CONJUGATE SYSTEM CHARACTERIZATIONS OF H¹: COUNTER EXAMPLES FOR THE EUCLIDEAN PLANE AND LOCAL FIELDS

BY A. GANDULFO, J. GARCIA-CUERVA AND M. TAIBLESON¹

Communicated by Richard Goldberg, August 27, 1975

ABSTRACT. The characterization of the Hardy space, H^1 of the plane, as those integrable functions whose first order Riesz transforms are (or whose maximal function is) integrable is well known. J.-A. Chao and M. Taibleson have shown that there is a conjugate system characterization of H^1 of a local field that parallels the Riesz system characterization of $H^1(R^2)$. C. Fefferman has conjectured that "nice" conjugate systems, such as the second order Riesz transforms would also give a characterization of $H^1(R^2)$. In the present paper a counter example of A. Gandulfo and M. Taibleson is described that shows that any conjugate system generated by an even kernel will fail to characterize H^1 of a local field. A counter example of J. Garcia-Cuerva is described that shows that the second order Riesz system for the Euclidean plane (which is generated by an even kernel) will fail to characterize $H^1(R^2)$ in the above sense.

Let $f \in L^1(\mathbf{R}^n)$ and let $f^*(x) = \sup_{y>0} |f(x,y)|$, where f(x,y) is the Poisson integral of f. We say that $f \in H^1(\mathbf{R}^n)$ iff $f^* \in L^1(\mathbf{R}^n)$. Let (r,θ) be the polar representation of $(x_1, x_2) \in \mathbf{R}^2$, and let (\cdot) and (\cdot) represents the Fourier transform and its inverse. The following characterization of $H^1(\mathbf{R}^2)$ is in [5, §8]:

THEOREM A. If f is real-valued and $f \in L^1(\mathbb{R}^2)$, then $f \in H^1(\mathbb{R}^2)$ iff $(e^{i\theta}\hat{f})^{\check{}} \in L^1(\mathbb{R}^2)$.

Similarly, if K is a local field, e.g., a p-adic field, we may define $f^*(x) = \sup_{k \in \mathbb{Z}} |f(x, k)|$, where f(x, k) is the regularization of f. (See [6, Chapter IV].) We say that $f \in H^1(K)$ iff $f^* \in L^1(K)$. The following characterization of $H^1(K)$ follows from results of Chao and Taibleson [3] and Chao [1], [2].

THEOREM B. Suppose π is a multiplicative character on K that is unitary, ramified of degree 1, homogeneous of degree 0 and odd. If $f \in L^1(K)$ then $f \in H^1(K)$ iff $(\pi \hat{f})^* \in L^1(K)$.

AMS (MOS) subject classifications (1970). Primary 42A18, 42A40; Secondary 12B99, 46J15.

Key words and phrases. Characterizations of Hardy spaces, conjugate systems, counterexamples, even multipliers.

¹Research supported in part by the Army Research Office (Durham) under Grant No. DA-ARO-D-31-124-72-G143.

The "only if" part of the proof is in Chao [2]. The "if" part follows from [3, Theorem 2] and [2, Theorem 3.1 and example (i), p. 282].

The "if" part of the proof of Theorem B depends on the fact that π is an odd function. Taibleson and Gandulfo investigated this point and have shown Theorem B fails if π is even.

THEOREM 1. Suppose λ is a multiplicative character on K that is unitary, ramified of degree 1, homogeneous of degree 0 and even. Then, there is a real-valued function $g, g \in L^1(K)$ such that $\lambda \hat{g} = \hat{g}$ and $g^* \notin L^1(K)$.

Thus, g and $(\lambda \hat{g})^{\check{}} \in L^1(K)$ but $g \notin H^1(K)$. If the local class field of K is odd and of order not equal to 3 (e.g., a p-adic field with $p \neq 2$ or 3) then there is a character π on K that satisfies the conditions of Theorem B while π^2 satisfies the conditions of Theorem 1. Note that $f \longrightarrow (\pi^2 \hat{f})^{\check{}}$ is bounded from H^1 into itself (Chao [2]).

This result suggested that a similar investigation be made of the multiplier $e^{2i\theta}$ on \mathbb{R}^2 . Note that $f \to (e^{2i\theta}\hat{f})^*$ is bounded from H^1 into itself (Fefferman and Stein [5, p. 190]). Recently it has been conjectured by Fefferman [4] that any "nice" multiplier should characterize H^1 in the sense of Theorem A. In particular, $e^{2i\theta}$ is a usual example of such a "nice" multiplier. Garcia-Cuerva has investigated this problem and obtained the following result:

THEOREM 2. There is a real-valued, radial function $g, g \in L^1(\mathbb{R}^2)$ such that $(e^{2i\theta}g)^{\check{}} \in L^1(\mathbb{R}^2)$ but $g \notin H^1(\mathbb{R}^2)$.

We now briefly sketch proofs of Theorems 1 and 2.

LEMMA 1. Let λ be as in Theorem 1. Then there exists a finite Borel measure μ , supported on $\mathfrak D$ (the ring of integers in K) such that μ is singular, $\mu(\mathfrak D)=0$ and $\lambda\hat\mu=\hat\mu$.

Theorem 1 follows from Lemma 1. We note that $\mu^* \notin L^1$, where $\mu^*(x) = \sup_k |\mu(x, k)|$. Also $\sup_k \|\mu(\cdot, k)\|_1 < \infty$. Using the fact that $\mu(x, k)$ is supported on $\mathfrak{D} \times \mathbf{Z}$ we define $f(x) = \sum_{k=-\infty}^l a_k \mu(x+c_k, k)$ where $\{c_k\}$ are coset representatives of \mathfrak{D} in K. If $\Sigma |a_k| < \infty$ we see that $f \in L^1(K)$ and $\lambda \hat{f} = \hat{f}$. Note that $(\mu(\cdot + c_k, k))^*(x) = \sup_{l \ge k} |\mu(x, l)|$. Thus, $\sup_k \|\mu(\cdot + c_k, k)^*\|_1 = \infty$, and we may choose the $\{a_k\}$ so that $f^* \notin L^1(K)$.

To construct the measure μ we need to construct a regular function $\mu(x, k)$ on $K \times \mathbb{Z}$ such that $\mu(x, k)$ is supported on $\mathfrak{D} \times \mathbb{Z}$, $\int_{\mathfrak{D}} \mu(x, k) dx = 0$ for all k, $\|\mu(\cdot, k)\|_1 \le A$ and $\|\mu(\cdot, k) - \mu(\cdot, k-1)\|_1 = B$, $k = -1, -2, \ldots$, for positive constants A and B. (See [6, IV(1.8d) and (1.9b)].)

One now observes that if χ is an additive character on K that is nontrivial on \mathfrak{D} , but is trivial on \mathfrak{P} (the maximal ideal in \mathfrak{D}) then

$$g(x) = \begin{cases} \operatorname{Re} \chi(x), & x \in \mathfrak{D}, \\ 0, & x \notin \mathfrak{D}, \end{cases}$$

has the property that $\lambda \hat{g} = \hat{g}$ whenever λ is as in Theorem 1, $\mu(x, k)$ is constructed by "patching together" various translations and dilations of g.

For a sketch of the proof of Theorem 2 we will identify \mathbb{R}^2 with C in the usual way: $(x_1, x_2) \longleftrightarrow r e^{i\theta} = z$.

For $f \in L^1(\mathbb{C})$ let $\widetilde{f}(w) = \text{P.V.} \int_{\mathbb{C}} f(w-z) dz / \overline{z}^2$. Then, $(\widetilde{f})^{\hat{}} = e^{2i\theta} \widehat{f}$. We now assume that f is radial; i.e., f(z) = g(|z|) for some g. We then show that if f is radial on \mathbb{C} then $f \in H^1(\mathbb{C})$ iff $rg(r) \in H^1$ where rg(r) can be viewed as either a function defined on $[0, \infty)$ or as an even function on \mathbb{R} . Finally we show that

$$\widetilde{f}(re^{i\theta}) = \pi e^{2i\theta} \left\{ \frac{2}{r^2} \int_0^r g(s) s \, ds - g(r) \right\}.$$

Thus, we see that we need to find a function $\varphi \in L^1(0, \infty)$ such that $(1/r) \int_0^r \varphi(s) ds \in L^1(0, \infty)$ but $\varphi \in H^1(0, \infty)$.

Let $I_{[a,b]}$ be the characteristic function of the interval [a,b], and let $l_k = k \ I_{[k,k+1/k]} - (1/k) I_{[k+1/k,2k+1/k]}$. We see that $\int_0^\infty |l_k| = 2$, $\int_0^\infty l_k = 0$, $\int_0^\infty |(1/r) \int_0^r l_k |dr \le 1$. We see that there is a C > 0 such that if k is large enough $\int_{k/2}^k |\widetilde{l_k}| dr \ge C \ln k$. A little calculation shows that if n_0 is large enough, then $\varphi = \sum_1^\infty (1/n^2) l_{n_0} e^n$ has the required properties.

As a final comment, we observe that the formula for \widetilde{f} , f integrable and radial extends easily to finite Borel measures that are radial. Apply that result to the singular measure μ that has measure 1 uniformly distributed on the unit circle in C and measure -1 uniformly distributed on the circle of radius two. It is easy to check that $\widetilde{\mu}$ is a singular measure. Together with the result of Lemma 1 we see that the conjugate systems induced by the multipliers $e^{2i\theta}$ and π^2 (on the Euclidean plane or local fields respectively) fail to produce an F. and M. Riesz theorem in the sense: There is a finite Borel measure μ , such that the conjugate of μ is also a finite measure, but μ is not absolutely continuous.

REFERENCES

- J.-A. Chao, H^p-spaces of conjugate systems on local fields, Studia Math. 49 (1974), 268-287.
- 2. ——, Maximal singular integral transforms on local fields, Proc. Amer. Math. Soc. 50 (1975), 297-302.
- 3. J.-A. Chao and M. H. Taibleson, A sub-regularity inequality for conjugate systems on local fields, Studia Math. 46 (1973), 249-257. MR 49 #3459.
 - 4. C. Fefferman, Symposium on Harmonic Analysis, De Paul Univ. Conf., 1974.
- 5. C. Fefferman and E. M. Stein, $H^{\mathcal{P}}$ -spaces of several variables, Acta Math. 129 (1972), 137-193.
- 6. M. H. Taibleson, Fourier analysis on local fields, Math. Notes, no. 15, Princeton Univ. Press, Princeton, N.J., 1975.

DEPARTMENT OF MATHEMATICS, WASHINGTON UNIVERSITY, ST. LOUIS, MISSOURI $\,$ 63130