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Throughout this note let G be an arbitrary discrete amenable group. 
Let (12, M, X) be a probability space. Let A be the automorphism group of 
(£2, M, X). Let T: G —• A be a group homomorphism. We call T an action 
of G on 12. For each g G G, let Tg be the image of g in A under T. Then 
Tg is a measurable, measure-preserving, invertible map from 12 to itself. 

If Q is a partition of 12 and co G 12, let Q(co) be the element of Q which 
contains co. If E is a set let \E\ denote the cardinality of E. 

Let A" be a subgroup of G. A net {Aa} of finite nonempty subsets of 
K is said to satisfy property P with respect to K if lim^l/lj" l \gAa n Aa\ = 
1, g G K. (Since K is amenable, such a net {Aa} exists; see [3].) 

Let P be a measurable partition of 12 with finite entropy. If E is a fin­
ite nonempty subset of G, let hp(E) G l 1 ^ ) be defined as follows: 

hp(E)(u) = - log X jv^ro-pjcco)], co G 12. 

The following generalization of the Shannon-McMillan theorem may be 
found in [4] and [8] : Let G - Zk, where Z is the group of integers and k 
is a positive integer. For n = 1, 2, • • • , let An = {(xlf x2, • • •, xk) G Z*: 
0 < xt < n, i = 1, 2, • • •, *}. Then {[Anr

1hp(An)} converges in L1 (12) as 
n —> °°. 

In [7] it is shown that if G is the group of dyadic rationals modulo 
one, and if An is the cyclic subgroup of G generated by 2~n, then 
{\An\~~1hp(An)} converges in Lx(Sl) as « —• °°. The authors of [7] con­
jectured that this property generalizes to a general countable abelian group. 
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It is the purpose of this note to announce the following theorem which 
generalizes these results, and settles the above conjecture. (The proofs of 
Theorems 1—4 will appear elsewhere.) Following [7], we call Theorem 1 the 
entropy equidistribution property of a measurable partition under the action 
of an amenable group. 

THEOREM 1. Let K be a subgroup of the amenable group G. There 
exists a K-invariant function h(P, T, K) E Z 1 ^ ) such that for every net 
{Aa} satisfying property Vwith respect to K, ]xma\Aa\~

1hP(A0l) = 
h(P, T,K)inL\Sl). 

The main tool used in proving Theorem 1 is the following generalized 
ergodic theorem which appears in [1] : If K is a subgroup of G, {Aa} is a 
net satisfying property P with respect to K9 and ƒ E L1^), then 
{\Aa\~

li:g^AJ • T8} has a limit in Ll(Çï) which is ^-invariant. 
Define H(P, T, K) = fh(P, T, K) dX. Define C(K) = {M G M: 

\[Tg(M)AM] =09gGK}. 

THEOREM 2. If Kx and K2 are subgroups of G such that Kx C K2> 

then H(K2) < H(KX). Equality holds if and only if E[h(P, T, KX)\C(K2)] = 
h(P, T, K2). 

THEOREM 3. If K is a subgroup of G, there exists a countable sub­
group L of K such that if L' is any subgroup satisfying L C L' C K, then 
h(P, Tt L') = h(P, Tt K). 

THEOREM 4. Let K be a subgroup of G. Let K be a family of sub­

groups of K which is directed by inclusion (D), and whose union is K. Then 

limLGj<h(P, T, L) = h(P, T, K) in L\ai and H(P, T, K) = 

infL€*HCP, T, L). 

As an application of the foregoing results, we can define the entropy 
H(T) of the action T of the amenable group G on £2 as follows: H(T) = 
suppH(P, T, G), where the supremum is over all measurable partitions P of 
£1 with finite entropy. This definition extends that given in [2] for G-Zk. 
The entropy as we have defined it is an invariant under isomorphism. Con­
versely, it may be possible to generalize Ornstein's results [6] and show that 
generalized Bernoulli schemes (see [5] for definition) with the same entropy 
are isomorphic. The entropy equidistribution property (Theorem 1 above) 
might serve as a basic tool for proving this. 
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