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The 2-gap case (where K and K are two cardinals apart from A and À.' 
respectively) the situation without V=L is less decided and even GCH and À' 
regular can not guarantee the existence of a (K', A') model (Silver). But again 
V-L implies the existence of (K', A') model of T using the existence of a 
combinatorial creature named morass (well deserving its name). That there 
are morasses, in L is shown in Chapter 13, and in Chapter 14 morasses are 
used to get the 2-gap result in L. Similar arguments by sinking deeper into the 
morasses can give an n-gap two cardinal result in L. These results (due to 
Jensen, of course) set a record in their technical subtlety and it is the first time 
they are published anywhere. Devlin is doing an important service by 
publishing them. 

The book now explores the implications of the existence of large cardinals 
on L. The most remarkable fact is that L is inconsistent with very large 
cardinals (due originally to D. Scott) and if we assume the existence of these 
cardinals V=L is very badly violated. Again, one of the theorems, of Silver 
this time, is published here for the first time. 

The book concludes by a study of relative constructibility and by showing 
that the class of sets constructible from a given set is similar in many respects 
to L and more so if we consider the sets constructible from a normal measure 
on a measurable cardinal. (In particular, we get a Souslin and Kurepa tree in 
such a universe.) The Herbacek-Vopenka Theorem, claiming that if there 
exists a strongly compact cardinal then the universe is not even constructible 
from a set, is proved. 

The aims of the Springer-Verlag Lecture Notes in Mathematics states that 
"The timeliness of a manuscript is more important than its form, which may 
be unfinished or tentative." Devlin did not use this option: the standard of 
exposition in this book is high, and the presentation is very coherent and 
clear. Though there are places (like the definition of the projection) where 
more intuitive motivation is highly desirable, the book is an important source 
for any mathematician seriously interested in the subject. 
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Analyse convexe et problèmes variationelles, by I. Ekeland and R. Teman, 
Dunod, Gauthier-Villars, Paris 1974, ix+340 pp. 

This book gives a systematic exposition of the modern theories of the 
calculus of variations and optimal control. Of course the theory of convex sets 
and functions plays a very important role and the book begins with an elegant 
exposition of the theory of convex functions. A relatively new notion is that of 
the polar (or conjugate) function of a given (usually convex) function. The 
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notion of a dual problem is a central theme of the book. There are many 
situations in which the primal (i.e., given) problem has no solutions but the 
dual does; this leads to a new notion of generalized solutions. The application 
of these ideas to the Dirichlet problem for minimal hypersurfaces in non-
parametric form is particularly interesting. Other applications are given to 
several problems and to the theories of elasticity, mathematical economics, 
and optimal control. The developments seem rather complicated and detailed 
at times, but the book is interesting on the whole and should be useful to 
those working in a wide variety of fields. In view of the great amount of detail 
presented, we shall restrict ourselves to the discussion of the least complicated 
and/or the most typical examples in each chapter. 

The book begins with an elegant treatment of the theory of convex sets and 
functions. The notions of supporting linear functions and the graphs of 
functions are introduced early and treated so as to get the greatest generality. 
The notion of two linear topological spaces "in duality" is introduced; a 
special case is a normed space V and its topological dual V* in which the 
duality, denoted by (u, u*), is given by (u, u*)=u*(u) (u e V, u*e V*). Given 
a pair of spaces in duality, the notion of a polar (or conjugate) function F* of a 
given function F is defined by the formula 
(1) F*(u*) = sup{<u,u*>-F(u)}. 

u£V 

Convex functions and those which are upper envelopes of families of affine, 
continuous functions play important roles. In case V= V*, both being finite 
dimensional Hubert spaces with the usual duality, then F* is the usual support 
function, if F is convex. All functions considered are defined over the whole 
space V (or V*, etc.) and then are allowed to have the values ±0°; the set of 
points M of V where F(u)<+oo is called the effective domain of F and is 
denoted by dom F. The set T( V) is the set of all functions, each of which is the 
upper envelope of some family of continuous, affine functions; the set T0(V) 
consists of T( V) with the constants removed; it turns out that if F e T( V), then 
F is convex and lower-semicontinuous and if F(u) = -<*> for some u, then 
F(M)S-OO. If F G T ( V ) , then F**=F and, in all cases, F***=F*. The notions 
of directional derivative, Gateaux differential, subdifferentiability, etc., are 
defined and compared. F is Gateaux dijferentiable at u (e V)<=>3a w* e V* 3 

T-v/ \ i- F(u + \v)-F(u) y * v w T7 F'(v; u)= Inn— r1 — = <u, u*) \fve V. 

Then u* is called the Gateaux differential and is denoted by the symbol F'(u). 
The notion of Gateaux differentiability is important in the calculus of 
variations. Suppose F is Gateaux differentiable on a convex set si. Then F is 
convexOF' is a monotone map from V into V*. 

In Chapter II, a number of existence theorems in the calculus of variations 
are proved by the so-called direct methods. For example, if F is convex and 
lower-semicontinuous on a closed convex set <€ and either <€ is bounded or F is 
coercive on % (i.e., F(u)—»+<» as ||w||-><» in <€), then F takes on its minimum ; if 
F is strictly convex the minimizing point is unique. 
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Chapter III begins with the definition of the dual problem, denoted by P*, 
corresponding to a given problem, denoted by P ; the problem P is usually 
that of minimizing a function F and P* is that of maximizing some function 
F*. If we are given a problem P to minimize F(u) for u e V, we define P* as 
follows: Let Y and Y* be two spaces in duality and we choose <I>: V x Y ^ R 
where 4>(u, 0)=F(u). We then let $ * : V*x Y*-»R be the polar function of $ 
with respect to the duality between Vx Y and V*x Y* (see (1) above), i.e., 

$*(«*, p*) = sup « ( u . p X C u * , ? * ) ) - * ^ ? ) } 
(u ,p )6VxY 

(2) 
= sup {(u, M*>V + < P , P * ) Y - ( I > ( U , P ) } . 

(u ,p )£VxY 

We then define the dual problem 

(3) P*:sup{-<D*(0,p*)}. 
p*<EP* 

From its definition, we see that P* and sup{-<I>*(0, p*)} depend on the choices 
of Y, Y* and $(u, p). However it is shown in this chapter that there are many 
cases where the number above is independent of how O, Y, and Y* are 
defined as long as <ï>(u, 0)=F(u). A Lagrangian is introduced by the formula 

-L(u, p*) - sup[(p*, p>-*(w, p)] 
p<EY 

and some of its uses are indicated; in particular it is shown that: 
If P:inf„evSupp*(EY*L(u, p*), then P*:supp*GY*infuevL(u, p*), f or any <ï>e 

r0(vxY). 
Some special results are proved for cases where F(u)=J(u, Au) where A is 

a linear operator from V to Y ; in all these cases 

(4) inf(P) = supP* 

but sometimes only one of these problems has a solution. In (4), if P is the 
problem of finding inf F(u) for ue V, then we define 

inf P = inf F(u) 
uev uev 

and ü is said to be a solution of P<£>F(ü) = infuev F(u). Similarly if P* is the 
problem of finding supF*, then we define 

supP* = supF*(p*) 
p * 6 Y * p*EY* 

and p* is said to be a solution of P*<£>F*(p*) = sup F*(p*). An important 
special subclass of these is one in which F is replaced by a function of the form 
F(u)+G(Au); for such problems the dual problem P* is to find 
supp*eY*{-^*(A*p*)-G*(-p*)} where A* is the transpose of A and is a linear 
operator from Y* into V*. The study of this class involves a rich formalism. 

In Chapter IV, some special problems in the calculus of variations involving 
the use of Sobolev spaces are studied by reducing them to the abstract 
theorems in Chapter III; these are generalized Dirichlet problems. One 
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problem was seen to be so reducible in two different ways. Finally, it is shown 
how to reduce a more general class of variational problems to those treated 
earlier in Chapter III using the duality idea. 

In Chapter V, the duality set up of Chapter III is applied to the study of the 
Dirichlet problem for minimal hypersurfaces in nonparametric form (and 
similar problems). The primal problem P is that of minimizing 
fn Vl+|grad u\2 dx among all u of the form M = <f>+wJ1(ft) where </> is a given 
function in w1A((ï). The dual problem P* is that of maximizing 

[ - 1 P * « g r a d </>(*) dx + £ [1 - |p*(*)|2]1/2 dx] 

among all p * 3 p*eL°°(ft)n, |p*(x) |^l a.e. on ft, divp*=0. It is shown using 
the general theories of Chapter III that if ft is sufficiently smooth and 
</> G w 1 ' 1 ^ ) , then P and P* are in duality, inf P = sup P*, the problem P* has a 
unique solution p* (but P may not have any solution) which is analytic and 
locally bounded. In case P has a solution, 3 an analytic function ü, uniquely 
determined up to an additive constant, which satisfies the differential equation 
for minimal surfaces and 

grad u(x) = - ( 1 _Fp**x)\y2 ' |p*(*) |<l , *e f t . 

In Chapter VI, entitled "Duality by min-max", the authors consider 
problems P of the form: infO(u), where <ï>(u)=suppGzL(u, p). Thus the 
primal problem is 

(5) P : inf sup L(u,p). 
u£VpGY 

We define the dual problem 

(6) P*:sup inf L(u,p). 
P e Y u e v 

It is shown that if F(u)=F0(u)+F1{u) where Fi is convex, lsc, and "proper" 
on V, then there is a function L such that 

(7) F(u) = sup L(u,p). 
peSB 

Suppose L(u, p) is defined on ^xS8 . We say that (û, p) is a saddle point for L 
on sdx2&e>L(u, p)^L(ü, p)^L(u, p) V u e i and pe38. For any L, defined 
on a product set ^ x ö 8 , we have 

sup inf L(u, p) ^ inf sup L(u, p). 
pe9B U&9É uejrf pe3B 

Now suppose that (w, p) is a saddle point for L on sd x ^ and F is defined by 
(7). Then 

F(ü) = sup L(û, p) ^ L(û, p) ^ L(u, p) ^ L(u, p) ^ s u p L(u, p) = F(u) 
p p 

so that û is a solution of the problem P. This shows the importance of this 
saddle-point approach. The following is a typical existence theorem for saddle 
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points: Suppose V and Z are reflexive Banach spaces, sd^V and 3&c=Z are 
convex, closed, and nonempty, V u e i , Lis concave and upper semicontinuous 
in p, V peffi, L is convex and lower semicontinuous in u, and si and 8ft are 
bounded. Then L possesses at least one saddle point (ü,p) on 2ïx£fô and 

L(ü, p) = Min Max L(u, p) = Max Min L(u, p). 

(Notice that the authors use Min instead of inf, etc.) 
In Chapter VII, the authors are concerned with a number of special 

problems and with algorithms (due to Ugawa and Arrow-Hurwicz) which lead 
to solutions of some of the problems. One example is from the theory of 
numerical analysis and one from the theory of optimal control. 

Chapter VIII begins with the definition and some discussion of normal 
integrands. If B is a Borel set in Rp and ƒ : flxB—»R, then ƒ is called a normal 
integrandOfor almost all x in ft, f(x, •) is lsc on B and 3 a Borel function 
f:ftxB—»R 3J(x, -)=f(x, •) for almost all x e f l . The following obvious 
theorem is proved: Suppose f : ftxRp is a positive normal integrand from ftxRp 

and {uq} is a sequence of measurable maps from ft into Rp which converges a.e. 
to û; then 

(8) [ f[x, û (x)]dx^l iminff f[x, uq(x)] dx. 
JCl Jiï 

Clearly in this theorem there is no requirement of convexity. However, 
suppose we assume that 

®:R+->R, * ( t ) > 0 , 
(9) 

O convex, with t x®(t) -> +00 as t -> +<*>, 

(10) fitlxRxR", / ( x , s , Ö ^ * ( | € | ) , 

ƒ is normal, and f is convex in £ for almost all (x, s). Then 

(11) f[x, ü(x), p(x)] dx ^l iminf f[x,uq(x),pq(x)]dx 
Jo. i^™ Ja 

whenever uq(x)-^>ü(x) a.e. and pq-*p weakly in Lx(n)n. 
The authors prove the following two theorems which do not require ƒ to be 

convex in £: Suppose that f is normal and satisfies (10); thenf** is normal and 
we also have 

(12) <D(|£|)^ ƒ**(*,*;£). 

(For the definitions of ƒ**, see Chapter 1.) Suppose that f is normal and 
satisfies (10). Suppose {pq} converges weakly in Lm(ü) to p and {uq} converges 
a.e. to ü{x). Then 

(13) ƒ**[*, û(x) ,p(x)]dx^l iminf f[x,uq(x),pq(x)]dx. 
Jo. q-*00 Jn 

The authors prove the following interesting theorems: Suppose f is normal 
and satisfies (10) and is convex in £ for almost all (x, s) and G is a suitable 
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linear operator from V into Rn. Then the problem 

(14) P : inf f f[x, u(x), p(x)] dx, u = Gp, pe [L\a)T9 

has at least one solution. If f satisfies all the conditions above except the 
convexity in £, it is true that the problem 

(15) PR = P** : f ƒ**[x, u(x), p(x)] dx 

has at least one solution and 

(16) min(P**) = inf(P). 

We can also say that if (ü, p) with ü = Gp is a solution of (PR), then there is a 
minimizing sequence (uq, pq), with uq = Gpq, for (P) such that uq-+ü a.e. and 
Pq-^p weakly in Lx (actually more can be said about the convergence); any 
such sequence contains a subsequence (uq>, pq) such that uq—»ü and Gpq^>Gp 
in Li. 

Chapter X extends and refines many of the results obtained in the 
preceding chapters. The fundamental problem of the calculus of variations 

(P) inf f[x, u(x), grad u(x)] dx, u-u0e Woa(£l), 

receives special attention. The chapter concludes with a discussion of results 
involving the Euler equations and the problems (PR) (i.e., (P**)). 

CHARLES B. MORREY, JR. 

Characteristic classes by John W. Milnor and James D. Stasheff, Ann. of Math. 
Studies No. 76, Princeton Univ. Press, Princeton, New Jersey, 1974, 
vii+330 pp., $10.00 

In 1957 there appeared notes by Stasheff of lectures on characteristic 
classes by Milnor at Princeton University. These notes are a clear concise 
presentation of the basic properties of vector bundles and their associated 
characteristic classes. Since their appearance they have become a standard 
text regularly used by graduate students and others interested in learning the 
subject. 

The present, long-anticipated book is based on those notes. It follows the 
order of the notes but is considerably expanded with more detail and 
discussion. In addition, exercises have been added to almost each section, 
there are many useful references to the textbooks on algebraic topology that 
are available now, and there is an epilogue summarizing main developments 
in the subject since 1957. All of these strengthen the book and make it even 
more valuable as a text for a course as well as a book that can be read by 
students on their own. The material covered should be required for doctoral 
students in algebraic or differential topology and strongly recommended for 
those in differential geometry. 


