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Let A be the mod-2 Steenrod algebra. For any unstable A -module M the 
"unstable homology groups" Hfk(M) = Tor f k(M) are defined by means of un­
stable projective resolutions of M [2]. We describe here a new approach to the 
problem of computing these groups. 

Let MA be the category whose objects are unstable A -modules and whose 
morphisms are degree preserving A -maps. For M in M^ and x in Mn we write, 
as is usual Sq^x = Sqn~ax. Let "suspension" S: HA —•* M^ be the functor that 
raises degree by 1. S has a left adjoint £2: M^ -—• M^ [2] given by (SlM)n = 
(coker Sq0)n + 1 , with A -action induced by that on M. The left derived functors 
Hy (s > 0) of ft are defined in the usual way: given M in MA one forms a pro­
jective resolution • P\(M) —> P0(M) —• M —> 0. Then £2̂ M is the sth 

homology group of the complex • • — • SIPX(M) —* £IP0(M) —* 0. The left 
derived functors of ft are completely understood [1], [2], [3]. In fact, 

(1) nsM=0 i f s > l , 

(2) ( n i ^ 2 n - i =(kerSq0)„ 

with A -action given by Sq^ft^ = ^iSq/ a + 1 ^ 2 for x in ker Sq0. 
Consider now the fc-fold iterate £lk of £2. We pose: 
PROBLEM (*). Give a workable description of the left derived functors £2* 

of 12*, for alls > 0 . 

Our interest in these derived functors stems from the fact that their zero-
dimensional components are the unstable homology groups of the Steenrod alge­
bra: 

THEOREM 1. There is a natural isomorphism Tox*k(M) = (Slk
sM)0. 

Our interest in Problem (*) is heightened by the fact that it appears to be 
solvable: there is a simple relation between the derived functors of £2* and those 
of S2*-1. 
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THEOREM 2. There is a natural long exact sequence of Z2-modules: 

• të^M ~ ^ > Q*~XM - * SlkM 
(3) ' 

— Sl^M - ^ > tlk
sIÏM-+ • • • 

and consequently a short exact sequence in MA : 

(4) 0 - > Sl£%~lM —• S2*Af - * ^ i ^ r / M - • 0. 

This result seems to promise a quick inductive description of the functors 
£2^; however, computation of examples with small values of k and s show that 
the short exact sequence (4) is in general not split over MA ! 

Our main result (Theorem 3 below) is the construction for each unstable 
A -module M of a small chain complex LkM = HJL^M from which the derived 
functions SlkM can be computed: Hs(L

kM) = Q.kM. We seek, in particular, 
complexes that can be fit into a short exact sequence: 

(5) 0->L*-lMJi*LkM-*+Lk-1M-+0 

for which the associated long exact sequence in homology is the same as (3). 
This consideration motivates us in our definition of the graded Z2-module LkM 
= T,n>0{LkM)n: we set (L%M)n = Mn + k, and proceed inductively by setting 
LkM = SfjoHZ^AO, defining dimension by 

dim(0,0,. . . , x\ . . . , 0) = 2dim xl - (k - i) for xl in Z , ^ . 

Then a in (5) is just the inclusion of 2 ^ ( Z ^ i l f ) into s f j J O ^ - i ^ O ' w h i l e 0 
is just the projection of sjilo ( L ^ A f ) onto LkIxM. If we ignore grading, LkM 
is just the direct sum of (k) copies of M. Our main result is 

THEOREM 3. For all k > 0 , s > 0,a > 0 there are natural Z2-homomor-

phisms ds: LkM —•> Lk_xM, \(a): LkM —* L^M wiïft tfze following properties: 

(a) ds^.1ds = 0 so that LkM is a chain complex, a, /? i« (5) are cfaw'w maps. 
(b) 77ie operators Xs(a) satisfy Adem relations "up to homotopyyf: ifb> 

a there are Z2-linear maps Ps(b, a): LkM —• Lk
+ XM such that 

\{b)\(a) - Z ^ / Jb +* y j \(b - 2f)\(a + ƒ) 

= ds+1ps(b, a) + p^ib, a)ds. 

(c) ds\(a) = \s_1(a)ds, so that Xs(a) can be regarded as an operator on 

Hs{LkM). 

(d) The operations Xs(a) vanish on Hs{LkM) if'a<k, and Hs(L
kM) becomes 

an unstable A-module if we put Sq^ = Xs(a + k) for all a > 0. 
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(e) There is a natural isomorphism of unstable a-modules Hs{LkM) = £lkM, 

and the long exact sequence in homology associated with (5) is identical with (3). 
Details of this construction and applications to the computation of £lkM 

will appear elsewhere. We mention only that if Sn is the unique M^ object for 
which (Sn)n = Z 2 , (Sn)f = 0 if ƒ ± n, then the differential da: Lk

sS
n - * Lk

s_xS
n 

vanishes i f f c < « + s - l . This fact permits us to determine completely the un­
stable ,4-modules SlkSn for those cases in which k < n + s - 1. For example, it 
turns out that QÇ+'^S" is the suspension of a truncated polynomial algebra 
over A of a kind already classified by Sugawara and Toda in [4]. 
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