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I. Let G be a separable locally compact group, and da an element of the 
right invariant Haar measure on G. We say that G is a CCR group if for any 
continuous, irreducible unitary representation T and for any complex-valued 
integrable function <p the operator $Gy(a)T{a) da is completely continuous. 

One of the principal results of the present note provides a characteriza­
tion of all connected and simply connected CCR Lie groups (cf. Theorem 3). 
This extends previous results by Harish-Chandra and Auslander, Kostant and 
Moore obtained respectively for the semisimple and solvable case. Observe that 
§ §11 and III below are independent of each other. All Hilbert spaces occurring 
in our discussion will be assumed to be separable. 

II. Let M be a semifinite factor and <ï> a faithful, normal and semifinite 
trace on M (for references on this and the notions employed below cf., e.g., 
[3, p. 81ff.] ) A positive operator A in M will be called completely continuous 
if, given its spectral representation A = f^XdE^ we have $>(ƒ- Ex) < + «> 
for all X > 0. We say that A is completely continuous if and only if so is \A\. 
We write C(M) for the collection of all completely continuous operators. Let 
G be a separable locally compact group and ® its group C* algebra. We recall 
(cf. loc. cit.) that a factor representation T, generating M, is called normal if 
T(®) O C(M) contains a nonzero operator. We shall say that G is a GCCR 
group if for all of its normal representations we have T(®) C C(M). 
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Assume now that G is a connected and simply connected lie group with 
the Lie algebra 9. We recall that 9 contains a well-determined maximal semi-
simple ideal Qt, and that 9 is a direct product of gx and of its centralizer g 2 in 
9. If Gk is the connected analytic subgroup determined by Qk (k = 1, 2) of 
G, we have G = Gx x G2. We shall say that G has no semisimple factors (or 
that G is n.s.f.) if gx = 0, and shall refer to G2 as the n.s.f. component of G. 
We recall finally that if g is solvable, by definition, its roots are the linear forms 
associated with the (necessarily one-dimensional) irreducible quotient modules 
of its adjoint representation acting on g c . This being so we have 

THEOREM 1. Suppose that G is a connected and simply connected n.s.f 
Lie group with the Lie algebra g. Then the following four properties are equi­
valent: (i) Any closed prime ideal of the group C* algebra is maximal, (ii) G 
is a GCCR group, (iii) For any g E g' (= dual of the underlying space of g 
under the action of the coadjoint representation) the closure of Gg is composed 
of orbits of the same dimension, (iv) Denoting by x the radical of§y g lx is 
compact and all roots oft are purely imaginary. 

The equivalence of (i) and (iv) is implied by a recent result, to be publish­
ed, of C. Moore and J. Rosenberg. 

III. The purpose of what we say next is the definition of the reduced 
stabilizer. Let G be any connected and simply connected Lie group with the 
lie algebra g, n the greatest nilpotent ideal of g, and TV the corresponding con­
nected subgroup of G. For some element ƒ of n', we denote by ir the irredu­
cible representation of N belonging to the Kirillov orbit Nf C n' (cf. for all this, 
e.g. [2, Chapitre II, p. 93] ); then we have Gw = G^-N. Let a be an TV invariant 
extension cocycle of n to Gn. As M. Duflo has shown (cf. loc. cit. p. 109), 
there is a canonically constructed covering Gf, of order not exceeding two, of 
Gp such that a\Gf x G^ is a coboundary. This being said, for some fixed g E 
g' let us put ƒ = g|n and G = Gp the latter, through its projection onto Gp acts 
on g' and thus we can form Gg. The connected component of the identity 
(Gg)0 is a covering of order < 2 of (Gg)0. We shall say that g is admissible if 
there is a character \g of (Gg)0 such that dxg = i(g\Qg) and, when (Gg)0 is a 
double covering of (Gg)0, there is an e E (Gg)0 over the unity such that Xg(e) = 
- 1. We denote by W (C g') the totality of all admissible elements; W is evi­
dently G invariant. If g E W, ker(x^) is invariant in (̂ ; we denote the complete 
inverse image of the center of Gg/kex(xg) by Gg9 and write Gg for the direct 
image of the latter in Gg. We shall call Gg the reduced stabilizer of g (E Pf). 

THEOREM 2. Assume that G is a connected and simply connected Lie 
group with the Lie algebra g such that the radical is cocompact. Then G is of 
type I if and only if W/G is a T0 space and Gg is cofinite in Gg. 
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This result extends a theorem of Auslander and Kostant (cf. [1, The­
orem V.3.2, p. 351]). 

IV. THEOREM 3. (a) A connected and simply connected Lie group G 
is CCR if and only if its n.s.f component (cf. §11) is so. (b) Suppose that G has 
no semisimple factors. Then it is CCR if and only if W/G is a Tx space, and 
Gg is cofinite in Gg for each ^G(|/. 
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