COBORDISM OPERATIONS AND SINGULARITIES OF MAPS

BY CLINT MCCRORY¹

Communicated by Glen Bredon, October 30, 1975

If f is a differentiable map of smooth manifolds, the critical set $\Sigma(f)$ is not a manifold, in general. However, there is a *canonical* resolution of the singularities of $\Sigma(f)$ (for generic f), due to I. Porteous [6]. This resolution can be used to give a geometric description of T. tom Dieck's Steenrod operations in unoriented cobordism [7]. This was suggested to me by Jack Morava, as a parallel to my discription of ordinary mod 2 Steenrod operations using branching cycles of maps of n-circuits [5].

1. Singularities of vector bundle maps. Let $\xi^n = (E \to X)$ and $\eta^p = (F \to X)$ be real vector bundles over the smooth manifold X (without boundary), and let $g : E \to F$ be a vector bundle map. That is, g is smooth, and for each $x \in X$, g sends the fiber E_x to the fiber F_x by a linear map g_x . The critical set $\Sigma(g)$ is $\{x \in X, \operatorname{rank}(g_x) < \min(n, p)\}$. Let $P(\xi) = (P(E) \to X)$ be the projectification of ξ , i.e. the bundle whose fiber over x is the set of one-dimensional subspaces of E_x . Set $\widetilde{\Sigma}(g) = \{l \in P(E), l \subset \operatorname{kernel}(g)\}$. The projection $\widetilde{\Sigma}(g) \to X$ is proper, and if $n \leq p$, its image is $\Sigma(g)$. (If n > p, its image is all of X.)

LEMMA. (a) If $g: \xi^n \to \eta^p$ is a generic vector bundle map [4] over the d-manifold X, $\widetilde{\Sigma}(g)$ is a (d-i)-manifold, where i=p-n+1.

(b) If $h: \xi^n \to \eta^p$ is another such map, $\widetilde{\Sigma}(h) \to X$ is properly cobordant with $\widetilde{\Sigma}(g) \to X$.

This lemma is proved by considering the canonical bundle map G over $\operatorname{Hom}(\xi, \eta)$. A vector bundle map $g \colon \xi \to \eta$ defines a section of $\operatorname{Hom}(\xi, \eta) \to X$, and $\widetilde{\Sigma}(g) \to X$ is the pull-back of $\widetilde{\Sigma}(G) \to \operatorname{Hom}(\xi, \eta)$ by this section.

It follows from Quillen's geometric description of smooth unoriented cobordism theory N^* [3] that this construction defines a natural transformation $\sigma: K(X) \to N^*(X)$. If K(X) is defined as the set of all pairs (ξ, η) of bundles over X, modulo the relation $(\xi \oplus \zeta, \eta \oplus \zeta) \sim (\xi, \eta)$, σ is induced by $(\xi, \eta) \mapsto \widetilde{\Sigma}(g)$, where $g: \xi \to \eta$ is a generic map. A dual $\overline{\sigma}$ is defined by $\overline{\sigma}[\xi, \eta] = \sigma[\eta, \xi]$.

AMS (MOS) subject classifications (1970). Primary 55G25, 57D45; Secondary 57D20, 57D75.

Key words and phrases. Critical set, singularity, cobordism, Steenrod operations, vector bundle map.

¹Support in part by NSF grant GP-43128.

 σ determines a family of stable cobordism characteristic classes σ_i , $i \in \mathbb{Z}$, by setting $\sigma_i(\eta^p) = \sigma(\epsilon^n, \eta^p) \in N^i(X)$, where ϵ^n is the trivial *n*-bundle over X, n = p - i + 1. If $\overline{\xi}$ is a stable inverse for ξ , $\sigma_i(\overline{\xi}) = \overline{\sigma}_i(\xi)$.

2. Steenrod operations. Thom's definition of characteristic classes gives a bijection between stable operations on N^* and stable N^* characteristic classes. Let θ^i be the operation corresponding to the characteristic class σ_i .

Our main result is the following relation between $\theta = \sum_i \theta^i$ and tom Dieck's internal Steenrod operation R [7, p. 394]. Let P^{-i} be the cobordism operation of degree -i which sends $Z \longrightarrow X$ to the composition $(\mathbf{R}P^i \times Z) \longrightarrow Z \longrightarrow X$, where $\mathbf{R}P^i$ is real projective *i*-space.

Theorem θ . = PR.

In other words, if $\alpha \in N^q(X)$, $\theta^i(\alpha) = \sum_j P^{i-j} R^j(\alpha)$. Since $P^{i-j} = 0$ for j < i and $R^j(\alpha) = 0$ for j > q, this sum is finite.

It follows that θ corresponds to the "expanded square" operation in unoriented piecewise-linear cobordism [1].

This theorem is a consequence of the observation that $\overline{\sigma}_i(\xi^n) = \pi_*(e^{n+i-1})$ for i > -n, where $\pi \colon P(E) \longrightarrow X$ is the projection and e is the cobordism Euler class of the (dual) canonical line bundle on P(E). (For $i \le -n$, $\overline{\sigma}_i(\xi)$ is represented by $P(\xi \oplus \epsilon^k)$, k = -n - i + 1.)

REMARK. Conner and Floyd's cobordism Stiefel-Whitney classes $w_i(\xi)$ (cf. [3]) are defined by the relation $\Sigma_i(\pi^*w_i)e^{n-i}=0$. Thus $\Sigma_iw_i\overline{\sigma}_{k-i}=0$ for k>0.

3. Bordism operations (cf. [5]). There are dual actions of both θ and R on smooth unoriented bordism theory N_* . If M is a closed n-manifold, and $[M] \in N_n(M)$ is the class of the identity map, $\theta^i[M]$ is represented by $\widetilde{\Sigma}(df)$, where $f \colon M^n \longrightarrow R^{n+i-1}$ is a generic smooth map. The following result is analogous to Thom's nonembedding theorem using ordinary Steenrod operations.

COROLLARY 1. If the locally triangulable space X immerses topologically in \mathbb{R}^n , then \mathbb{R}^i is zero on $N_i(X)$ for i+j>n.

The action of R^i on the bordism of a point is given by the "quadratic construction"

$$Q_k(M) = M \times M \times S^{k-1}/(x, y, s) \sim (y, x, -s), \quad k = -n - i + 1.$$

COROLLARY 2. If M is a closed manifold, $Q_k(M)$ is cobordant with $P(TM \oplus \epsilon^k)$, $k \ge 1$.

In fact, $M \times M \times D^k/(x, y, s) \sim (y, x, -s)$ minus an open tubular neighborhood of $\{[x, x, 0]\}$ is a cobordism between them. This generalizes an argument of Conner and Floyd for k = 1 [2, p. 62].

REMARK. "Steenrod" operations in complex cobordism can be defined in the same way as θ^i , by using complex vector bundles. Furthermore, replacing lines in ξ by k-planes in ξ yields a family of geometric operations $\theta^i_{(k)}$ for each k.

REFERENCES

- 1. S. Buoncristiano, C. P. Rourke and B. J. Sanderson, A geometric approach to homology theory, London Math. Soc. Lecture Notes in Math. (to appear).
- 2. P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 33, Springer-Verlag, Berlin, 1964. MR 31 #750.
- 3. M. Karoubi, Corbordisme et groupes formels (d'après D. Quillen et T. tom Dieck), Séminaire Bourbaki 1971/72, no. 408, Lecture Notes in Math., vol. 317, Springer-Verlag, Berlin and New York, 1973.
- 4. R. MacPherson, Generic vector bundle maps, Dynamical Systems (Proc. Sympos., Univ. of Bahia, Salvador, 1971), Academic Press, New York, 1973, pp. 165-175. MR 49 #3962.
 - 5. C. McCrory, Geometric homology operations, Advances in Math. (to appear).
- 6. I. R. Porteous, Simple singularities of maps, Proc. Liverpool Singularities-Sympos., I (1969/70), Lecture Notes in Math., vol. 192, Springer-Verlag, Berlin and New York, 1971, pp. 286-307. MR 45 #2723.
- 7. T. tom Dieck, Steenrod-Operationen in Kobordismen-Theorien, Math. Z. 107 (1968), 380-401. MR 39 #6302.

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, PROVIDENCE, RHODE ISLAND 02912