THE LOOP SPACE PROBLEM AND ITS CONSEQUENCES

BY JAMES P. LIN

Communicated March 14, 1975

0. Introduction. One of the key results in the study of the topology of Lie groups is the following theorem of Bott [2]:

THEOREM. Let G be a simply connected Lie group. Then $H_*(\Omega G; Z)$ is torsion free.

Bott subsequently coauthored a paper with Samelson [3] which uses this theorem to obtain extensive information about the homotopy and homology of Lie groups. Later, Araki [1] used this result to compute the mod p cohomology of the exceptional groups E_7 and E_8 over the Steenrod algebra. Bott's proof depends heavily on the existence of a differential structure on the Lie group.

Shortly after Bott proved this result, it was conjectured that the integral homology of the loops on a finite simply connected *H*-space should be torsion free. We resolve this conjecture for odd primes:

THEOREM 1. Let X be a simply connected finite H-space. Then $H_*(\Omega X; Z)$ has no odd torsion.

Actually, we prove this result in a much more general setting. Unlike Bott's proof, which relies heavily on the differential structure, our proof is purely homological and can be applied to *H*-spaces that do not even have the homotopy type of a finite complex.

I wish to thank Bill Browder, John Harper, Richard Kane, J. C. Moore and Alex Zabrodsky for many helpful discussions. I am especially indebted to Richard Kane for pointing out the theorems about the sparseness of the even generators in the mod p cohomology ring of an H-space.

1. Statement of results. For the remainder of the paper, X will be a two-connected H-space having the homotopy type of a CW complex with finitely many cells in each dimension. Furthermore, p will be an odd prime, and we will assume $QH^{\text{even}}(X; Z_p)$ is finite dimensional and $\beta_1 QH^{\text{even}}(X; Z_p) = 0$.

AMS (MOS) subject classifications (1970). Primary 57F25, 55D45, 55G20; Secondary 57F05, 57F10, 55J20.

Work of Browder [5] shows that any simply connected finite H-space satisfies the above conditions. It can be shown that if X is an H-space with a finitely generated mod p cohomology algebra and the Bockstein spectral sequence collapses after a finite number of steps, then X satisfies the conditions stated above. We have the following theorems:

THEOREM 2. $H_*(\Omega X; Z)$ has no odd torsion.

In the process of proving Theorem 2 we get

THEOREM 3. $QH^{\text{even}}(X; Z_p) = \sum_{l=1}^{\infty} \beta_1 P^l Q H^{2l+1}(X; Z_p)$ and $H^*(X; Z)$ has p-torsion of order at most p.

We now generalize some theorems of Richard Kane [7].

DEFINITION. Let m have p-adic expansion

$$m = \sum_{s \ge 0}^{j} m_s p^s, \qquad m_j \ne 0, \ 0 \le m_s < p.$$

Then:

m is "unary" if $m_s = 1$ for every $s \le j$; m is "binary" if $m_s = 0$ or 1 for every $s \le j$; m is "nonbinary" if m is not binary.

Let

$$v(k) = 1 + p + p^2 + \dots + p^k, \quad k \ge 1,$$

 $v(0) = 1, \quad v(-1) = 0.$

Note that if m is binary but not unary, m may be written

$$m = v(k) + p^{l} + \sum_{s>l}^{j} m_{s} p^{s}, \qquad m_{k+1} = 0, \quad l > k+1.$$

THEOREM 4. (a) Let m be nonbinary. Then $QH^{2m}(X; \mathbb{Z}_p) = 0$. (b) Let m be binary but not unary;

$$m = v(k) + p^{l} + \sum_{s>l}^{l} m_{s} p^{s}, \quad l > k+1.$$

Then

$$QH^{2m}(X; Z_p) = \mathcal{P}^{(m-v(k))/p}QH^{2v(k)+2(m-v(k))/p}(X; Z_p).$$

Theorem 4 was proven by Kane when $H_*(X; Z_p)$ is associative and X is a simply connected finite H-space. We do not need these hypotheses. Theorem 4 may be used to show that the commutator of any two even primitives in $H_*(X; \mathbb{Z}_p)$ is zero. Similarly, there are no homology primitive pth powers.

John Harper pointed out this last theorem:

THEOREM 5. The kernel of the Hurewicz map,

$$\Pi_n(X) \otimes \ Z_{(p)} \xrightarrow{h_n \otimes \ Z_{(p)}} H_n(X;Z) \otimes \ Z_{(p)},$$

is the p-torsion of $\Pi_n(X)$.

The proof of these theorems uses techniques developed by Zabrodsky [12] and myself [8], [10]. Details and proofs will appear elsewhere.

REFERENCES

- 1. S. Araki, Differential Hopf algebras and the cohomology mod 3 of the compact exceptional groups E_7 and E_8 , Ann. of Math. (2) 73 (1961), 404-435. MR 35 #A1372.
- 2. R. Bott, On torsion in Lie groups, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 586-588. MR 16, 12.
- 3. R. Bott and H. Samelson, On the cohomology ring of G|T, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 490-493. MR 17, 182
- 4. W. Browder, On differential Hopf algebras, Trans. Amer. Math. Soc. 107 (1963), 153-176. MR 26 #3061.
- ---, Torsion in H-spaces, Ann. of Math. (2) 74 (1961), 24-51. MR 23 #A2201.
- 6. J. R. Harper, Homotopy groups of H-spaces, Comment. Math. Helv. 47 (1972), 311-331.
- 7. R. Kane, On the indecomposables of a finite cohomology Hopf algebra (to
- 8. J. Lin, H-spaces with finitely generated cohomology algebras, Thesis, Princeton University, 1974.
- -, H-spaces with finitely generated cohomology algebras, Bull. Amer. Math Soc. 80 (1974), 1233-1238.

 - 10. ——, Torsion in H-spaces. I. (to appear).
 11. ——, H-spaces of exceptional type (to appear).
- 12. A. Zabrodsky, Secondary operations in the module of indecomposables, Aarhus, 1970, pp. 658-672.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT SAN DIEGO, LA JOLLA, CALIFORNIA 92037