ON PRIMARY BANACH SPACES

BY P. G. CASAZZA, C. A. KOTTMAN AND BOR-LUH LIN Communicated by Richard R. Goldberg, September 15, 1975

A Banach space X is called primary (resp. prime) if for every projection P on X, PX or (I - P)X (resp. PX with dim $PX = \infty$) is isomorphic to X. It is well known that c_0 and l_p , $1 \le p \le \infty$, are prime spaces [5], [8], but it is an open question whether there are other prime Banach spaces. However, it is known that C[0, 1] [7] and $L_p[0, 1]$, 1 [1], are primary, and in the recent Special Seminar on Functional Analysis at Urbana, Illinois, August, 1975, it is announced [2] that <math>C(K) is primary for any countable compact metric space K. For a discussion on prime and primary Banach spaces, we refer to [6].

For a Banach sequence space $(E, \|\cdot\|_E)$ and a sequence of Banach spaces $\{X_n\}$, we shall let $(X_1 \oplus X_2 \oplus \cdot \cdot \cdot)_E$ be the Banach space of all sequences $\{x_n\}$ such that $x_n \in X_n$, $n = 1, 2, \ldots$ and $(\|x_1\|, \|x_2\|, \ldots) \in E$ with the norm $\|\{x_n\}\| = \|(\|x_1\|, \|x_2\|, \ldots)\|_E$.

A basis $\{e_n\}$ in a Banach space X is called symmetric (cf. [10]) if every permutation $\{e_{\pi(n)}\}$ of $\{e_n\}$ is a basis of X, equivalent to $\{e_n\}$. For a basis $\{e_n\}$ of a Banach space X, we shall let X_n be the linear span of e_1, e_2, \ldots, e_n in X.

MAIN THEOREM. Let X be a Banach space with symmetric basis $\{e_n\}$. Then the following spaces are primary.

- (i) $(X \oplus X \oplus \cdots)_{l_p}, 1 , where X is not isomorphic to <math>l_1$.
- (ii) $(X_1 \oplus X_2 \oplus \cdots)_{l_p}$, $1 , and <math>(X_1 \oplus X_2 \oplus \cdots)_{c_0}$.
- (iii) $(l_{\infty} \oplus l_{\infty} \oplus \cdots)_{l_n}$, $1 \le p \le \infty$, and $(l_{\infty} \oplus l_{\infty} \oplus \cdots)_{c_0}$.

Different techniques are needed in each of the three cases, and the cases p = 1 or when X is isomorphic to l_1 have to be treated separately. The proof for (i) is similar to the technique developed in [3]. To prove (ii), we use Ramsey's combinatorial lemma [9] and the following

LEMMA. Let $M = \{m_i\}$ be a sequence of positive integers such that lim sup $m_i = \infty$. Then there exist rearrangements of M and the set of positive integers N into double sequences $\{m'_1, m'_2, \ldots; m''_1, m''_2, \ldots\}$ and $\{n'_1, n'_2, \ldots; n''_1, n''_2, \ldots\}$ such that $m'_i = n'_{2i-1} + n'_{2i}$ and $m''_{2i-1} + m''_{2i} = n''_{i'}$ $i = 1, 2, \ldots$

AMS (MOS) subject classifications (1970). Primary 46B15.

Copyright © 1976, American Mathematical Society

COROLLARY. Let X be a Banach space with symmetric basis and let $\{B_n\}$ be a sequence of Banach spaces with dim $B_n = n, n = 1, 2, ...$ If there exists a constant K such that the Banach-Mazur distance

$$d(B_n \oplus B_m, B_{n+m}) = \inf\{\|T\| \| T^{-1} \| \colon T \colon B_n \oplus B_m \to B_{n+m}\}$$

linear isomorphism}

 $\leq K$

for all $n, m = 1, 2, ..., then (B_1 \oplus B_2 \oplus \cdot \cdot \cdot)_X$ is isomorphic to $(B_{m_1} \oplus B_{m_2} \oplus \cdot \cdot \cdot)_X$ for all $\{m_i\}$ with $\limsup m_i = \infty$.

REMARK. When $X = l_p$, 1 , a similar result was stated in [4, Lemma 5].

The proof of (iii) consists of generalizing the technique used by Lindenstrauss [5] in proving that l_{∞} is prime and the following fact which is interesting in itself.

THEOREM 2. Let X be a Banach space with symmetric basis. If E is a Banach space which has a complemented subspace isomorphic to X, then for any bounded linear operator T: $E \rightarrow E$, either TE or (I - T)E has a complemented subspace isomorphic to X.

By combining the techniques used to prove the Main Theorem and Theorem 2, we could obtain, for example,

THEOREM 3. Let X be a Banach space with symmetric basis. If E is a Banach space which has a complemented subspace isomorphic to $(X \oplus X \oplus \cdots)_{l_p}, 1 , then for any bounded linear operator <math>T: E \to E$, either TE or (I - T)E contains a complemented subspace isomorphic to $(X \oplus X \oplus \cdots)_{l_p}, 1 (resp. <math>(X \oplus X \oplus \cdots)_{l_p}, 1 (resp. <math>(X \oplus X \oplus \cdots)_{l_p}, 1 (resp.$

Details of proofs will appear elsewhere.

REFERENCES

1. Dale Alspach, P. Enflo and E. Odell, On the structure of separable L_p spaces, 1 (to appear).

2. Dale Alspach and Y. Benjamini, On the primariness of C(K) where K is a countable compact metric space (in preparation).

3. P. G. Casazza and Bor-Luh Lin, Projections on Banach spaces with symmetric basis, Studia Math. 52 (1974), 189-193.

4. I. S. Èidel štein and B. S. Mitjagin, Homotopy type of linear groups of two classes of Banach spaces, Funkcional. Anal. i Priložen. 4 (1970), no. 3, 61-72 = Functional Anal. Appl. 4 (1970), 221-231. MR 49 #6274d.

5. J. Lindenstrauss, On complemented subspaces of m, Israel J. Math. 5 (1967), 153-156. MR 36 #5666.

6. ———, Decompositions of Banach spaces, Indiana Univ. Math. J. 20 (1971), 917-919.

7. J. Lindenstrauss and A. Pelczyński, Contributions to the theory of the classical Banach spaces, J. Functional Analysis 8 (1971), 225–249. MR 45 #863.

8. A. Pelczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209–228. MR 23 #A3441.

9. F. D. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1929), 338-384.

10. I. Singer, Bases in Banach spaces. I, Die Grundlehren der math. Wissenschaften, Band 154, Springer-Verlag, Berlin and New York, 1970. MR 45 #7451.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA, HUNTSVILLE, ALABAMA 35807

DEPARTMENT OF MATHEMATICS, OREGON STATE UNIVERSITY, CORVAL-LIS, OREGON 97331

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IOWA, IOWA CITY, IOWA 52242