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1. Introduction. H(JJ) denotes the vector space of all holomorphic functions 
on an open subset U of a complex Banach space E. In this note we announce re­
sults concerning the Nachbin topology rw in //(£/)• Ta> is useful in the study of 
holomorphic continuation; see Dineen [5], [7] and Matos [8]. We recall the defi­
nition of rw ; see Nachbin [10]. A seminorm p on H{U) is said to be ported by 
a compact subset K of U if for each open set V, with K C V C U, there exists 
dV) > 0 such that p{f) < c(F)sup^eKl/(jc)l for all ƒ E H(U). The locally con­
vex topology r u is defined by all such seminorms. To study (H(U), TW) we con­
sider the vector spaces of holomorphic germs H(K) with K C U compact. We en­
dow each H(K) with the inductive topology given by 

H(K) = lim ff°°(iQ, 
e>0 

where K€ = {x E E: dist(x, K) < e} and H°°(K€) denotes the Banach space of all 
bounded holomorphic functions on K, with the sup norm. 

2.1 Completeness of (H(U), rw). The following theorem answers a question 
raised by Nachbin [11]. 

THEOREM 1. (H(U), rw) is always complete. 

Earlier partial results were given by Dineen [6], Chae [3] and Aron [2] for 
U "nice". We give an indication of the proof of Theorem 1. For each compact 
K C U, let MK denote the image of the canonical mapping H(U) —* H(K). Af­
ter identifying H°°(K€) with its image in H(K), we define: 

Mf =MK n H°°(K€), 

Mf = closure of Mf in H°°(Ke\ 

e>0 e 

In a diagram we have 
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Mfis the completion of the vector subspaceM^ of the Banach space H°°(K€). 

We endow MK and MK with the inductive topologies coming from 

MK=hn±Mf, MK= liniMf. 
e>0 e>0 

Theorem 1 follows from Lemmas 1 and 2, below. 

LEMMA 1. MK is the completion of M*. 

LEMMA 2. (H(U), r w ) = lvmKCUMK = ^aKCUMK. 

3. Multiplicative local convexity of (H(U), r w ) . The following theorem 
answers a question raised by Matos [8]. 

THEOREM 2. (H(U), r w ) is a multiplicatively locally convex algebra, Le. r w 

is defined by the continuous seminorms p such that, for all f,g€ H(U), 

p(fg)<p(f)'P(z). 
With the notation of §2 we have 

LEMMA 3. MK is a multiplicatively locally convex algebra. 

Theorem 2 follows from Lemma 2 and Lemma 3. 

REMARK. The spectrum of the multiplicatively locally convex algebra 
(H(U), TJ) can be used to give a construction of the envelope of holomorphy of 
U\ see Matos [8]. For similar constructions with other devices see Alexander [1], 
Coeuré [4] and Schottenloher [12]. 
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