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1. Introduction. Let G be a connected unimodular Lie group. Let T be 
a discrete subgroup of G so that T\G is compact. We fix a Haar measure, 
dg, on G. Then dg induces a G-invariant measure on T\G. We can then 
form a unitary representation (rrr, L2(F\G)) where (rrr(g)f)(x)=:f(xg) for 
feL2(T\G), xeT\G, geG. If <f>eC7(G) (the space of all C00 compactly 
supported complex valued functions on G) we can form 

M<t>)f)M = \G<!>(g)f(xg)dg. 

It is a standard fact (see §2) that 7rr(4>) is of trace class. In particular, 
7Tr(4>) is completely continuous for 4>eC7(G). This implies that L2(r\G) 
decomposes into an orthogonal direct sum of irreducible invariant sub-
spaces, {HjK°=i and for each i there are only a finite number of k so that H, is 
equivalent with Hk as a representation of G (cf. Gelfand, Graev, Pyateckiï-
Shapiro [9]). Let G denote the set of equivalence classes of irreducible 
representations of G. Then we have observed that 

7Tr= ^Nr (<o)co 

where Nr((o) is a nonnegative integer. If co € G we say that co is of trace class 
if for each (IT, H)eco, <f>eC7(G), /7r(c/)) = jG</)(g)/n'(g) dg is a trace class 
operator on H. If coeG is of trace class, then set 0w(</))=tr 7r(c/>) for 
(IT, H) G co. The above observations imply that if co G G and Nr(<o)7*0, then co 
is of trace class. We therefore see that if <$> G C7(G), then 

tr7Tr(</>)= I„Nr(a>)a.to>). 
weG 

The numbers Nr(co) have been the subject of a great deal of investigation 
in the last few years. In this article we will give a short survey of various 
techniques that have been used to study these integers. We will concentrate 
our attention on semisimple Lie groups, G. We will also, for most of the 
article, look at the easiest groups T. These groups have no elements of finite 
order other than the identity. Without this assumption many (interesting) 
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172 N. R. WALLACH 

technicalities occur. We apologize to the reader for our avoidance of these 
technicalities. 

It should also be pointed out that much of the important research on 
L2(r\ G) has been on the case where T is discrete and T\ G has finite volume 
relative to the measure on T\G induced by dg (see Harish-Chandra [12], 
Duflo-Lebesse [4], Arthur [7]). The most noteworthy example is 
G = SL(2, R), T = SL(2, Z) (R the reals, Z the integers). 

A serious reader of this article will be irritated with a noteworthy 
omission in this article. We will never give an example of a discrete group T 
so that T\G is compact. The best we can say is that there are many of them. 
(See Mostow [29], Raghunathan [30].) 

The author was introduced to the subject matter of this article by 
Professor Paul Sally. Many of the ideas in §9 are an outgrowth of joint 
research with Sally. We also thank Professor Rioshi Hotta for having taught 
the author Matsushima's work on the Betti numbers of locally symmetric 
spaces. Finally, we thank Professor Kenneth Johnson for patiently teaching us 
his work on the Paley-Wiener problem for semisimple Lie groups. 

2. The trace formula. In the Introduction we asserted that if <f> s C"(G), 
then 7Tr((f>) is of trace class. We also computed a formula for tr irr(<f>) in 
terms of the Nr(o>). We now compute another such formula first observed by 
Selberg. Let ƒ eC°°(r\G). 

M<t>)f(Tx)=\ f(Txg)<t>(g)dg=\ f(Tg)*(x'1g)dg 
JG JG 

= f Z f(rYg)^(x-1
7g) dg 

= f f(Tg)( I <M*-l7g)) dg. 

Thus if we set K<j>,r(x, g) = Z7er<f>(x_17g), then we note 

KM<TX, g) = KM<X, rg) = Kf>,r(x, g) 

for TGT. Thus K>, r : r \Gxr \G->C is a C°° function. We have 

(<irr«0/)(x)=f KrAx,y)f(y)dy. 
Jr\G 

Standard theory now implies the trace class assertion and 

tr 'jrr(c^)= Ki\*(x, x) dx = ( X <j)(x~lyx)) dx. 
Jr\G Jr\G \76r / 

Arguing now as in Gelfand, Graev, Pyateckiï-Shapiro [9, p. 30] we can 
put this in the following form: 

THEOREM 2.1 (THE TRACE FORMULA). If <f> e Cc (G), then 

tr 77r(c/>) = I vol(r7\G7) f <Mg_17g) dg. 
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Here |T] is the set of Inequivalence classes in T and [7] is the T-equivalence 
class of 7. G7 is the centralizer of a representative of [ 7 ] = { T 7 T _ 1 | T G T } . 

r 7 = r n G 7 . Here vol(r 7 \G 7) is the total measure of r 7 \Gy and the measures 
are normalized by 

*l>(g)dg = ijj(xg)dxdg 
JG jGy\G JGy 

and 

v(g)dg=\ Z nOj-g)cig. 
jGy Jry\Gy rŒTy 

3. How to use the trace formula. In this section we will assume that G is 
a semisimple Lie group with finite center. We take K^G a maximal 
compact subgroup. Then X=G/K is the most general symmetric space of 
noncompact type. 

For simplicity we assume that T has no elements of finite order. This assump­
tion implies (cf. Mostow [30]) that: 

(a) If 7 e T then Ad(7) is a semisimple automorphism of the Lie algebra 
of G 

(b) T acts freely on X. 
Let Gd be the set of all equivalence classes of irreducible unitary rep­

resentations equivalent with a subrepresentation of L2(G). Harish-Chandra 
[13] has shown that Gd ̂  0 if and only if there is a maximal torus, T, of K 
which is maximal abelian in G In [13], Harish-Chandra also proves 

THEOREM 3.1. Let coGGd, (TT, H)eco. Let v, weH be K-finite (that is 
ir(K)v and ir(K)w are contained in finite dimensional subspaces of H) and 
set i//(g) = (7r(g)u, w). Then if 7 is an element of G so that Ad(7) is 
semisimple, $Gy\G tyig^yg) dg converges and is zero unless 7 G {gTg-11 g G G}. 

Let G'd be the set of co e Gd such that there are v, w e H ((TT, H) e co) so 
that i//(g) (as above) is absolutely integrable. In Borel [2] it is proved that 
77r(i|/) is trace class and the trace formula applies. 

Now if \\f corresponds as above to œeGd, then @^(i//)=0 if TJ^CO. Thus 
tr 7rr(i//)=Nr(co)©co(i|>). On the other hand, 

tr 7Tr(i|/) = I vol( I \ \G 7 ) [ iKg-^g) d §-
7£[r] JGy\G 

But 7 e T is conjugate to an element of K if and only if 7=1 . Thus we have 

NrCco)©^) = vol(r\G)i|/(I). 

Now the Schur orthogonality relations (see Harish-Chandra [10]) imply 
i|/(I) = d(co)©<0(i|/). Here d(co) is defined by 

J |<Tr(g)t;, w)|2 dg = (v, v)(w, w)d((x))~1 

for v, w G H, (77, H) G co, d(co) is called the formal degree of <o. Clearly, if we 
take v=w and (v, v)—l we have 
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THEOREM 3.2 (LANGLANDS [26]). Suppose that T is as above. If co.eGd, 
then Nr(co)=d(co)vol(r\G). (Here, of course, we take the same normalization 
of Haar measure to define d(co) and dg on T\G. Then the product 
d(o>)vol(r\G) is independent of normalization.) 

If co e Gd, but not in G'd, then this argument breaks down. The formula of 
3.2 is so nice that one might hope that it is true for Gd. Unfortunately, it is 
not. If we take G=PSL(2, R) (the group of holomorphic automorphisms of 
the upper half plane) and TczG as above, then T\G/K (K = SO(2)) is the 
most general Riemann surface of genus g ^ 2 . The Gauss-Bonnet theorem 
implies that we can normalize dg so that vol(r \G) = ~ x ( r \ G / K ) = 2 g - 2 . 

Gd is naturally parametrized as {con|n e Z , n^O} and relative to this 
parametrization Gd={coi, co-i} U G'd, d(o)n) — \n\/2. 

We therefore see that 3.2 implies 

(i) Nr(con) = | n | ( g - l ) = d(cün)vol(r\G) if |n |S2 . 

On the other hand, Langlands has shown (we will see this also in §4) that 

(ii) Nr(co±i) = g = d(co±1)vol(r\ G) + 1 . 

This certainly shows that the formula of Theorem 3.2 breaks down if 
co é Gd. How do we interpret the "defect", |d(co)vol(r\G)-N r(co)| = 1 in 
formula (ii)? We will see that the interpretation of 1 is N r ( l ) , the multiplicity 
of the trivial representation. 

The numbers Nr(co), coeGd have been studied, using cohomological 
methods, by W. Schmid [33] and Hotta and Parthasarathy [17]. In the latter 
paper it is shown that the formula of Theorem 3.2 is true for a large class of 
elements of Gd not in Gd. 

4. Relations with the topology of T\G/K. In the last section we noted 
that if G=PSL(2, R) and T satisfies the conditions of the last section, then 

(i) Nr(o)i) = Nr(co_i) = g 

where g is the genus of T\G/K. 
Matsushima [27] has a generalization of this formula which we will now 

describe. 
Let (T, V) be the complexification of the isotropy representation of K on 

T(G\K)o (0 the coset I • K). Let Jp be the set of equivalence classes of 
irreducible representations of K that appear as a subrepresentation of APV. 
If co 6 G and yeK, let [co|K : 7] denote the multiplicity of 7 as a subrepresen­
tation of any representative of co. Finally, let CI be the Casimir operator of G 
(ft is defined as follows: let Xi, • • • , xn be a basis of @, the Lie algebra of G, 
let x1, • • • , xn be defined by tr ad Xi ad x] = 81, ; then ft=£ XiX1). Let Go={<o e 
Ô|ir(f t)-0 if (TT,H)GCO}. 

THEOREM 4.1 (MATSUSHIMA [27]). Let bp(r\G/K)=dimHp(T\G/K,C). 
Then 

bP(T\G/K)= £ Nr(co)(Z[co|K:7][ApV:7]). 
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This formula suggests that one should find all co e G0 so that [co|K : T J ^ O 
for some 7 e Jp. Once such co are found, then the next task it suggests is to 
find Nr(co). We note that this formula implies that if for any co € G0, yeJp, 
[co|K : Y ] = 0 , then b p ( r \G /K)=0 . Let us show how one can use this observa­
tion to prove that Betti numbers vanish. 

Suppose that G/K has a G-invariant complex structure. Then V (above) 
splits into V+©V" (corresponding to the holomorphic and antiholomorphic 
tangent spaces). T\G/K is then a projective algebraic variety (cf. Morrow 
[29]). We define Jp^K to be the set of equivalence classes of irreducible 
representations of K appearing in ApV+®AqV~. Then one has the analogous 
formula: 

(ii) b M ( r \ G / K ) = X Nr(o>)( I [co|K:7][APV+®AqV-:y]V 

THEOREM 4.2 (HOTTA AND WALLACH [18]). Suppose that G is simple 
and that G/K has a G-invariant complex structure. Let i=rank(G/K) = 
split rank(G) (we will define this term in the next section). If 0<p<l, then 
{COGGO|[CO| K :7]^0 for yeJo,P}=0. 

Using the above observations we have 

COROLLARY 4.3. b o , P ( r \G/K)=0 for 0<p<rank(G/K). Since 

b i ( r \G/K) = b0ii(r\ G/K) + bif0(r\ G/K) = 2b0,i(T\G/K\ 

we have 

COROLLARY 4.4 (MATSUSHIMA [26]). If G/K has a G-invariant complex 
structure, G is simple, and r ank(G/K)>l , then bi(T\G/K)=0. 

Actually this theorem has been generalized by Kazdan [21] as follows: 

THEOREM 4.5. If G is a simple Lie group with split rank larger than 1 and 
if r \ G is a discrete subgroup of G so that vol(r\G)<o°, then T/[T, T] is finite. 

This is a generalization of Corollary 4.4 since rank(T/[r, r]) = bi(T\G/K) 
if T is as in §3. 

The proof of Theorem 4.2 also has implications for the rank 1 case. If G 
is simple and G/K has a G-invariant complex structure, then G is locally 
isomorphic with SU(n, 1). SU(n, 1) is the subgroup of SL(n + l , C) leaving 
the Hermitian form £r=i |zt|2—|zn+i|2 invariant. 

G/K is the unit ball in Cn under the action g • z = « z , c)+d)~1(Az+b) 
where 

Hf* d] 
with A, nx'n; b; n x l ; c, n x l ; d, l x l . Here Cn is looked upon as column 
vectors and c* is the conjugate transpose of c. SU(1,1) is the twofold 
covering group of PSL(2, R). 

One proves in this case 

PROPOSITION 4.6. There are elements cop,0 and co0,P in G0 for 
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p = 0 , 1 , 2, • • • , n such that {co e G0\[<o\K : T ] ^ 0 /or some y e JP,q}={(op,q} for p 
or q =0. Furthermore, J0,P and Jp,0 are singfetons and [CO0,P|K : T ] = 1 for y e J0,p. 

In the specific case n = l we find co0,i = coi and <oi,o=co-i. Thus (ii) implies 
Nr(a>±i)=g. This gives another proof of this formula of Langlands. 

5. An example. In this section we study the analogue of to0,i or coi,0 for 
the Lorentz groups. Let G = SO(n, 1) be the group of all g e S L ( n + l , R) 
that leave the form Ir=i x?-Xn+i invariant. Then if K = G fï SO(n +1), G/K 
can be identified with the unit ball in Rn, BR. This can be done via the action 
g-x=((x, c)+d)~1(Ax+b) where 

g = [ > d] 
with A, nxn\ c, b, n x l ; d, l x l . As before, Rn will be looked at as n x l 
column vectors. It is easy to see that G also acts on Sn~\ the unit sphere. 
For feC-iS-1) let (7r1(g)/)(x)=/(g-1 • x). If feCiS"'1), then f = I P = 0 / P 

with fp a spherical harmonic of degree p. Let ( , ) be the L2 inner product 
on C°°(Sn~1) relative to the normalized standard volume element on Sn_1. 
Define for / , geClS"""1) , 

Then ( , ) defines a pre-Hilbert space structure on C^iS"'1)^ • 1, 1 the 
constant function with value 1 on Sn_1. It can be shown that 
<iri(x)/, g)=</? ^i(x)_1g) for ƒ, g e C^CS"-1) and that if Hx is the Hilbert space 
completion of (C^iS^^/C - 1, ( , ), then (TTI, H I ) is a unitary representa­
tion of G. For details see Johnson and Wallach [20]. 

PROPOSITION 5.1 (HOTTA AND WALLACH [18]). bi(r\Co/K0)=N r(iri). G0 is 
the identity component of G, and Ko^GoCiK. 

A unitary representation (77, H) of G, a semisimple Lie group, is called 
tempered if ©^ defines a tempered distribution on G (that is, it extends to a 
continuous linear functional on the Schwartz space of G; see G. Warner 
[38]). 

LEMMA 5.2. TTI is a tempered representation of (SO(n, 1))0 if and only if 
n =2 or 3. 

See Johnson and Wallach [20] for a proof of this result. 
If G is a semisimple linear group, then a discrete subgroup, T, of G is said 

to be arithmetic (see Borel [3]) if there is an injective finite dimensional real 
representation (p, V) of G and a basis of V so that p^iGLiN, Q)) is dense 
in G, and if r i = p -1(GL(N, Z)) (N=dim V), then TDTr is of finite index in T 
and Ti. 

THEOREM 5.3 (VINBERG [34]). If n = 3,4, or 5 there is T\G0 (G = SO(n, 1)) 
so that T\ Go is compact, T is arithmetic and T/\T, T] is infinite. 

Using Theorem 5.3, we see that Proposition 5.1 implies that N P ( T T I ) ^ 0 
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for the T of Theorem 5.3. Lemma 5.2 says that TTI is not tempered for n > 4 . 
This gives the first example of a specific nontempered representation, co, 
with Np(co)^0. (Recently, Millson has shown that such T exist for all n.) 

6. The Selberg trace formula for (rank 1). Let G be a connected 
semisimple Lie group with finite center. Let K be as above and let A, N be 
such that G = K A N is an Iwasawa decomposition of G (see, e.g., Helgason 
[15] or Wallach [35]). Then A is a maximal vector subgroup of G and N is a 
maximal unipotent subgroup of G. 

DEFINITION 6.1. G is said to be split rank 1 if dim A = l . 
We assume that G is split rank 1. Let M be the centralizer of A in K. We 

set P=MAN. Then P is a parabolic subgroup of G. Since G has split rank 1, 
all parabolic subgroups not equal to G are gotten in this manner. (For the 
general definition see Warner [38, Chapter 1].) 

Let a be the Lie algebra of A. Then a = RH. Let n be the Lie algebra of 
N. We can normalize H so that ad H|n has eigenvalues 1 and possibly 2 (cf. 
Wallach [36]). Let A+={exp tH|t>0}. 

Let p be the dimension of the eigenspace with eigenvalue 1 for ad H|n, q 
the dimension of the eigenspace with eigenvalue 2 for a d H | n . Then p > 0 
and 0 ^ q < p . Set p=4(p+2q). If veR and ÇeM, let Hè denote the space of 
functions 

f(km) = C(m)~1f(k) and f ||/(k)||2 dk = \\f\\2«». 

If feH* let fv(kexptHn) = e-(iv+p)tf(k), keK, teR, neN. Set 
(^,v(g)/)(k)=/v(g_1k). Then ( 7 ^ , Hè) is a unitary representation of G 

If f eCo(G) we define 

Ff(m exp tH) = etp fikmank'1) dn dk 
J K X N 

(here dn is normalized so that 

dg = e2tp dk dt dn, g — k exp tHn). 

THEOREM 6.2. Let ©^v = &èv be the character of u^,v. Then 

<9fcv(/)=f f Ff(mexptH)trÇ(m)eivtdtdm. 
JM J-00 

Applying the Fourier inversion theorem and the Peter-Weyl theorem we 
have 

LEMMA 6.3. 

Ff(m exp tH) = T - Z f ®tAf)e~ivtt^(m) dv. 

Now define for meM, teR, 

D(m exp tH) = e~tp |det ((Ad(ma t)~1-7)|n)|. 
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Clearly D(m exp tH)^0 if t^O. A basic relation between Ff and the trace 
formula is 

LEMMA 6.4 (CF. WALLACH [35, 7.7.10]). If t9^0, then 

Ff(ma) = D(ma) figmag'1) dg. 
J G/A 

(Here dg on G/A is defined by 

J <Mg) dg = j \ x<i>(g exp tH) dt dg.) 

LEMMA 6.5. If geG and Ad(g) is semisimple, then g is either conjugate to 
an element of K or an element of MA+ . 

This follows from the fact that G has at most two conjugacy classes of 
Car tan subgroups (see Warner [38] for details). 

Suppose now that Te:G satisfies the conditions of §3. If yeT, y^I, then 
there is x e G so that xyx^^nu, exp ty, t7>0, ty eR , my e M. 

LEMMA 6.6. ty depends only on y (not on the choice of x or Iwasawa 
decomposition). Also nu, is determined up to conjugacy in M. 

PROOF. Since y is conjugate to an element of MA+ we see that the 
eigetivalues of ad y are of the form ô, ety\% e~tyii, e2tyr) or e'2tyijj 
with 1 = |À| = |JUL| = |T)| = |I^| = |Ô|. Thus ety is uniquely described as 
(max{|A| | À an eigenvalue of Ad y})m if ad H has eigenvalue 2 or max{|A| | A 
an eigenvalue of Ad(y)} otherwise. The second assertion is equally easy and 
we leave it to the reader. 

Lemma 6.6 says that if yeT, ÇeM and y ^ I , then D(y)=D(my exp t,H), 
ty and tr Ç(my) are well defined (independent of x e G so that xyx^eMA). 

If heMA+ and GH={ge G|ghg_1 = h}, then 

f fighg-1) dg = \ fig-'hg) dg vo l (GM) 
J G/A JGh\G 

since GJA is compact. Let u(y)=vo\(Gmy exp tyH/A). Combining Theorem 
6.2, Lemmas 6.3, 6.5, 6.6 and the preceding observations, we have 

THEOREM 6.7 (THE SELBERG TRACE FORMULA). If f e C~(G), then 

I Nr(co)@w(/) = vol(r \G)/(I) + ^ - £ vol (TAG y )D(yr • u(y) 
(O&G ATT [ 7 ] e [ r ] - [ i ] 

£€=& J-oo 

Theorem 6.7 says that the following problem is quite important to the 
computation of the Nr(o>). 

Problem 6.8 (The Paley-Wiener problem). Describe the functions 
*->©«>(ƒ), € e M , ^ G R for feC7(G). 

This problem has been solved by K. Johnson [19] up to a fairly touchy 
technical problem. There is, however, one case where the answer is exactly 
what one wishes. (For another, see §8.) 
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THEOREM 6.9 (S. HELGASON [16], R. GANGOLLI [7]). If \jte C?(R) define 

<Ê(v)=f *(t)e l wdt. 

A necessary and sufficient condition that a function i//:R-*R be of the form 
®i,v(f) = *(v) for / € i : ( G ) = {/eC:(G)|/(kigk2) = /(g) for all ku k2eK} 
is that \\f = <j> for <f> e C"(R), and c/>(-1) = cf>(t) for all t e R . 

If if/eC:(R) let UeH(G) be such that 0i,v(f*)=^(v). The Plancherel 
theorem for spherical functions says 

THEOREM 6.10 (HARISH-CHANDRA [11], [13]). U(I)=$-o°<i>(v) • ni(v) dv 
with juneC°°(R). 

In order to derive a generalization of Selberg's original result for 
PSL(2,R), we need one more theorem. 

THEOREM 6.11 (KOSTANT [24]). To each 0^dp ,q^v<cp ,q<°° there exists an 
irreducible unitary representation of G, rriv, so that if f EL T°C(G), ƒ = ƒ<*> for 
<f> e Cr(R), <j> even, then 

If (oeG and ©o,(/)?é0 for some f e 17(G), then a>=7ri,v for some veR, co = l 
the trivial representation, or o)=TTiv for some 0^dp ,q^v<cp ,q . (Notice that dp>q 

and Cp,q depend only on p, q.) 

Combining all of the above results we have 

COROLLARY 6.12. Let c^eCr(R) be an even function. Then 

[ * ( t ) d t + l N r d r i f V ) * ( v ) f I Nr(7Tiv)4>(iv) 

= vol(T\G)f" j>(v)^(v)dv + I vol(TAG y )D( 7 r 1u(7)*( t y ) . 

Although we will not give any applications of this result in this article (see 
Gelfand, et al. [9] for a discussion of this formula in the case G=PSL(2, R)), 
we show how to use the results leading to this formula to prove that if 
G=PSL(2,R) , then 

Nr(a)i) = d(o)i)vol(T\ G) + 1 . 

In §9 we will show how to use this technique for SU(2,1) and certain 
elements of Gd—Gd. The following technique is due to R. P. Langlands. Paul 
Sally taught the author this technique. 

In this case K=SO(2)/±I, M={I}. For # e R let k(#) be the rotation of R2 

through the angle #. If n e Z let £n(#)=e in*. Then <oi|K=I»*i&n. 
Choose feC:(G) so that /(k(#i)gk(#2))=e-i(*1+*2)/(g) and ©û,1(/)=l. This 

is clearly possible. Now 

Ff(exp tH) = etp \ f(k exp tHnk'1) dk dn for m e M, t e R. 
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Thus Ff(exp tH) is an element of C7(R). Theorem 6.9 says that there is 
hei:(G) so that Fh=Ff. Thus F f_h=0. 

According to the classification of irreducible unitary representatives of 
PSL(2,R) (see P. Sally [32] or Gelfand, et. al. [91]), if co G G and 
©co(/~/t)^0, then co=coi or 1. Thus we find using the arguments above that 

f ( ƒ - h)(x) dx + Nrfa i )©^ƒ - h) = vol(r\ G)( ƒ - h)(I). 
Jo 

Now @„1(h)=0 ([co|K:l]=0), ©„,(ƒ)= 1. Furthermore, it can be shown that 

f ̂  F/exp one* dt = ©„,(ƒ)+euf)+|o /(g) dg 

for f e C:(G). Hence, 

0 = e.1(/-h) + £(/-h)(g)dg. 

We therefore see that Jo (ƒ — h)(g) dg = — 1. Finally, 

(/-h)U)= £<*(*>)«.(ƒ-h) 
<oeGd 

by the Plancherel theorem for PSL(2, R) (Ff-h = 0). We have already 
observed that 0 » ( / - g ) = O if co^coi, co e Gd and ©ft)1(/-g) = l. Hence, 
we have 

- 1 +Nr(û>i) = d(coi)vol(r\G). 

This is the asserted formula. 

7. G for G=SU(2 ,1) . In this section we give a list of the elements of G 
for G = Sl/(2,1) . We first describe the nonunitary principal series for 
SU(2,1)=G. Let G act on S3={z G C 2 | | Z | = 1 } as follows: 

g - z = « z , c ) 4 - d ) - 1 ( A z + b), g = [ £ J ] 

(See §4.) Set a(g,z)=d-(z,b) for z e S 3 , g e G . If ki, k2eC and k i - k 2 e Z 
(the integers), define 

(wkl(ka(g)/)(z) = a(g, z)k* ^ T ^ ) k 2 / ( g " 1 • 2), 

for ƒ e C°°(S3), g e G. 
Then 7rkl,k2(g) extends to a bounded operator on L2(S3)=?i£ and (7rkl,k2, %€) 

defines a continuous representation of G for all (ki, k 2 ) eC such that 
k i - k 2 e Z . 

LEMMA 7.1. 7rkl,k2 is reducible if and only if (ki, k 2 ) e Z 2 and 
( k i , k 2 ) * ( - l , - l ) . 

We also note 

LEMMA 7.2. (7rkl,k2, $0 is a unitary representation (relative to the L2-norm 
on W) if and only if —ki—k2=2+iv, veR. 

The representations of Lemma 7.2 are just a reparametrization of the 7rè,v 

of §6. 
Before going on with the analysis of the 7rkl,k2, we should explain the 
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notation. Let 

B 

• 2 - l / 2 

0 
r1 / 2 

0 Tm 

1 0 
0 - 2 - 1 / 2 

Then B2=I. B(MA)B is a real form of the group of diagonal matrices in 
SL(3, C). Let I) be the space of all trace zero, diagonal, 3x3 , complex 
matrices. Then if © c = sl(3, C)={X|X, 3x3 , t r X = 0 } , 1) is a Cartan sub-
algebra of ©c. We say that A G I ) * is G-integral if h-»A(BhB) is the 
differential of a quasi-character, £A, of MA. Let H be the element 

TO 0 1" 
H = 0 0 0 

Ll 0 0. 
Then a = RH. Let A be the root system of © c relative to I). Let A+={a G 
A|a(BhB)>0}. Let a i ? a2 be the simple roots in A+. Let Ai, A2 be the basic 
highest weights for this order. That is 

2(Ahaj)/(ahaj) = 8ih l ^ i , j ^ 2 . 

Here ( , ) is the dual bilinear form on I)* corresponding to the Killing 
form on © c . Then A G I)* is G-integral if and only if A=kiAi+Jc2A2, heC, 
i = l , 2, k1-k2eZ. For A, G-integral, let XA be the space of all ƒ e C°(G) 
such that 

(1) f(gma)=ÇA(ma)f(g), 
(2) (Rz/Xg) = 0 for Z G BnB. 

Here 9?+ is the Lie algebra of upper triangular matrices with zeros on the 
diagonal. If X G @ , 

(Rx/)(g) = ^ / ( g e x p t X ) | , . o 

if Xe®c, 

RXl+ix2f = RXlf + iRxJ, X = Xx + iX2, X1,X2e ©. 

If feX\ g e G , define (TA(g)/)(X)=/(g-1X). Let 

If ueSU(2), 

Kl = {[Ffl]|MeSU(2)}-

u = \ 1 J =u(z i ,z 2 ) for (zi, z 2 )eS 3 . 

It is easily seen that if feXA then f|Kl determines ƒ. If feXA define 
/(z) = /(u(z)), z e S3. Then if A = k.A, + k2A2, (TA(g)/)w(z) = {irklM{g)f){z) for 
g e G , zeS\ Let p = 5 l « e a - a . We note that p(BHB)=2. We will now 
denote TT^M by irA, A=(ciAi+k2A2. We say A is integral if A=kiAi+k2A2, 
ki, k 2 e Z . We can rephrase Lemma 7.1 to say 
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LEMMA 7.1'. TTA is reducible if and only if A is integral and A^—p. 

Now let Hpq be the space of all polynomials ƒ on C2 which are homogene­
ous of degree p in Zi, z2, q in £1, z2 (that is, f(Àz)=ÀpÀq/(z)) and such that 

* WidZi dZ2dZ2/ 

Set ^ p q =H p ' q | S 3 . Then ^f=Ip , q â o^ p q a unitary direct sum. Furthermore, 
(TTAIK, 2Tq) is irreducible. 

For p, q^O set 

„ m = f r <A + (j + l )p,a 2) A <AH-Q + l)p,ai> 
aP,q(Aj y < _ A + ( . _ 1 ) p j a i > n (_A + ( i_ 1 ) p ? a 2 > . 

Here, as usual, Jl^u aj = l if u>u. (Note that if TTA is irreducible then ap,q(A) 
is defined.) 

F o r / , geC°°(S3) let 

ƒ = L fp,q> § = L &>>q> fp,q? gp,q G <%P'q> 

</Jg>A = ZaP,q(AKfp,q, gp,q). 

LEMMA 7.3. Suppose that ITA is irreducible. Then there exists a pre-Hilbert 
space structure on C°(S3) so that (irA, C°(S3)) completes to a unitary represen­
tation if and only if one of the following holds: 

(1) -A(H) = 2 + iv, v € R ; 

(2) A(H«1) = A(H«2) and \2(A+p,a1 + a2)l(a1 + a2,a1 + a2)\<2; 

(3) A(Hai)-A(H<,2) is odd and |2(A + p, ai + a2>/<ai + <X2, cti + a2)\<l. 

In the latter two cases the pre-Hilbert space structure is defined by ( , )A. 

We are now left with an analysis of the reducible TTA. In this case it is 
easier to use the TA realization. For feC°°(G) let Rif=RZlf, R2f=Rz2f 
where 

ZÏ = B 
o o o-
1 0 0 

.0 0 0. 

B, Z2 = B\ 
o o o-
0 0 0 
.0 1 0. 

B. 

LEMMA 7.4. Set 2<A + p, ati)/<<%, <Xi) = mh i = l , 2 . (Note that mi = ki + l , 
i = l , 2 if A = kiA, + k2A2.) If m e Z , nk>0, then R ^ V x ^ " " ' . 
(Sija = ja-(2<ju,, a^l{ah a())ai.) Furthermore, 

Rr-T A (g) = Ts1(A+P,-P(g)°Rr'. 

Using the map ƒ->ƒ of XA onto C"(S3), we see that if mi>0, mi e Z we 
can define RT'f for feC^CS3) by (RTi)~=RT'f. Then 

«?*• °17A(g) = 17Si<A+p)-p(g)oRr'. 


