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If ƒ is a differentiable map of smooth manifolds, the critical set 2(f) is not 
a manifold, in general. However, there is a canonical resolution of the singulari­
ties of 2(f) (for generic ƒ), due to I. Porteous [6]. This resolution can be used 
to give a geometric description of T. torn Dieck's Steenrod operations in unor-
iented cobordism [7]. This was suggested to me by Jack Morava, as a parallel 
to my discription of ordinary mod 2 Steenrod operations using branching cycles 
of maps of «-circuits [5] . 

1. Singularities of vector bundle maps. Let %n = (E —-> X) and rf = (F 

—• X) be real vector bundles over the smooth manifold X (without boundary), 
and let g: E —• F be a vector bundle map. That is, g is smooth, and for each 
x E Xy g sends the fiber Ex to the fiber Fx by a linear map gx. The critical set 
2(g) is {x G X, rmk(gx) < min(n, p)}. Let P(£) = (P(E) —> X) be the projecti-
fication of £, i.e. the bundle whose fiber over x is the set of one-dimensional sub-
spaces of Ex. Set 2(g) = {/ G P(E), I C kernel (g)}. The projection 2(g) —• X 

is proper, and if n < p, its image is 2(g). (If n> p, its image is all of X.) 

LEMMA, (a) If g: %n —• rf is a generic vector bundle map [4] over the 
d-manifold X, 2(g) is a (d - iymanifold, where i = p - n + 1. 

(b) If h: %n —• rf is another such map, 2(h) —•> X is properly cobordant 
with 2(g) —• X. 

This lemma is proved by considering the canonical bundle map G over 
Hom(£, T?). A vector bundle map g: £ —> r\ defines a section of Hom(£, 17) —• 
X, and 2(g) —• X is the pull-back of 2(G) —* Hom(£, 1?) by this section. 

It follows from Quillen's geometric description of smooth unoriented co­

bordism theory N* [3] that this construction defines a natural transformation 

o: K(X) —» N*(X). If K(X) is defined as the set of all pairs (£, 1?) of bundles 

over X, modulo the relation (% ® f, r\ © f) ~ (£, 17), a is induced by (£, 7?) H—• 

"2(g), where #: ? —* V is a generic map. A dual ö is defined by a[%, rj] = 

ofo,*]. 
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o determines a family of stable cobordism characteristic classes oif i E Z, 
by setting o((rf) = o(en, rf)G Nl(X), where en is the trivial «-bundle over X, 

n = p - ƒ + 1. If | is a stable inverse for £, (;,.(£) = a ^ ) . 

2. Steenrod operations. Thorn's definition of characteristic classes gives 
a bijection between stable operations on N* and stable N* characteristic classes. 
Let Bl be the operation corresponding to the characteristic class ov 

Our main result is the following relation between 0 = Xfi1 and torn Dieck's 
internal Steenrod operation R [7, p. 394]. Let P~l be the cobordism operation 
of degree -i which sends Z —* X to the composition (RP1 x Z) —> Z —* X, 
where RP1 is real projective /-space. 

THEOREM 0. = Pi?. 

In other words, if a E Nq(X), fl'(a) = Z^R^a). Since P'"-' = 0 for ƒ < 
i and RJ(a) = 0 for ƒ > g, this sum is finite. 

It follows that 0 corresponds to the "expanded square" operation in un­
oriented piecewise-linear cobordism [1]. 

This theorem is a consequence of the observation that â/(£
w) = fl'*(e'2 + '~1) 

for i > -n, where n: P(E) —* X is the projection and e is the cobordism Euler 
class of the (dual) canonical line bundle on P(E). (For i < -n, ôfë) is repre­
sented by P(£ ® ek), k = -n -i + 1.) 

REMARK. Conner and Floyd's cobordism Stiefel-Whitney classes wjlX) (cf. 
[3] ) are defined by the relation S/(7r*w/>

fI""/ = 0. Thus 2/w/âA:_I. = 0 for k 
> 0 . 

3. Bordism operations (cf. [5] ). There are dual actions of both 0 and R on 
smooth unoriented bordism theory A*. If M is a closed n-manifold, and [M] E 
Nn(M) is the class of the identity map, 6l[M] is represented by 2(d/), where 

ƒ: Af1 —• Rn+l~l is a generic smooth map. The following result is analogous to 

Thorn's nonembedding theorem using ordinary Steenrod operations. 

COROLLARY 1. If the locally triangulable space X immerses topological^ 
in Rn, then Rl is zero on Nj(X) for i + ƒ > n. 

The action of Rl on the bordism of a point is given by the "quadratic con­
struction" 

Qk(M) = M xM x S*""V(*, y, s) ~ 0 , x, - s ) , * = -n - i 4- 1. 

COROLLARY 2. If M is a closed manifold, Qk(M) is cobordant with 
P(TM®ek\k> 1. 

In fact, M x M x Dk/(x, y, s) ~ (y, x, -s) minus an open tubular neigh­
borhood of { [x, xf 0]} is a cobordism between them. This generalizes an argu­
ment of Conner and Floyd for k = 1 [2, p. 62]. 
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REMARK. "Steenrod" operations in complex cobordism can be defined in 
the same way as 6\ by using complex vector bundles. Furthermore, replacing 
lines in £ by k-planes in £ yields a family of geometric operations Q\k^ for each k. 
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