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Let X be a compact analytic space (or a complete algebraic variety) and 
let L be a line bundle on X and denote by ft : X —• P ^ the rational map de­
fined by the global sections of L®'. The L-dimension of X, K(X> L) is de­
fined by 

K(X, L) = I ta(d im( ƒ,(*)) 
I-»oo 

with the convention K(X, L) = - °° if L has no nontrivial sections for all 

i" > 0. In the particular case when X is nonsingular and L = ^ is the canoni­

cal bundle, the invariant K(X) = K(X, £2) is called the canonical (or Kodaira) 

dimension of X and is the fundamental invariant in the classification of sur­

faces. Recent works by Ueno [4] and Iitaka [1], [2] have studied K(X, L) 

for higher dimensional varieties. A fundamental open question is the behavior 

of K(X, L) under deformations of (X, L). When X is a smooth surface the 

plurigenera (and hence the Kodaira dimension) are deformation invariant [1], 

and Iitaka has constructed a family of threefolds Xt with K(X0) = 0 and 

K(Xt) = - ~ t* 0. 

Our main result is 

THEOREM. Given X0 a compact analytic space (or complete algebraic 

variety) and L0a line bundle on X0 satisfying 

(1) L®1 is spanned by its global sections for some i > 0, 

(2) K(X0, L0) = dim(X0), 
and (Xt, Lt) is any (flat) deformation of(X0, L0), then K(Xt, Lt) = 

K(X0i L0). 

When X0 is a smooth surface and L0 = ^ 0 it was shown by Mumford 
[3] that hypothesis (1) on L0 is implied by (2). For general L0 hypothesis 
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(1) is not implied by (2); however when XQ is smooth and L0 = ^ 0 the first 
hypothesis might be unnecessary. 

The general line of argument is the following: 
Given n: X —> S proper and flat and L — ^ l a line bundle one defines 

a relative L-dimension K(X\S, L) as follows. Let f.\ X —• Proj(7r* L ) be 

the rational map defined by 7r*(7rs|eL
<S)/) —> L®1'. Let 

K(X\S, L) = Hm(dim ft(X)) - dim(S) 

(or - oo if TT^CL®') = 0 for all i > 0). 

PROPOSITION 1. K(XS, Ls) > K(X\S, L) for all s G S with equality for 

s E W a nonempty c-open subset of S (i.e. W is the complement of a countable 

union of subvarieties). 

As an immediate corollary one sees that the L-dimension is upper semi-
continuous in the topology defined by c-open sets. The set W and its comple­
ment may both be dense, e.g. taking Xs ^ X0 a curve of genus g > 0, S the 
Jacobian of X0 and Ls the canonical family of degree zero bundles, one finds 
W = S - {points of finite order}. 

The main theorem follows from 

PROPOSITION 2. IfK(Xs, Ls) = dim(Xy) and Lf^1 is spanned by its 

global sections for some i > 0 then s E W. 

More generally if d = K(XS, Ls)< d i m p y and for some / > 0 the map 
fis: Xs —> ?N given by L̂  l is everywhere defined, dim( fis(Xs)) = d, and 
dim(supp Rlf ^(0)) < d then s E W. Thus for pairs (Xs, is) satisfying the 

is 
preceding hypotheses, the L-dimension can only go up under deformation. 
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