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ON THE SELBERG TRACE FORMULA IN THE
CASE OF COMPACT QUOTIENT

BY NOLAN R. WALLACH

1. Introduction. Let G be a connected unimodular Lie group. Let I" be
a discrete subgroup of G so that I'\G is compact. We fix a Haar measure,
dg, on G. Then dg induces a G-invariant measure on I'\G. We can then
form a unitary representation (mr, L*(I'\G)) where (wr(g)f)(x)=f(xg) for
feL*(T\G), xeI'\G, geG. If ¢ € CJ(G) (the space of all C* compactly
supported complex valued functions on G) we can form

(m@)Pe)= [ 6@f(xe) dg

It is a standard fact (see §2) that wr(d) is of trace class. In particular,
mr(¢) is completely continuous for ¢ € C7(G). This implies that L*(I'\ G)
decomposes into an orthogonal direct sum of irreducible invariant sub-
spaces, {H;};=; and for each i there are only a finite number of k so that H; is
equivalent with H, as a representation of G (cf. Gelfand, Graev, Pyateckii-
Shapiro [9]). Let G denote the set of equivalence classes of irreducible
representations of G. Then we have observed that

= Z Nr(w)w
wEG

where Nr(w) is a nonnegative integer. If w € G we say that  is of trace class
if for each (m, H€ew, ¢ €C3(G), w(d)={c db(g)w(g)dg is a trace class
operator on H. If we G is of trace class, then set @,(¢)=tr m(¢) for
(m, H) € w. The above observations imply that if w € G and Nr(w)#0, then @
is of trace class. We therefore see that if ¢ € C:(G), then

tr wr(d) = QZE:GNI‘(O))@w (¢).

The numbers Nr(w) have been the subject of a great deal of investigation
in the last few years. In this article we will give a short survey of various
techniques that have been used to study these integers. We will concentrate
our attention on semisimple Lie groups, G. We will also, for most of the
article, look at the easiest groups I'. These groups have no elements of finite
order other than the identity. Without this assumption many (interesting)

AMS(MOS) subject classifications (1970). Primary 10D20, 22E40, 43A15. ] o
This address was given at the annual meeting of the American Mathematical Society in
Washington, D.C. on January 24, 1975; received by the editors May 8, 1975.

Copyright © American Mathematical Society 1976

171



172 N. R. WALLACH

technicalities occur. We apologize to the reader for our avoidance of these
technicalities.

It should also be pointed out that much of the important research on
L*T'\ G) has been on the case where I is discrete and I'\ G has finite volume
relative to the measure on I'\G induced by dg (see Harish-Chandra [12],
Duflo-Lebesse [4], Arthur [7]). The most noteworthy example is
G=SL(2,R), '=SL(2,Z) (R the reals, Z the integers).

A serious reader of this article will be irritated with a noteworthy
omission in this article. We will never give an example of a discrete group T’
so that I'\ G is compact. The best we can say is that there are many of them.
(See Mostow [29], Raghunathan [30].)

The author was introduced to the subject matter of this article by
Professor Paul Sally. Many of the ideas in §9 are an outgrowth of joint
research with Sally. We also thank Professor Rioshi Hotta for having taught
the author Matsushima’s work on the Betti numbers of locally symmetric
spaces. Finally, we thank Professor Kenneth Johnson for patiently teaching us
his work on the Paley-Wiener problem for semisimple Lie groups.

2. The trace formula. In the Introduction we asserted that if ¢ € CI(G),
then wr(¢) is of trace class. We also computed a formula for tr wr(¢) in

terms of the Nr(w). We now compute another such formula first observed by
Selberg. Let fe C*(I'\ G).

(@0 = [ fTx0)0() dg= [ (TR)6Gg) dg
=] X irveetve dg

G vyer

= [ e X s6v) az
Thus if we set Kor(x, g) =Y er ¢(x'vg), then we note
Kor(tx, g) = Kor(x, 78) = Kour(x, g)
for rel’. Thus Kyr:I'\GXI'\G—C is a C” function. We have
(N = [ Keal NIG) dy.

Standard theory now implies the trace class assertion and

tr m(d) = L\G Kro (%, x) dx = L\G (;ﬁ(x-wx)) di.

Arguing now as in Gelfand, Graev, Pyateckii-Shapiro [9, p. 30] we can
put this in the following form:

THEOREM 2.1 (THE TRACE FORMULA). If ¢ € C7(G), then

wm(@)= T volTAG)| sleve) g
[v]elr] Gy\G



THE SELBERG TRACE FORMULA 173

Here [I'] is the set of I'-equivalence classes in I' and [y] is the I'-equivalence
class of y. G, is the centralizer of a representative of [y]={ryr™|rel}.

I',=I'NG,. Here vol(I',\ G,) is the total measure of I',\ G, and the measures
are normalized by

Jweag=[ [ wie)axas

and
j n(g) dg= j Y. m(rg) dg.
Gy T'v\Gy, €I,

3. How to use the trace formula. In this section we will assume that G is
a semisimple Lie group with finite center. We take K<G a maximal

compact subgroup. Then X=G/K is the most general symmetric space of
noncompact type.

For simplicity we assume that I" has no elements of finite order. This assump-
tion implies (cf. Mostow [30]) that:

(a) If yeTI then Ad(y) is a semisimple automorphism of the Lie algebra
of G.

(b) T acts freely on X.

Let G. be the set of all equivalence classes of irreducible unitary rep-
resentations equivalent with a subrepresentation of L*(G). Harish-Chandra
[13] has shown that G.# @ if and only if there is a maximal torus, T, of K
which is maximal abelian in G. In [13], Harish-Chandra also proves

THEOREM 3.1. Let we Gy, (m, H €w. Let v, we H be K-finite (that is
7(K)v and w(K)w are contained in finite dimensional subspaces of H) and
set Y(g) =(m(g)v,w). Then if vy is an element of G so that Ad(y) is
semisimple, fo\c ¥(g " vg) dg converges and is zero unless ye{gTg | g e G}.

Let G/ be the set of w e Gy such that there are v, we H ((m, H) € ») so
that ¥(g) (as above) is absolutely integrable. In Borel [2] it is proved that
7r(Y) is trace class and the trace formula applies.

Now if ¢ corresponds as above to w € Gi, then 0,(¢)=0 if n#w. Thus
tr wr(¢)=Nr(w)0O,, (). On the other hand,

wm)= T volCAG) | (g™ ve) di

But y €T is conjugate to an element of K if and only if y=I. Thus we have
Nr(@)0.,(¥) =vol(I\ G)Y(I).

Now the Schur orthogonality relations (see Harish-Chandra [10]) imply
Y(D=d(w)0, (). Here d(w) is defined by

[ K (@yo, wiF dg = (v, 0)w, W) (@)

for v, we H, (m, H) € w, d(w) is called the formal degree of w. Clearly, if we
take v=w and (v, v)=1 we have
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THEOREM 3.2 (LANGLANDs [26]). Suppose that T is as above. If w.€ Gl,
then Nr(w)=d(w)vol('\ G). (Here, of course, we take the same normalization
of Haar measure to define d(w) and dg on T\G. Then the product
d(w)vol('\ G) is independent of normalization.)

Ifwe Gd, but not in G{i, then this argument breaks down. The formula of
3.2 is so nice that one might hope that it is true for Gu. Unfortunately, it is
not. If we take G=PSL(2, R) (the group of holomorphic automorphisms of
the upper half plane) and ' G as above, then I'\G/K (K=SO(2)) is the
most general Riemann surface of genus g=2. The Gauss-Bonnet theorem
implies that we can normalize dg so that vol(I'\G)=—x('\G/K)=2g-2.

G. is naturally parametrized as {w.Jn€Z, n#0} and relative to this
parametrization Ga={w:, w_1} U G}, d(w.)=|n|/2.

We therefore see that 3.2 implies

(i) Nr(w,)=|n|(g—1) = d(w.)vol('\G) if |n|=2.
On the other hand, Langlands has shown (we will see this also in §4) that
(ii) Ni(ws1) = g = d(w+1)vol(T\ G) + 1.

This certainly shows that the formula of Theorem 3.2 breaks down if
o £ G). How do we interpret the ‘“‘defect”, |d(w)vol(T'\ G)— Nr(w)|=1 in
formula (ii)? We will see that the interpretation of 1 is Nr(1), the multiplicity
of the trivial representation.

The numbers Nr(w), w€ G. have been studied, using cohomological
methods, by W. Schmid [33] and Hotta and Parthasarathy [17]. In the latter
paper it is shown that the formula of Theorem 3.2 is true for a large class of
elements of G, not in Gl.

4. Relations with the topology of '\ G/K. In the last section we noted
that if G=PSL(2, R) and I satisfies the conditions of the last section, then

(@) Nr(o:) = Nr(w-1)=g
where g is the genus of '\ G/K.

Matsushima [27] has a generalization of this formula which we will now
describe.

Let (1, V) be the complexification of the isotropy representation of K on
T(G\K)o (0 the coset I-K). Let J, be the set of equivalence classes of
irreducible representations of K that appear as a subrepresentation of A*V.
If weG and ye K, let [w|« : y] denote the multiplicity of y as a subrepresen-
tation of any representative of w. Finally, let () be the Casimir operator of G
(Q is defined as follows: let x1, - - - , x. be a basis of &, the Lie algebra of G,
let x',- -+, x" be defined by trad x; ad x'=8§;; then Q=Y xx'). Let Go={w €
Glw(Q)=0 if (m, H) € o}.

THeoREM 4.1 (MaTtsusHiMA [27]). Let b,(I'\G/K)=dim H?(I'\G/K, C).
Then

B\G/K) = T, Ne(w)( T [ol:vIAV:7]).
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This formula suggests that one should find all w € Go so that [« : y]#0
for some y e J,. Once such w are found, then the next task it suggests is to
find Nr(w). We note that this formula implies that if for any w € Go, ye T,
[w|k : ¥]=0, then b,(I'\ G/K)=0. Let us show how one can use this observa-
tion to prove that Betti numbers vanish.

Suppose that G/K has a G-invariant complex structure. Then V (above)
splits into V'@V~ (corresponding to the holomorphic and antiholomorphic
tangent spaces). I'\G/K is then a projective algebraic variety (cf. Morrow
[29]). We define J,,<K to be the set of equivalence classes of irreducible

representations of K appearing in A’V*®A*V". Then one has the analogous
formula:

(ii) buaT\G/K) = Nr(w)( T [l : YAV ® ATV y]).

Y€Jpaq
TueoreMm 4.2 (Hotta anp WarrLacH [18]). Suppose that G is simple
and that G/K has a G-invariant complex structure. Let | =rank(G/K)=
split rank(G) (we will define this term in the next section). If 0<p<lI, then
{CO € Gol[w|K : y]#O for YE Jo‘p}=®.
Using the above observations we have
CoroLLARY 4.3. bo, (T\G/K)=0 for 0<p<rank(G/K). Since

bl(F\ G/ K) = bo,l(r\ G/K) + bl,o(r\ G/ K) = 2b0,1(r\ G/K),
we have

COROLLARY 4.4 (MaTsusHIMA [26]). If G/K has a G-invariant complex
structure, G is simple, and rank(G/K)>1, then b,(I'\ G/K)=0.

Actually this theorem has been generalized by Kazdan [21] as follows:

TueoreMm 4.5. If G is a simple Lie group with split rank larger than 1 and
if T\ G is a discrete subgroup of G so that vol(T'\ G)<, then I'/[T’, '] is finite.

This is a generalization of Corollary 4.4 since rank(I'/[T, I'])=b.«(T'\ G/K)
if I' is as in §3.

The proof of Theorem 4.2 also has implications for the rank 1 case. If G
is simple and G/K has a G-invariant complex structure, then G is locally
isomorphic with SU(n, 1). SU(n, 1) is the subgroup of SL(n+1, C) leaving
the Hermitian form Y;-; |zi|*—|z,..|* invariant.

G/K is the unit ball in C" under the action g -z =({z, c)+d)'(Az+b)

[ ]

with A, nXn; b; nX1; ¢, nX1; d, 1x1. Here C" is looked upon as column
vectors and c* is the conjugate transpose of c¢. SU(1,1) is the twofold
covering group of PSL(2, R).

One proves in this case

ProPOSITION 4.6. There are elements o, and oo, in Go for
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p=0,1,2,---,n such that {we GOl[(D'K :v1#0 for some vy € J, .} ={wpq} for p
or q=0. Furthermore, J,, and J,, are singletons and [wo,|x : y]=1 for y € Jo,.

In the specific case n=1 we find wo1=w: and w1 o=w-;. Thus (ii) implies
Nr(w:1)=g. This gives another proof of this formula of Langlands.

5. An example. In this section we study the analogue of wo: or wi, for
the Lorentz groups. Let G=SO(n, 1) be the group of all ge SL(n+1, R)
that leave the form 2/—; x3—x2.; invariant. Then if K=G NSO(n+1), G/K
can be identified with the unit ball in R", Bg. This can be done via the action
g-x=((x, c)+d)'(Ax+b) where

_ [A b]
8 ¢ d

with A, nXn; ¢, b, nxX1; d, 1X1. As before, R" will be looked at as nx1
column vectors. It is easy to see that G also acts on S"7', the unit sphere.
For feC”(S"™) let (mi(g)f)(x)=f(g' - x). If feC”(S"™"), then f=Ysof,
with f, a spherical harmonic of degree p. Let ( , ) be the L? inner product
on C*(S"™") relative to the normalized standard volume element on S™".
Define for f, ge C*(S"™),

(f, g>=§l<":fzz> (for ).

Then ( , ) defines a pre-Hilbert space structure on C*(S"™")/C - 1, 1 the
constant function with value 1 on S*'. It can be shown that
(mi(x)f, g)=(f, mi(x)"'g) for f, g€ C*(S"™") and that if H, is the Hilbert space
completion of (C*(S"")/C-1,{ , ), then (m, H)) is a unitary representa-
tion of G. For details see Johnson and Wallach [20].

ProposITION 5.1 (Hotta AND WALLACH [18]).  bi(T'\ Co/ Ko)=Nr(m1). Go is
the identity component of G, and Ko=GoNK.

A unitary representation (m, H) of G, a semisimple Lie group, is called
tempered if . defines a tempered distribution on G (that is, it extends to a
continuous linear functional on the Schwartz space of G; see G. Warner

[38]).

LEMMA 5.2. 1, is a tempered representation of (SO(n, 1)) if and only if
n=2 or 3.

See Johnson and Wallach [20] for a proof of this result.

If G is a semisimple linear group, then a discrete subgroup, I', of G is said
to be arithmetic (see Borel [3]) if there is an injective finite dimensional real
representation (p, V) of G and a basis of V so that p”'(GL(N, Q)) is dense
in G, and if ['=p (GL(N, Z)) (N=dim V), then I'NI'; is of finite index in T"
and F1.

THEOREM 5.3 (VINBERG [34)]). Ifn=3,4, or5 thereis T\ Go (G = SO(n, 1))
so that T\ Go is compact, T is arithmetic and T/[T',T'] is infinite.

Using Theorem 5.3, we see that Proposition 5.1 implies that N, (1) #0
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for the I' of Theorem 5.3. Lemma 5.2 says that 1 is not tempered for n =4,
This gives the first example of a specific nontempered representation, w,
with N,(w)# 0. (Recently, Millson has shown that such I' exist for all n.)

6. The Selberg trace formula for (rank 1). Let G be a connected
semisimple Lie group with finite center. Let K be as above and let A, N be
such that G=KAN is an Iwasawa decomposition of G (see, e.g., Helgason
[15] or Wallach [35]). Then A is a maximal vector subgroup of G and N is a
maximal unipotent subgroup of G.

DEeFINITION 6.1. G is said to be split rank 1 if dim A=1.

We assume that G is split rank 1. Let M be the centralizer of A in K. We
set P=MAN. Then P is a parabolic subgroup of G. Since G has split rank 1,
all parabolic subgroups not equal to G are gotten in this manner. (For the
general definition see Warner [38, Chapter 1].)

Let a be the Lie algebra of A. Then a=RH. Let n be the Lie algebra of
N. We can normalize H so that ad H|. has eigenvalues 1 and possibly 2 (cf.
Wallach [36]). Let A*={exp tH|t>0}.

Let p be the dimension of the eigenspace with eigenvalue 1 for ad H|x, q
the dimension of the eigenspace with eigenvalue 2 for ad H|.. Then p>0

and 0=q<p. Set p=4p+2q). If veR and £e M, let H® denote the space of
functions

f:K— H ((¢, He)€ §)
flom) = m) () and [ IFGRIP ak =P <.

If feHf let f(kexptHn)=e ""f(k), keK, teR, neN. Set
(7. (8)f)(k)=f.(g"'k). Then (., H®) is a unitary representation of G.
If fe C5(G) we define

Fy(m exp tH) = e"’j f(kmank™) dn dk

(here dn is normalized so that
dg=e** dk dtdn, g =k exp tHn).
THEOREM 6.2. Let O, = O, be the character of .. Then

0..(f)= JM J: Fy(m exp tH)tr £(m)e™ dt dm.

Applying the Fourier inversion theorem and the Peter-Weyl theorem we
have

LEMMA 6.3.

o

1 P
Fi(m exp tH) = 5o g;M ,[_w 0. (fe ™ tr &(m) dv.

Now define for me M, teR,
D(m exp tH)=e™ " |det ((Ad(ma,)™" — D)|)|.
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Clearly D(m exp tH)#0 if t#0. A basic relation between F; and the trace
formula is

LemMmA 6.4 (Cr. WALLACH [35, 7.7.10]). If t#0, then
Fyma)=D(ma)| f(gmag™) g

(Here d¢ on G/A is defined by

J'd>(g) dg= L/A J_Z ¢ (g exp tH) dt dg.)

LemmMa 6.5. If ge G and Ad(g) is semisimple, then g is either conjugate to
an element of K or an element of MA™.

This follows from the fact that G has at most two conjugacy classes of
Cartan subgroups (see Warner [38] for details).

Suppose now that I'=G satisfies the conditions of §3. If yeI', y#I, then
there is x € G so that xyx'=m, exp t,, t,>0, t,eR, m,e M.

LEMMA 6.6. t, depends only on y (not on the choice of x or Iwasawa
decomposition). Also m, is determined up to conjugacy in M.

ProOF. Since vy is conjugate to an element of MA™ we see that the
eigenvalues of ady are of the form §, e“A, e “u, e’n or e
with 1=|A|=|u|=|n|=|¢|=|8]. Thus e~ is uniquely described as
(max{|A| | A an eigenvalue of Ad y})"” if ad H has eigenvalue 2 or max{|A|| A
an eigenvalue of Ad(y)} otherwise. The second assertion is equally easy and
we leave it to the reader.

Lemma 6.6 says that if yeT', £ M and y#I, then D(y)=D(m, exp t,H),
t, and tr £&(m,) are well defined (independent of x € G so that xyx '€ MA).

If he MA* and Gw={ge G|ghg '=h}, then

[ seng™dg=[ _ fehg) dgvol(Ga)
G/A GW\G

since Gu/A is compact. Let u(y)=vol(G., exp t,H/A). Combining Theorem
6.2, Lemmas 6.3, 6.5, 6.6 and the preceding observations, we have

THEOREM 6.7 (THE SELBERG TRACE FORMULA). If f € CZ(G), then

T Netw)®, () =volT\G)f D +3= ¥ vol(T,\G,)D(y)™ - u(y)

Pr=re 27 tyieffi-m

L EEm) | Ou(f) e d,

Theorem 6.7 says that the following problem is quite important to the
computation of the Nr(w).

Problem 6.8 (The Paley-Wiener problem). Describe the functions
v—0,,(f), £ M, veR for feC:(G).

This problem has been solved by K. Johnson [19] up to a fairly touchy
technical problem. There is, however, one case where the answer is exactly
what one wishes. (For another, see §8.)
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THEOREM 6.9 (S. HELGASON [16], R. GancoLLi [7]). If ¢ C7(R) define
F@)= Ji b(H)e™ dt

A necessary and sufficient condition that a function ¢ :R—R be of the form
0..(f)=v(v) for feI(G)={fecCiG)|f(kigks)=f(g) for all ki, k.eK}
is that ¢ = ¢ for & € C2(R), and ¢(—1t) = ¢(t) for all teR.

If yeCI(R) let f, € I7(G) be such that ©,,(f,)=y(v). The Plancherel
theorem for spherical functions says

THEOREM 6.10 (HARISH-CHANDRA [11], [13)). fo(D)=[- ¢ (¥) - pi(v) dv
with u:€ C”(R).

In order to derive a generalization of Selberg’s original result for
PSL(2,R), we need one more theorem.

THEOREM 6.11 (KOSTANT [24]). To each 0=d,,=v<c,,<% there exists an
irreducible unitary representation of G, m,, so that if f € I:(G), f=f, for
& € CI(R), ¢ even, then

0..(f) = (iv).

If € G and 0, (f)#0 for some f € I2(G), then w=m, for some veR, o=1
the trivial representation, or w =1, for some 0=d,,=v<c,, (Notice that d,,
and c,q depend only on p, q.)

Combining all of the above results we have

COROLLARY 6.12. Let ¢ € CZ(R) be an even function. Then

[To@a+ TNmbor+ T Nelm)bG)

p.a=V<Cpgq

=wIM\O)|_ d0Iw0) dv+ T volT\GID) u(n)d()
w -

Although we will not give any applications of this result in this article (see
Gelfand, et al. [9] for a discussion of this formula in the case G=PSL(2, R)),

we show how to use the results leading to this formula to prove that if
G=PSL(2,R), then

Nr(w:) = d(w;)vol(T\G)+1.

In §9 we will show how to use this technique for SU(2,1) and certain
elements of G,—G . The following technique is due to R. P. Langlands. Paul
Sally taught the author this technique.

In this case K=SO(2)/xI, M={I}. For 9 eR let k() be the rotation of R*
through the angle 9. If n€Z let &(9)=e™. Then wi|x =Ynz1 &on

Choose f € CZ(G) so that f(k(91)gk(9.))=e"®1**?f(g) and @.,(f)=1. This
is clearly possible. Now

Fi(exp tH) = e"’f f(k exp tHnk™') dkdn for meM, teR.
KXxXN
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Thus Fi(exp tH) is an element of CI(R). Theorem 6.9 says that there is
h e IZ(G) so that F,=F;. Thus F_,=0.

According to the classification of irreducible unitary representatives of
PSL(2,R) (see P. Sally [32] or Gelfand, et. al. [91]), if weG and
0. (f—h)#0, then w=w, or 1. Thus we find using the arguments above that

[ (=M dx+ Ne(@)@u(f k) = Vol T\ G)(f =)D
Now 0.,(h)=0 ([w|:1]=0), O.,(f)=1. Furthermore, it can be shown that

L Filexp tH)e® dt = 0,,(f) + O._(f) + L f(g) dg
for f e C2(G). Hence,
0=0.(f -+ (1-W(e)de
We therefore see that [ (f—h)(g) dg =—1. Finally,
(f=m(ID= 2, dw)B.(f~h)

weby

by the Plancherel theorem for PSL(2,R) A(Ff_h =0). We have already
observed that 0,(f—g)=0 if w#w, 0w € G; and O, (f—g)=1. Hence,
we have

-1 +Nr((01) = d(wl)vol(F\ G)
This is the asserted formula.

7. G for G=SU(2,1). In this section we give a list of the elements of G
for G=SU(2,1). We first describe the nonunitary principal series for
SU(2,1)=G. Let G act on S’={z € C?||z|=1} as follows:

A b]
c* d
(See §4.) Set a(g, z)=d—(z,b) for zeS*, geG. If ki, ke C and k,~k.€Z
(the integers), define
(T8 )(2) = a(g, 2) a(g, 2)f(g™" - 2),
for fe C*(S?), geG.
Then ,.,(g) extends to a bounded operator on L*(S*)=% and (m,x,, %)

defines a continuous representation of G for all (ki, k)€ C such that
k1—k2€z.

LEMMA 7.1. ik, is reducible if and only if (ki,k:)eZ? and
(k1, k2)#(—1, -1).

We also note

g 2=z, c)+d)(Az+b), g =[

LEMMA 7.2. (ke ) is a unitary representation (relative to the L*-norm
on ¥) if and only if —ki—k,=2+iv, veR.

The representations of Lemma 7.2 are just a reparametrization of the m,
of §6.
Before going on with the analysis of the i,x,, we should explain the
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2—1/2 O 2—1/2
B=] 0 1 o |
2—1/2 O __2—1/2

Then B*=1. B(MA)B is a real form of the group of diagonal matrices in
SL(3,C). Let ) be the space of all trace zero, diagonal, 3X3, complex
matrices. Then if Gc=sl(3, C)={X|X,3x3,tr X=0}, } is a Cartan sub-
algebra of &c. We say that Aebh* is G-integral if h— A(BhB) is the
differential of a quasi-character, {1, of MA. Let H be the element

0 01
H=|0 0 0f.
1 00

Then a=RH. Let A be the root system of & relative to §. Let A*={a e
Ala(BhB)>0}. Let ai, a; be the simple roots in A*. Let A;, A, be the basic
highest weights for this order. That is

2N, oo, o)y =8;, 1=i,j=2.

Here ( , ) is the dual bilinear form on §h* corresponding to the Killing
form on ®c. Then Aebh* is G-integral if and only if A=k:A;+k:Az, ki€ C,
i=1, 2, ki—k,eZ. For A, G-integral, let X" be the space of all fe C*(G)
such that

(1) f(gma)=¢&x(ma)f(g),

(2) (Rzf)(g)=0 for Z € By-B.
Here N" is the Lie algebra of upper triangular matrices with zeros on the
diagonal. If Xe @,

notation. Let

(Rxf)(g) = f(g exp 0O}

if Xe®,,
Rx1+ix2f = Rxlf + in2f, X= X1 + in, X1, X, € .
If fe X", ge G, define (TA(g)f)(X)=Ff(g7'X). Let

xo={[5t]

z1 —Z
u= [ ! _2] =u(z1,2z,) for (z1,z2)e S>.
Z2 Z1

ne SU(Z)}.
If ueSU(2),

It is easily seen that if fe X" then flx, determines f. If fe X" define
7(2)=f(u(z)), z € S*. Then if A = kyAs + kaAa, (Ta(2)f) t(2) = (s @))(2) for
geG, ze8S’. Let p=3Ya.cara. We note that p(BHB)=2. We will now
denote i, k, bY ma, A=kiA1+k:A2. We say A is integral if A=k Ai1+kzAs,
ki, k€ Z. We can rephrase Lemma 7.1 to say
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Lemma 7.1, 4 is reducible if and only if A is integral and A#—p.

Now let H™ be the space of all polynomials f on C* which are homogene-
ous of degree p in zi, 25, q in Z1, Z, (that is, f(Az)=A"A%f(z)) and such that

Af=( & i >f=0.

+
0Z1 621 022 852
Set #**=H"%|ss>. Then #=Y,,=0 #™* a unitary direct sum. Furthermore,
(malx, #™) is irreducible.
For p, q=0 set

_TrA+(+Dp ) iy (A+(+1Dp, )
ap’q(A)_)Ii<_A+(]'—1)P, a;) Q("A‘*’(j"l)p, az)O

Here, as usual, [[}-. a;=1 if u>v. (Note that if m, is irreducible then a,,(A)
is defined.)
For f, ge C*(S?) let
f= Z foar 8= Z 8v.a> foas 8p.a € H™,

(f, 8= ; p.a (A foas 8a)-

LemMA 7.3. Suppose that wx is irreducible. Then there exists a pre-Hilbert
space structure on C*(S?) so that (w4, C*(S®)) completes to a unitary represen-
tation if and only if one of the following holds:

1) —A(H)=2+iv, veR,;

(2) AH.)=A(H.) and |2{(A+p, a:+a)/{ai+as, ar+az)|<2;

()  A(H.)—A(H.,) is odd and [2A+p, as+an)as+as, ar+az)| <1.

’ >A'

We are now left with an analysis of the reducible . In this case it is
easier to use the T, realization. For fe C*(G) let Rif=Rzf, R.f=Rg,f

where
0 0 O 0 0 O
Z,=B|1 0 0|B, Z,=B|0 0 O|B.

0 00 010

Lemma 7.4. Set 2{A+p, ai)/{a;, ;) =mi, i=1,2. (Note that m;=k;+1,
i=1,2 if A=kiMi+kA) If mi €Z, m >0, then RX* < XSia+ere,
(Sip=p—=(2(u, a:)/{au;, a:))o.) Furthermore,

R0 TA(g) = Tsia+or-o(8)° RT™

In the latter two cases the pre-Hilbert space structure is defined by (

Using the map f—f of X* onto C”(S°), we see that if m>0, meZ we
can define R™f for fe C*(S’) by (R™f)"=R™f. Then

R omrA(g) = Wsa+er-o(8) o RI™
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Lemma 7.5. For j=0, jeZ, let
Vi={feC(S")|fra=0if g>},
Vi={feC(S")|foa=0if p>j},
Wi ={feC"($’)|fra=0if q=j},
Wi ={feC*(S> I fra=0if p=j}.

Suppose that Aebh*, A=kiA+k.As.

(1) If ki=0, ki€ Z, then ker Ri"'=Vy,, RF"'C*(8%)=Wx,.

(2) If k=0, k. Z, then ker R5*"'=V5,, R5"'C*(S*)=Wi,.

Let 3 be the center of the universal enveloping algebra of &¢. If Aebh*, A
G-integral, it is not hard to see that wa(z)f =xA(2)f, z€3, xa:8—C an
algebra homomorphism. Let W be the Weyl group of A. Then W is
generated by Si, S,. The general theory of the universal enveloping algebra
implies that xa=xsw+p)-» for S€ We. We are almost ready to list the

remaining elements of G. We first need to look at certain systems of positive
roots. Let

A‘{ = 5152A+, A; = stlA+,
and let
SISZSIA+ = stlszA+ =—A"= A;

Let ¥ denote the G-integral elements of h*.

I. THE HOLOMORPHIC DISCRETE SERIES. For Ae % and (A+p,a)>0 for
a A7 let (Dx, V1) be defined as follows: A=k;A;+k,A, with k:<0, k,=0.
Let V% be the Hilbert space completion of Vi, relative to (f, gh=
> Ap.q (A foar 8oa)- DX(g) = 77A(8)|V2-

II. THE ANTIHOLOMORPHIC DISCRETE SERIES. For A€ & and (A+p, a)>0 for
a €Aj let (D3, V2) be defined as follows: A =k;A;+k2Az, ki =0, k.<0. V2
is the Hilbert space completion of Vi, relative to (f, g)a =Y apq(A)foq 8o.a)-
DX(g) = 1TA(g)1vﬁ.

III. THE NONHOLOMORPHIC DISCRETE SERIES. For Ae % and (A+p, a)>0

for a €A3 let (Ds, W*) be defined as follows: set W =W, .NW, ,.
Define

— <A+(] + 1)p1 a2) 4 <A+(]+ 1)p’ al)
bratt= I A+G=Dp, o) i h —A+G = Dp, ax)’

p=—k.,—1, q=—k,—1. Let W* be the Hilbert space completion of W™
relative to (f, 2)a=Y. bp.q (AXfoa> &o.a)- DA(g)=7rA(g)|wA.

This gives a complete parametrization of Gu. It is useful to give an
alternate parametrization. We first observe that if Ae F*, A=kiAi1+k.A,,
then ker Rf*"'Nker R5>*" is an invariant finite dimensional subspace of .
Set V*=ker R{"*'Nker R5>*'. Then (s, V*) is the finite dimensional ir-
reducible representation of G with lowest weight —A.

LEmMMA 7.6.If Ae F ={Aec F|A, a)=0 for acA™}, let Gin={we G, if
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(miH) € w, w(z)=xa(z)I for z € 8}. Then

A _ + _
Gd.l\ - {Dslsz(A+P)—p’ DSZSI(A+P)"P9 D5152$1(A+P)"P}°

We can also describe D}.

Lemma 7.7. Gé\néd;\/\=éd,/\ lf A=k1A1+k2A2, k1, k2§2 If k1§2,
0=k.<2, then GiNGua={Ds;sia-p-o}- If 0=ki<2 and k.Z2, then
GénGd,A={D§,sz(A+p)_p}. If Oékh k2<2, then GéﬂGd,A=@.

The next class of elements of G we describe are the irreducible con-
stituents of reducible (unitary) principal series representations. From Lem-
mas 7.1 and 7.2 we see that the reducible unitary principal series consists of
the (ma, #) with A integral, A#—p and A=k;A;+k:A,, ki+k.=—2. We note
that k; and k. cannot both be negative since A is integral, A#—p=—A;—A,
and ki+k,=—2. There are thus two cases:

(1) A=k1A1+k2A2, k1§0, ki+k,=—2. In this case if H, is the L*-
completion of Vi,, Hj is an invariant subspace, and if Hx is the Hilbert
space completion of Wi,, then Hj is also invariant. # = HA@®H3i, wa=
TADwa, wa(g) = ma(g)|ux-

(ii)) A=kiA1+kaAs, ka=0, ki+k,=—2, k; € Z. This time take Hj to be the
L*-completion of Vi, and Hx the L*-completion of Wi,. Then #=Hx®Hx
and my=miDmx.

At this point we have described all of the tempered representations of G.

LemMA 7.8.  The tempered representations of G consist of

(1) Gy

(2) the irreducible principal series: (ma, ¥) with

Re 2<A, a1+a2)/(a1+a2, a1+a2>= -2
and A=—p or A not integral;

(3) the irreducible constituents of reducible principal series: A integral,
A#—p, 2(A, a1+a)/{ai+as, art+a)=—2 and wx, 7.

If G were SL(2,R) then the analogous list of Lemmas 7.8 and 7 Zi with
the addition of the trivial representation would completely describe G. For
SU(2, 1) there are more such “trivial representations”. They are analogous
to the representations of SO(n,1) of §5. We now describe these extra
representations.

(T") For keZ, k=—1, we define on Vg the Hermitian form

(fron= 3 (27 )ihon oo

p=0
then since (f13)=0 if p<k+1, we see that {( , ) induces a pre-Hilbert
space structure on V5/ViN V5 (VZ;=0). Let Zi denote the Hilbert space
completion of V3/ViN Vi. Let Ti(g) be the operator induced by mia,(g)|vs-
Then (T%, Zx) defines a unitary representation of G.
(T") For keZ, k=—1, define on V, the form

(2= % (212 )Fos gon)

p=0
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Take Zi: to be the Hilbert space completion of V5/VoNVy (VI;=0)
relative to ( , ). Let Tk be defined as in (T™) (with A, replaced by A;).

Then (T, Zx) is a unitary representation of G.

The representations listed combined with the trivial representation
completely describe G.

In §9 we will use this description of G in the trace formula. To do this
we need a list of the K-types in each element of G. We will also need to
know where the various elements of G appear in the composition series
of the s (ignoring the unitary structures). To describe the K-types we

first note that
fTu 0
K= {[0 ’ (det u)‘l]

Thus K=S"'- K,. That is, if ue K, then

ue U(z)}.

0 e —2i¥

The representations of K;=SU(2) are parametrized by their dimensions. Let
7, denote the irreducible representation of K; of dimension p+1. Let 7, be
defined by the following:

iy
u=[e u | 0 ] u, e SU(2), 9 eR.

(1) T:’IKI = Tps

i
(2) 7:7([66 egm ]) =e L

Of course the only 7, that are representations of U(2)=K are the ones such
that I=p mod 2.

LeMMA 7.9 Let A€ b* be G-integral. Set | = k,—k;, A=k A+ k,A> (then
leZ). Then

('Tl'AlK, %p,q) = Tgl_:f(p—q)
(= indicates K-equivalence).

This lemma allows one to determine completely the K-types in each
weG. If 7 is a representation of G (not necessarily unitary) then we say
that w<, if  is infinitesimally equivalent with a subquotient of ma. For
our purposes this can be taken to mean that if H is the representation space
for m, then there is a dense subspace Ho=H and #>V,>V,, V; closed
invariant spaces of # and A : H,— V,/ V. an injective intertwining operator of
7 with the induced action of 7, on V,/ V., so that A(H,) is dense in V;/ V..

Set So=5:5:51=S,5:S,: Then if 7, is irreducible and if macw, for some
w, then pw=So(A+p)—p. This can be proved in this case by comparing
representations of Kj.

We may therefore confine our attention to G, the @k, wx and the Tx,
k=-1.

LemMma 7.10. If A=kiAi+k:Az, k=0, k;€Z, then
(1) Dsyarpy-o< . if and only if w=S(A+p)—p for some s € Wc.
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(2) Dissrrnr oS if and only if w=S:(A+p)=p, or u=S$.5:(A+p)—p.
(3) Ds,sia0-0 € mu if and only if w=S:(A+p)—p or p=S:S:(A+p)—p.

LemMA 7.11 Let A=kiAi+koAs, ki, ko€ Z, ki+ko=—2 and A#—p.

(1) Suppose ki=0. Then wi<m, if and only if u=A. wi<=m, if and only if
w=S(A+p)—p for some Se Wc (note that So(A+p)—p=A).

(2) Suppose k,=0. Then wicw, if and only if w=A. wac=m, if and only if
w=S(A+p)—p for some S € Wc (So(A+p)—p=A).

We are left with the representations Ti and Tx.

LemmA 7.12. (1) If k=0 then Ti <, if and only if A=S:(kA:+p)—p,
So(kA1+p)—p, S1S2(kA2+p)—p or kAL

(2) If k=0 then Ticma if and only if A=S:(kAx+p)—p, So(kAxtp)—p,
stl(kAz““p)—p or kAz

(3) TZicmwa if and only if A=S(—Ai+p)—p for some S e Wc.

(4) TZicma if and only if A=S(—Ax+p)—p for some S € We.

8. The image of F. In order to apply the results of §7 to the trace
formula, we will need some more information on F;. We assume that G is a
simple Lie group of split rank 1 and has finite center. We retain the notation
of §6. The main result of this section is

TueoreM 8.1. Let 7 be a one dimensional representation of K. If ¢ €
C:(MA) and ¢(ma)=1(m)d(a), ¢p(a)=d(a™") for ac A, then there exists
fe CAG) with f(kigk.)=7(k)f(g)r(k:) so that F;=d¢.

This result has been proved in the case G=SU(2, 1) by Gupta (Thesis,
University of Washington). His proof is substantially the same as the one
outlined below.

We sketch a proof of this result. The idea of the proof is a modification of
Helgason’s technique for proving Theorem 6.9. We first note that if 7 is the
trivial representation, then Theorem 8.1 is a special case of Theorem 6.9.

We therefore assume that 7 is nontrivial (the technique we describe works
for the trivial representation and is actually easier in that case). Since 7 is
nontrivial, K cannot be semisimple. Since G is simple and split rank 1, this
implies G is locally isomorphic with SU(n, 1). Let £=7|u. For veR let
(me., H®) be as in the beginning of §6.3. We note that for v e C, (., H?)
makes perfectly good sense; it is just not necessarily a unitary representa-
tion. Let C(7:G:7) be the space of all C? functions f such that
f(kigk2)=7(k1)f(g)7(kz). Let E.:H*— H: be the projection onto the (one
dimensional) subrepresentation of (m,|x, H®) equivalent to T.

Let E.(v:g)=E.m.(g)E. for veC. Then the Plancherel formula for G
says that there is a positive function, w., on R so that (see Harish-Chandra
[14], G. Warner [37, Epilogue])

fD= 3, 0uR+ | a®IE(:g)m() dv.

weGgq —
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Here a(v) is, up to a constant independent of v, 7, given as
a(v)= f Fy(a)e™ dt.

Since 7 is one dimensional it is easily checked that a(v)=a(—v). Since Fi|a
has compact support it follows that a extends to an entire function on C and
there is T>0 so that if e>0, k>0 are given, there is Ci. such that

(i) |a(@)|=Ce.(1+|v]) 7 exp((T+e)|Im v)),

1) a(v)=a(-v).
Let ?(T) be the space of all entire functions on C satisfying (i), (ii). To
prove Theorem 8.1 we need only show that if « € ?(T) and if

(i) f@= [ «@E(: @),

then there exist i, ---, wc€ Gy and ¢1,* ¢+, G matrix entries of
1, *++, w so that f.—=)Y ¢ € Co(7: G : 7). Here we use the fact that for such
¢, Fy,=0 (Harish-Chandra [13]).

To do this we study in more detail the functions E.(v:g). In Wallach [35]
it is shown that if A(t)=(sin ht)***sin h2t, and if ®,(v:t)=A(t)"’E.(v:a.) for
t>0, then there is Q. € C”((0, «)) so that

(1) Q.(t)= 21 ae ™ fort=1,
2) —g—; O, (v:)+ Q. ()P.(v:t)=v’D,(v:1).

In Wallach [35, Appendix], the following result was proved (see also
Dunford and Schwartz [5]).

LEMMA 8.2. There exists an &£>0 and a continuous function
o :H.x(0,0)—C (H.={z e C|Im z>—¢}) so that

(1) t—>o(v:t) is C* for ve H, t>0.

(2) |o(v:t)|=2 for t=ao for v e Ho, ao independent of v.

2 —
B  —Leor:)+ Qe o=t ow:),  veh.
4) limw=oo(v:t)=1 for veH..
(5) v—o(v:t) is holomorphic for ve H..
This result was used in Wallach [35] to show that if veR, v#0
O, (v:ia)=e"C,(v)o(:t)+e ™C.(—v)a(-v:t)

for t >0. It was also shown that if Im v <0, then

C.0)= | exp(—(o+in)(H@N(K(R) " dn

(Here N=9(N), 9(g)="'g " for ge SU(n, 1) for an appropriate choice of N.
Also if ge G, g=K(g)exp(H(g)H)n(g) with K(g)e K, n(g)e N.) Now K is
locally isomorphic to U(n). Let 7. denote the kth power of the determinant
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function (for coverings of SU(n, 1), k can be a rational number). Then 7
describes the typical one dimensional representation of K.

LemMmA 8.3. There is a constant, c(n)=C, depending only on n so that
C(iv/2)T(iv/2+3)
I'(n+iv+k)/2)T((n +iv—k)/2)
where T is the classical gamma function (cf. Whittaker and Watson [38]).
LemMAa 8.4 (HarisH-CHANDRA [14], G. WARrRNErR [37]). w.(v)=
(C.(—v)C.(v))™" for veR.

Lemma 8.4 is a very special case of the Maas-Selberg relations of
Harish-Chandra. A proof of this result can also be found in Knapp-Stein
[22].

The above results say that

C.(v)=C

AM)E,.(v:a)u.(v) = e"C.(—v) 'a(v:t)+e C.(v) 'o(-v:t)
for v eR. Thus,

AW fo(a)=

o

e"'C.(—v) 'a(v)o(v:t) dv

+ le e C.(v) 'a(v)o(—v:t) dv;

since a(—v)=a(v) we see

©

A()*fu(a) = ZJ: e C.(v) 'a(v)o(—v:t) dv.

Using classical results on the I'-function we know that if |v| >R, Im v =0,
then

|C.() "= C(L+|w)™
for some C>0, N>0. Integrating e ™'C.(v)'a(v)o(—v:t) about the
contour ['k:
“R R

and using the above estimates on C.(v)™!, a(v), a(—v:t), Imv =0 we find
that if t>T,
L
A()"*fu(a)=4mi ) Res,—.e "C.(v) a(v)o(—v:t).
1=0

Here [, is the greatest integer less than (k| —n)/2 (=7 and

,-=i(2j+n—|k‘), j=0,---,1.
Notice that if |k|<n, then there are no z;.
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To complete the proof we need
LemMma 8.5. If v=gz, j=0,1, --,L, then
ADE.(v:a)=e " C.(—v)o(-v:1).
This lemma is proved by a careful analysis of where the holomorphic
discrete series appears in the ., v € C. Using the fact that f. eLZ(Q), we

therefore see that g— E.(v:g) is a matrix entry of an element of G, for
v=z, j=0,1,---, L. Thus, if

¢;(g) =4mires C.(v) 'a(V)E.(=v:1),
we see that f,—Y, ¢; € C(7: G : 7). This completes the proof of Theorem 8.1.

9. Applications to I'\SU(2, 1). We return to the notation of §7. We will
study the case G=SU(2, 1) in this section.

PrOPOSITION 9.1. Let we G bg such that if veK and vy is one dimen-
sional, then [w|x:y]=0. Let 1€ K be such that [w|x: 7]#0. Set for 6 €R,

e’ 0 0
m(9)=[0 e 0], M={m(6)| 6 R}.
0 0 e°

Suppose that (m(0)) diagonalizes with diagonal entries ™, j=1,---,r.
Then there exists f € C:(G) so that

(1) 0.(f)=1;

(2) F;=0;

(3) if n€ G has a different infinitesimal character than w, then ©,(f)=0.

4) if neG and [« :7]=[n|x :735]=0, j=1,- - ,r, then ©,(f)=0 (here
we use the parametrization of representations of U(2) given in §7).

Proor. Let 7* be the complex conjugate representation to 7. Let (7, V)
be an irreducible unitary representation in the class of 7. Choose

h:G —End(V) sothat h(kigk:)=1*(ki)h(g)r*(k2)

for ki, k2€K, ge G, h of class C; and veV so that if ¢(g)=(h(g)v, v)
(¢ , ) the K-invariant inner product on V), then 0,(¢)=1.
We compute Fy(m(6)a).

F,(ma)= e"“°g“’J- ¢ (kmank™) dk dn
KXxXN

— ep(loga)J (<J‘ h(kmank‘l) dk - v, D>) dn

_ ep(loga)j (r*(k)h(man)r*(k)™" dk - v, v)) dn.

The Schur orthogonality relations for K say that if Te End(V), then

1

L () Tr(k) " dk =+

tr T,
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where d, is the dimension of 7. Hence,

F,(ma) =i e (v, v) - tr( L h(man) dn).

Now if me M, then n — mnm™'

Hence,

is a diffeomorphism of N preserving dn.

'r*(m)L h(an) dn = L h(an) dn v*(m)

for me M. Thus, if V=Y;_, V; with 7(m(0))|v,=e"*’I, and if P;: V-V, is the
orthogonal projection, then

J h(an) dn = Zr P,-J h(an) dn P,
N i=1 N
Set

¥(m(0)a) -1 e*® 8y, vYe ™ - tr ;| h(an)dnP,
d, N

Then F,(ma)=Y;-1 yj(ma), meM, a€ A. Now

Fy(ma)=F,(ma™), i(m(0)a) = e “Yi(a),
and

@)= [ e F, (m(@)a) o

Hence, ¢;(a) = y;(a”"). Furthermore, it is easily seen that 77 >*(m()) = e ™.
Theorem 8.1 now implies that for each j=1,---,r there exists ;e
C(15™: G :15°") so that Fy, =y;. Set u=¢—Y;-1 ¢;. Then u satisfies (1), (2),
(4) of the proposition. From the results of §7 it is easily seen that the set
S={ne(§|®n(u)¢0} is finite. Let xi, -, xm be the distinct infinitesimal
characters of the elements of S. Let S;={n € S|n has infinitesimal character
xi}- We may (and do) assume that we y;. Let 3 be the center of the
complexified universal enveloping algebra, U, of G. Then if x—'x is the
antiautomorphism of U defined by ‘1=1, ‘x =—x for x €®, the Lie algebra of
G, ‘(xy)="y'x. Then if ze 3,z€ 3, and if ne S, O,(z : u)=x:i('z)®,(u). For
each i, let z €3, i=2,--,m, be such that x:(z:))#x:(z:) (this is possible
since x1,°**, xm are distinct). Let

, = 22 x2(22) (23~ X3(23)) - - * (Zm = Xm(2m))
(x1(z2) = x2(22)) * * * (X1(zm) = Xm(2zm)) ~

Then x1(z)=1, xi(z)=0, i=2. f="z - u satisfies (1), (2), (3), and (4).

We now give some implications of Proposition 9.1. First of all let w=Tj.
Then the K-types of T5 are 7,7, p=1. Hence, T; satisfies the hypothesis of
Proposition 9.1. Take 7=13. Then 7i(m(6)) diagonalizes with entries 1 and
e*®. Thus k.=0, k,=3. The representations with the same infinitesimal
character as Ty are 1, Ts, To, Dsis;o-es Dsys10-0s D-2p- Let f be as in
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Proposition 9.1. Now
[D 2|k : 1]=[Dosplic : 78] =[D 2, : 73] =0,
[Ds,s1p-olx : 11=[Ds,s,0-0lx : 76]=[Ds5,5,0-6lx : 711 =0,
[T5l :1]=[Tolx : 78]=[Tol« : 73] =0.

Hence, Proposition 9.1 combined with Theorem 6.7 implies that if T G is a
discrete subgroup without elements of finite order other than I so that I'\G
is compact, then

Nr(1)®1(f) + Nr(Tg)@)Tg(f) + Nr(D;lszp—p)®SlS2p—p(f) = f(I)VOl(F\ G)
Since F;=0, f(I)=Y.c6, d(0)O.(f). Thus,
f()=d(D E.SZp—p)Gbglszp_p(f )-

Now Or:(f)=1, mo contains 1 and Ts and @.,(f)=0 since F;=0. Hence,
0:(f)=—1. ms,s,- contains To, Dg;s,o—, but not 1. Hence, Ops,q,, (f)=—1.
Clearly Nr(1)=1. Hence, we have

(1) 1—=N(T5)+ Nr(Ds;s:0-p) = d(D5;5,-)VOI(T\ G).
If we do the same argument starting with w=D _,,, then we find
(2) NF(D—20) - NF(Dngzp—p) - NF(D§2SH7“P) —-1= _d(D~20)V0l(F\ G)

Here we note that if w:, w:€ Ga and i, . have the same infinitesimal
character, then d(w:)=d(w.) (see Harish-Chandra [13]). Using Matsushima’s
formula (84, (ii)) and the list of §7, we find

LeEmMA 9.2.
bo..(I"\ G/K) = Nx(T¥), b:o(I'\ G/K) = Nr(To),
bo2(I'\ G/K) = Nr(D5,s,0-0), b2o(I"\ G/K) = Nr(Ds,s,0 ),
b1i(IN\G/K) =1+ Nr(D_5,).

Now the Gauss-Bonnet-Chern theorem (cf. Kobayashi-Nomizu [23, VII,
§5]) implies that there is a normalization of dg so that vol(I'\ G)=x(I'\ G/K)
(the Euler number of I'\ G/K). This normalization is the Euler-Poincaré
measure of Serre [33]. This normalization of dg is independent of I'. Now

by Poincaré duality. Now I'\G/K is Kéahler. Hence, b,,=b,,. Hence,
b1=2b0,1, b2=b1,1+2bo,2. Thus,

3) 2—4bo1+2bo,+ b1,y =volI'\ G).
This says (in light of Lemma 9.2)
4) 3—4Nr(Ts) +2Nr(Ds,s.0-) + Nr(D—2,) = vol(I'\ G).
Now wusing Lemma 9.2 on (1) and (2) and the fact that
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d(Dglszp—p)=d(D—2p), W€ s€e€
(1) 1 —bo1+boz=d(D,)vol(I'\G),
(2') b1,1 -1- b0,2 - bz,o = “d(D_zp)VOI(F\ G)

Combining (1), (2') and (3), we find d(D-,)=3.

Computing Chern classes from the G-invariant metric on G/K, we find
that Ci+C,=4E where C;, C, are the first and second Chern classes and E
is the Euler class (actually this computation can be done on P*(C)).

We have therefore proved

THEOREM 9.3 (MAX NOETHER).
1—bo(T\ G/K) + bo.(T\ G/K) = (Ci + C,)[I'\ G/K]/12.

Of course, this theorem is well known. If w € G. and if » has infinitesimal
character xx, A€ F* (see Lemma 7.6), then d(w)=C I,cs" ((A+p, a)/{p, a))
with C depending only on dg (see Harish-Chandra [13]). Since d(D-;,)=3
relative to the Euler-Poincaré normalization and D_,, has infinitesimal
character xo, we see that C=3. We have also proved

LeEmMMA 9.4. Let dg be given the Euler-Poincaré normalization. If o € Ga

and o has infinitesimal character xa, Ae%F*, then d(w)=
leest (A+p, a){a, a)).

We now use the same technique on T%, k=1, and find:
(5) If k=1, then

Nr(D3,s,0a1+0-0) — Nr(T3) = 8(k + 1)(k +2)vol(T\ G).
Also if we start with the “lowest K-type” of Ds;s,s,xa;+0)-0, We find

Nr(D5,s50ca1+0)-p) T Nr(D 5,5, A140)-0)
- NI‘(Dslszsl(kA1+p)—p) = %(k + 1)(k + 2)V01(F\ G)'
Now if k=2, Ds,s,xka,+p-p 18 in G (see Lemma 7.7). Hence, Theorem 3.2
implies:
(7) If k=2 then

(©6)

NI"(D ;1SZ(kA1+p)—p) = NF(DS;52$1(kA1+P)—P)‘

We now give another application of this technique. Let w=m_54,. Then
T2, =T 20,7 2a,. The elements of G with the same infinitesimal character
as W aa, Ar€ T oon,, Tian,, TYi. Arguing as above we find

LEMMA 95 Nr(ﬂ'zzAz)"‘Nr(’lTizAz)ZNF(Ttl).
We note that (5) says for k=1,
Nr(D3,sxa140-0) = Nr(T7) + d(D5,s54,+0)-0)VOIIT\ G).
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This is the reason why the series of representations Ti was labeled with a T.
It stands for “trash”. The philosophy is that once the trash is “disposed of”
(i.e., Nr(T)=0) then the formula for Nr(w) should be d(w)vol(I'\G) for
w € G,. This “philosophy” is borne out by the following result.

THEOREM 9.6.

+ _ _
NF(Dslsz(k1A1+k2A2+P)-p) - NF(Dszsl(k1A1+k2Az+P)—p)

= NF(DS1szsl(k1A1+k2A2+P)—9)

=_1_ <k1A1+k2A2+p, Ot> B
3 [JO 0. a) vol(T\ G)

if ki=1, and k,=1.

The proof uses the same technique but starts with the “lowest k-type” of
a nonunitary representation. Similar results were derived for more general
groups in Hotta-Parthasarathy [17], using geometric techniques.

10. Asymptotic formulas. We conclude this article by discussing another
technique for studying the Nr(w). In this technique one studies the distribu-
tion of the Nr(w) as w varies over G. Let G be a connected semisimple Lie
group with finite center. Let '=G be a discrete subgroup so that I'\G is
compact. Let K be a maximal compact subgroup of G. Let Z(G) be the
center of G, Z(I=Z(G)NT. Let Kr be the set of all 7e K so that |z is
the identity. For w € G, let A, I be the value of the Casimir element on any
representative of w.

TrEOREM 10.1 (GELFAND [8], GANGOLLI [6],AWALLACH [36]). There is a
constant Cg depending only on G so that if 7€ Kr and if [Z(')] is the number
of elements in Z(I') and d=dim G/K, then

ZG Nr(w)[w|k : 7]e™ = Cod.[Z(T)](4mt)™* vol(T\ G) + o (t™¥?)

ast— 0, t>0.

The value of the constant Cs is just the volume of K relative to the Haar
measure that corresponds to the bi-invariant metric on K gotten by restrict-
ing the negative of the Killing form of G to the Lie algebra of K.

This formula was conjectured by Gelfand [8] and a proof of it for
G=SL(2,R) was sketched in Gelfand, Graev, Pyateckii-Shapiro [9]. It was
proved by Gangolli for the case =1 and G complex semisimple in [6].
Gangolli also conjectured the general form of this theorem in [6].

The idea of the proof is to observe that if I" has no noncentral elements of
finite order, then I'\G/K=X is a manifold. I'\G—TI'\G/K is a principal
bundle with structure group K. If 7€ K then we can form the associated
unitary vector bundle I'\G X,V, =V.. There is a natural connection on V,
and the connection Laplacian is just the Casimir operator, plus a scalar
depending only on 7. In this case the result is then a fairly easy generaliza-
tion of the heat equation method (see McKean-Singer [28]) for studying the
distribution of eigenvalues for a Laplacian. The general case is proved by
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developing an analogous theory for G\M where M is a compact manifold
and G is a finite group acting on M. For details see Wallach [36].

This idea of using the heat equation method to study the Nr(w) is due to
Gangolli.
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