° —* A1 —• A2/CD —*— • Jy/cj —» A* —• Ar —> 0 

is elliptic, with local cohomology one dimensional at A1 and exactness holding 
elsewhere. 

One generalization of Example 2 is the following: let F: Rk ® Kn —> Rn 

be an orthogonal multiplication (symbol of the Dirac operator in k variables). 
Let E C R" be any subspace, withi?1 its orthocomplement. Then there is an 
elliptic Dirac complex 

Here oD and oD are induced by restricting F to E and E1 respectively. When 
D is involutive, the exactness of a Dirac complex becomes equivalent to a comb­
inatorial criterion, the connectedness of a certain finite graph. This uses Ehren-
preiss [1] on constant coefficient systems and Kuranishi [4] on involutive sys­
tems. Example (2) above is equivalent to the Dirac complex arising from quat­
ernion multiplication H ®H —• H, with E = Span (1), E = Span(z, ƒ, k). 
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Variable coefficient examples. 
EXAMPLE 2'. There is no metric on a closed oriented manifold M4 such 

that the corresponding A+-complex is locally exact. Otherwise by sheaf theory 
we would find//3(M, R) = H4(M, R) = 0. 

EXAMPLE 3'. There are local perturbations of (3) such that the cohomology 
at A1 is finite. This is equivalent to exhibiting perturbations of the homogeneous 
Cauchy-Riemann equations for holomorphic functions with finite solution space. 
However there is no elliptic continuation analogous to 93. 

EXAMPLE 4'. Perturbing the symplectic form co to a nondegenerate form 
co such that ^(("a;)""1^) ^ 0, the elliptic complex 

AO _ A A1 *"L A 2 / ~ 

Au —* A1 —• A /̂co 
is locally exact, but not formally exact. This is a quite general phenomenon 
which is not special to elliptic complexes. 
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