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0. Introduction. One of the key results in the study of the topology of 
lie groups is the following theorem of Bott [2] : 

THEOREM. Let G be a simply connected Lie group. Then H+(p.G\ Z) 

is torsion free. 

Bott subsequently coauthored a paper with Samelson [3] which uses 
this theorem to obtain extensive information about the homotopy and homol­
ogy of Lie groups. Later, Araki [1] used this result to compute the mod p 

cohomology of the exceptional groups E7 and Es over the Steenrod algebra. 
Bott's proof depends heavily on the existence of a differential structure on the 
lie group. 

Shortly after Bott proved this result, it was conjectured that the integral 
homology of the loops on a finite simply connected //-space should be torsion 
free. We resolve this conjecture for odd primes: 

THEOREM 1. Let X be a simply connected finite H-space. Then 

H*(SIX\ Z) has no odd torsion. 

Actually, we prove this result in a much more general setting. Unlike 
Bott's proof, which relies heavily on the differential structure, our proof is 
purely homological and can be applied to //-spaces that do not even have the 
homotopy type of a finite complex. 

I wish to thank Bill Browder, John Harper, Richard Kane, J. C. Moore 
and Alex Zabrodsky for many helpful discussions. I am especially indebted to 
Richard Kane for pointing out the theorems about the sparseness of the even 
generators in the mod p cohomology ring of an //-space. 

1. Statement of results. For the remainder of the paper, X will be a 
two-connected //-space having the homotopy type of a CW complex with finitely 
many cells in each dimension. Furthermore, p will be an odd prime, and we 
will assume QHeyen(X; Zp) is finite dimensional and ^QHQven(X'9 Zp) = 0. 
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Work of Browder [5] shows that any simply connected finite //-space satis­
fies the above conditions. It can be shown that if X is an //-space with a finitely 
generated mod p cohomology algebra and the Bockstein spectral sequence col­
lapses after a finite number of steps, then X satisfies the conditions stated above. 
We have the following theorems: 

THEOREM 2. H*(ÇIX; Z) has no odd torsion. 

In the process of proving Theorem 2 we get 

THEOREM 3. QH*v™(X\Zp) = zr=i h ?lQH2l+\X\ Zp) and H*(X\ Z) 
has p-torsion of order at most p. 

We now generalize some theorems of Richard Kane [7]. 

DEFINITION. Let m have p-adic expansion 

i 
m = £ msp

s, mf ^0,0<ms<p. 

Then: 
m is "unary" if ms = 1 for every s < ƒ ; 
m is "binary" if ms = 0 or 1 for every s < ƒ; 
m is "nonbinary" if m is not binary. 

Let 

v(k) = 1 4- p + p2 + • • • + pk
9 k > 1, 

u ( 0 ) = l , u ( - l ) = 0. 

Note that if m is binary but not unary, m may be written 

/ 
m = v(k) + pl + X m / , m f c+1 = 0, ƒ > * + 1. 

THEOREM 4. (a) Z,étf m be nonbinary. Then QH2m(X; Zp) = 0. 
(b) Let m be binary but not unary; 

j 

m = v(k) + pl + £ w,p», / > * + 1. 

QH2m(X,Z ) = p(m-v(k))/PQH2v(k)+2(<m-v(k^/P(X;Z ). 
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Theorem 4 was proven by Kane when H+(X\ Z ) is associative and X is 
a simply connected finite //-space. We do not need these hypotheses. Theo­
rem 4 may be used to show that the commutator of any two even primitives 
in H+(Xm

9 Z ) is zero. Similarly, there are no homology primitive pth powers. 

John Harper pointed out this last theorem: 

THEOREM 5. The kernel of the Hurewicz map, 

hn ® Z(P) 
n„(X)<g> Z ( p ) y±Hn(X;Z)QZ(py 

is the p-torsion of\\n(X). 

The proof of these theorems uses techniques developed by Zabrodsky 
[12] and myself [8] , [10]. Details and proofs will appear elsewhere. 
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