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Nonperiodic analogues and generalizations of some results of Duren 
and Shields [1] are given. In the process, the key role played by the homo­
geneous Besov spaces and their images under the Fourier transform will be 
highlighted. Our results concern the following spaces in addition to the usual 
LP space on Rn for 0 < p < °°. 

Let 0 be a smooth function (belonging to S, the space of rapidly de­
creasing functions) such that f<p(x)dx = 1 . Set <pt(x) = t~n<p(xrl)9 and for 
ƒ defined on Rn, call 

u(xf t) = <!>t * ƒ(*), u+(x) = sup \u(x, 01-

A function ƒ defined on Rn belongs to #? (/*"), 0 < p < <*>, if and only if 
u+ GLp(Rn) [2]. 

For 0 < a < 1, ƒ G A£p iff (jmhf\\J\h\afdhl\h\n)llP is fmite> w h e r e 

\f is the difference operator, AHf(x) = f(x 4- h) - ƒ (be). The spaces are 
defined for other values of a by the formula R^A%p = A " ^ , where R& is 
the Riesz potential of order p defined by closing the operator defined on a 
subset of S by (/^/)*(£) = l£r^/(f). These spaces are homogeneous Besov 
spaces [6] in contrast to [9] ; for a = p = 2, a a nonnegative integer, this is 
the space of tempered distributions for which all derivatives of order a are in 
Z,2, with no other condition on the lower order derivatives or on the function 
itself. The characterization that we use most frequently is given in [6] ; ƒ G 
Ap g iff for k the smallest nonnegative integer greater than a/2, if u denotes 
the temperature with initial value/, and if Mp(u\ t) = \\u{\ t)\\p, then 

is finite. For example, A"^1 * ^ is the containing Banach space Bp of Duren 
and Shields [1]. 

Finally, we must consider the Fourier image of these spaces, the spaces 

AMS (MOS) subject classifications (1970). Primary 42A18; Secondary 46J15, 46J35. 
Copyright © 1975, American Mathematical Society 

711 



712 R. JOHNSON [July 

K% q9 also defined in [6], and further characterized in [3], [7]. Let us 
denote by v(%) = bn\%\n the volume of the ball of radius |£|. A function, 
defined and measurable on Rn, belongs to K^ iff 

is finite. The function ƒ belongs to K%q ifffva/n belongs to K°pq. Other 
characterizations, some of which are required in the proofs, are given in [3], 
[6], [7]. 

Recall that Cv(X, Y) = {k\ for every ƒ G X, k * ƒ G Y and \\k * f\\Y < 
B\\f\\x}9 whüe M(X, Y) = $\k G Cü(X, 7)}. (In general, VX = { / | /GX} . ) 
Then we have the following results. 

THEOREM 1. IfO<p<l<q<°°, 1 <s <q, then 

Cv(Hp
9 U

q) = CviA^J-1^, FLq) = WkeK^l'P-1)}; 

or equivatently, M(#p, VLq) = K^p"x\ 

THEOREM 2. If2<q<oo
il<s<q, then 

OKH\ VL«) = Cv(A°ltS, fL«) = {*|£ G ^ > o e } . 

Theorem 2 generalizes the standard Hardy-Littlewood theorem [5] to 
Rn ; the restriction 2 < q occurs because of considerations involving the 
Littlewood-Paley function and because of the inclusion A^ x C H1 C A J 2 , 
which is best possible. Thus Theorem 2 does not tell us about Cv(Hl, F^1); 
the best that can be said with these methods is 

THEOREM 3. K°12 C M(H\ VLX) C K°1OO. 

These theorems are applied to give theorems on the growth rate of 
Fourier transforms of IP functions, as well as Paley type theorems on the 
behaviour of Fourier transforms on lacunary sets. 

The techniques also give results on the convoluteurs of IP spaces. 

THEOREM 4. If0<p<Kq<oo
i then 

a(HPfH
q) = An

q^Jp-1K 

In particular, using the results of [5], 

ttQP,H2) = Kn
2^Jp-l\ 
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The next results, which include most of the previously known sufficient 
conditions for convoluteurs in terms of Besov spaces, show that the appearance 
of Besov spaces as necessary or sufficient conditions for convoluteurs can be 
traced back to Sobolev's theorem. 

THEOREM 5. If 1 <p, q, r<°°9 and a is real, 

OKL*9 L«) C CHA* „ A«tr). 

This result sheds light on the theorems and counterexamples of [10], 
(see also [6], [7]). Theorem 1 of [10] follows easily now from Sobolev's 
inequality (and thus is essentially equivalent to it). The counterexamples are 
to be expected because one tries to force an element of Cv(Lp, Lq) to map 
Besov spaces of (°°, °°) type rather than of the (p, q) type. Theorem 5 may 
also be used to provide a simpler proof of the basic inclusion result for homo­
geneous Besov spaces and to show that Calderón-Zygmund operators preserve 
the Besov spaces. 

THEOREM 6. Ifl<p<2<q<°°9 then 

0 ; ( ^ , ^ ) = Q;(A^2 ,A^2). 

This result generalizes the result of the Appendix of [10]. 
The technique used in all cases is to apply the assumed convoluteur to 

0 a member of the family of test functions of derivatives of the fundamental 
solution of the heat equation, and use the various equivalent norms on the 
spaces. The restriction 1 <q imposed throughout can probably be dropped 
by using the Besov spaces A^r for p < 1 [8], along with the corresponding 
Ka

pq spaces [3]. 
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Let X be a given G-space and X-+XG—*BG be the universal bundle 
with X as its typical fibre. We shall consider the ordinary cohomology of the 
total space H*(XG) as the equivariant cohomology ofX, namely, we shall 
take H£(X) = H*(XG) as the definition of the equivariant cohomology theory. 
In case G are elementary abelian groups (i.e., tori or Z -tori), several funda­
mental cohomological splitting theorems are formulated and proved in [1], 
[2] which establish definitive, neat correlations between the cohomological 
orbit structures (e.g., H*(F), orbit types, etc.) of the given G-space X and the 
various ideal theoretical invariants of H%(X). In the simplest cases that H*(X) 
are generated by a single generator (e.g., spheres, projective spaces), the ideals 
occur in such cohomological splitting theorems are automatically principal 
ideals. Therefore the cohomological structural theorems for topological ac-
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