CLASSIFYING RELATIVE EQUILIBRIA. II

BY JULIAN I. PALMORE¹

Communicated by I. M. Singer, November 11, 1974

We announce several theorems which suggest a minimal classification of relative equilibria in the planar n-body problem. These theorems also answer several questions on the nature of degenerate relative equilibria classes which were asked recently by S. Smale [3]. A summary of previous results can be found in an earlier paper [1]. It is a pleasure to thank S. Smale for encouragement in this work.

1. Morse theory and relative equilibria. We study the critical set of a real analytic function $\widetilde{V}_m < 0$ on a real analytic manifold X_m where $n \ge 3$ and $m = (m_1, \ldots, m_n) \in R_+^n$ are fixed. Critical points of \widetilde{V}_m correspond in a 1-1 fashion to classes of relative equilibria. \widetilde{V}_m always has a compact critical set which we may investigate by Morse theory even when degenerate critical points exist [2].

The integral singular homology of X_m (a manifold which is homeomorphic to a Stein manifold $P_{n-2}(C) - \widetilde{\Delta}_{n-2}$) is given by a recurrence relation [1]. This suggests that there is a uniform lower bound on the number of critical points of each index of \widetilde{V}_m which is given by recurrence. As a first step toward classifying relative equilibria Theorem 1 gives such a relation.

In Theorem 2 we assert that \widetilde{V}_m is a Morse function for any $n \ge 3$ and for almost all $m \in \mathbb{R}^n_+$ (in the sense of Lebesgue measure).

Theorem 3 answers the question: Is \widetilde{V}_m always a Morse function? Finally, we examine the case of four masses to show how a degeneracy of \widetilde{V}_m arises. An interpretation of Theorem 1 in the degenerate case sheds light on the creation and annihilation of relative equilibria.

2. Main theorems. In this paragraph for any i, $0 \le i \le 2n - 4$, let $\mu_i(n)$ denote a uniform lower bound to the number of critical points of \widetilde{V}_m

AMS (MOS) subject classifications (1970). Primary 70F10; Secondary 57D70. Key words and phrases. Relative equilibria, Morse theory, n-body problem.

Research supported in part by NSF grant P-22930.

with index equal to 2n-4-i whenever \widetilde{V}_m is a Morse function. By [1, Theorem 2] the index of any critical point of \widetilde{V}_m whether degenerate or not has n-2 as a lower bound.

THEOREM 1. For any $n \ge 3$ and for any i, $0 \le i \le n-2$, $\mu_i(n) = (n-1-i) \mu_i(n-1) + (2n-2-i) \mu_{i-1}(n-1)$; and $\mu_i(n) = 0$ for i > n-2.

COROLLARY 1.1. $\mu_i(n) = C_{n,i}(n-1-i) (n-2)!$ for any $i, 0 \le i \le n-2$, and for any $n \ge 3$.

Here $C_{n,i}$ is the binomial coefficient.

COROLLARY 1.2. $\sum_{i=0}^{n-2} \mu_i(n) = [2^{n-1}(n-2) + 1] (n-2)!$ for any $n \ge 3$.

Let $\beta_i = \operatorname{rank} H_i(P_{n-2}(C) - \widetilde{\Delta}_{n-2})$ for any $i, 0 \le i \le 2n - 4$, and $n \ge 3$ where H_* is the integral singular homology. We write A(t) > B(t) for any two polynomials A(t), B(t) provided that A(t) - B(t) = (1 + t) C(t) where C(t) has nonnegative coefficients. This relation subsumes the Morse inequalities.

COROLLARY 1.3.
$$\sum_{i=0}^{n-2} \mu_i(n)t^i > \sum_{i=0}^{n-2} \beta_i t^i$$
 for any $n \ge 3$.

Recently, S. Smale [3] has raised questions about the nature of the set of masses $\Sigma_n \subset R_+^n$ on which degeneracies of \widetilde{V}_m arise. The next two theorems give some measure-theoretic properties of Σ_n .

THEOREM 2. \widetilde{V}_m is a Morse function for any $n \ge 3$ and for almost all masses $m \in \mathbb{R}^n_+$ (in the sense of Lebesgue measure).

COROLLARY 2.1. There are only finitely many relative equilibria classes in the planar n-body problem for any $n \ge 3$ and for almost all masses $m \in \mathbb{R}^n_+$.

REMARK. It is an open question whether for some $n \ge 4$ and $m \in \mathbb{R}^n_+$ there are infinitely many critical points of \widetilde{V}_m .

Theorem 2 shows that Σ_n has measure 0 for all $n \ge 3$. By [1, Theorem 4] we have $\Sigma_3 = \emptyset$. The next result shows that for $n \ge 4$ degeneracies arise.

Theorem 3. $\Sigma_n \neq \emptyset$ for any $n \ge 4$.

3. Classifying relative equilibria. For any three positive masses there are precisely five critical points of \widetilde{V}_m and these critical points are nondegenerate. Their distribution corresponds to that of the minimal classification given by Theorem 1.

For n = 4 masses a degeneracy arises in the following fashion. In the

plane E^2 we place three unit masses at the vertices of an equilateral triangle with center of mass at the origin. We place at the origin an arbitrary fourth positive mass, m_4 . It follows easily for all values of m_4 that this configuration is a relative equilibrium.

Let $m=(1,1,1,m_4)$ and let $x\in X_m$ be the relative equilibria class to which the above relative equilibrium belongs. Let $D^2\widetilde{V}_m(x)$, the hessian of \widetilde{V}_m at x, a real symmetric bilinear form on T_xX_m , be considered a function of m_4 . By direct calculation [2] we find that the hessian is degenerate if and only if m_4 equals the unique positive number m_4^* which is given by $m_4^*=(2+3\sqrt{3})/(18-5\sqrt{3})<1$.

For $m_4 < m_4^*$ the index of x (i.e. the index of the hessian of \widetilde{V}_m at x) equals 4 and x is a nondegenerate local maximum of \widetilde{V}_m . For $m_4 \ge m_4^*$ the index of x equals 2. When $m_4 = m_4^*$ the dimension of the nullspace of the hessian equals 2. This is the maximum degeneracy possible for four masses.

These considerations suggest the following interpretation of Theorem 1 whenever \widetilde{V}_m has isolated degenerate critical points.

For any $n \ge 4$ let $m \in \mathbb{R}^n_+$ be such that \widetilde{V}_m has only isolated critical points. Let $c_1 < \ldots < c_r < 0$ be the critical values of \widetilde{V}_m . Set $c_0 = -\infty$ and for any $j, 1 \le j \le r$, define $W_j = \widetilde{V}_m^{-1}(c_{j-1}, c_j)$. Let Λ_j be the set of critical points at level $j, 1 \le j \le r$. Finally, for any $i, 0 \le i \le 2n - 4$, define $\tau_j(n, m)$ by

$$\tau_i(n, m) = \sum_{j=1}^r \operatorname{rank} H_{2n-4-i}(W_j \cup \Lambda_j, W_j).$$

By [1, Theorem 2] we have $\tau_i(n, m) = 0$ for any i > n - 2.

THEOREM 4. For any $n \ge 4$ and any $m \in \mathbb{R}^n_+$ for which \widetilde{V}_m has only isolated critical points, $\tau_i(n, m) \ge \mu_i(n)$ for any $i, 0 \le i \le 2n - 4$.

COROLLARY 4.1.
$$\sum_{i=0}^{n-2} \tau_i(n, m) t^i > \sum_{i=0}^{n-2} \mu_i(n) t^i$$
 for any $n \ge 4$.

REFERENCES

- 1. J. I. Palmore, Classifying relative equilibria. I, Bull. Amer. Math. Soc. 79 (1973), 904-908. MR 47 #9922.
- 2. ——, Relative equilibria of the n-body problem, Thesis, University of California, Berkeley, Calif., 1973.
- 3. S. Smale, Problems in dynamical systems and celestial mechanics, (preprint). University of California, Berkeley, Calif., 1974.

DEPARTMENT OF MATHEMATICS, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139